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Abstract—Buffer cache algorithms play a major role in filling 
the large performance gap between main memory and I/O 
devices in a mass storage system. Many buffer cache algorithms 
have been developed such as the low inter-reference recency set 
(LIRS) and adaptive replacement cache (ARC). Careful analysis 
of real-world workloads leads us to observe that approximately 
50 to 90% blocks are accessed three or fewer times during the 
execution of various workloads. These infrequently accessed 
blocks are likely to cause high cache pollution by evicting better 
blocks from the cache. We also observe that these infrequently 
accessed blocks have certain access characteristics regarding 
reuse distance: either extremely long or short. Based on our 
observations, we propose an algorithm named frequency and 
reuse distance (FRD). The proposed algorithm concentrates on 
the manner in which to utilize both the access frequency and 
reuse distance of a block to determine the entries that must be 
stored in a buffer cache. We implemented the FRD algorithm 
using two LRU stacks. Experimental results show that the 
proposed algorithm outperforms state-of-the-art cache 
algorithms such as LIRS and ARC in most cases. We also show 
that FRD’s hit ratio is stable under various cache sizes. 
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I.  INTRODUCTION  
Buffer cache algorithms play a major role in building a 

memory hierarchy in a mass storage system. For instance, a 
large performance gap between main memory and a hard disk 
drive (HDD) or solid state drive (SSD) is reduced by buffer 
cache. For network-attached storage, buffer cache is one of the 
key factors for improving performance. Because of its 
simplicity and low overhead, a least-recently-used (LRU) 
algorithm is one of the most commonly used buffer cache 
algorithms. However, the LRU algorithm performs poorly for 
the following workloads because of certain characteristics.  

• Scanning workload. Because an LRU algorithm evicts 
the least-recently-used block, recently accessed blocks 
reside in the cache. However, the blocks in the scanning 
workload are accessed only a single time. In other 
words, the LRU algorithm generates considerable cache 
pollution. For instance, although meaningful blocks are 
present in the cache, the scanning workload evicts them. 

• Cyclic access (loop-like) workload in which loop length 
is greater than cache size. For instance, when the cache 
size is 3 and the workload’s block request sequence is 
1-2-3-4-1-2-3-4-1-2-3-4, the LRU algorithm always 

generates a cache miss. In this case, Block 1 will be 
evicted as a result of the insertion of Block 4. Thus, the 
next request of Block 1 cannot be a cache hit. Therefore, 
if the cache size is smaller than the workload’s cyclic 
pattern size, the LRU algorithm always generates a 
cache miss. This is an inevitable problem of the LRU 
algorithm. 

To address the problems of LRU, many buffer cache 
algorithms have been proposed [1-10]. Among them, two cache 
algorithms, adaptive replacement cache (ARC) [2] and low 
inter-reference recency set (LIRS) [1], have shown the best 
performance for multiple workloads. The ARC algorithm 
consists of two queues: one for recency and the other for 
frequency. In the LIRS algorithm, cache entries are maintained 
in two LRU stacks in terms of inter-reference recency. These 
two-LRU stack-based approaches overcome the limitation of 
LRU algorithms. However, these sophisticated existing two-
LRU stack-based approaches also suffer from noise blocks, 
that is, infrequently accessed blocks. Our observations, as 
described in Section 3, show that most real-world workloads 
have many noise blocks that are infrequently accessed and can 
pollute cache buffers in both ARC and LIRS algorithms. In an 
ARC algorithm, most frequently accessed blocks reside in a 
frequency queue. However, infrequently accessed blocks (e.g., 
only two or three times accessed blocks) also reside in the 
frequency queue because the algorithm determines the two or 
more accessed blocks are frequently accessed. The LIRS 
algorithm has the same problem. Two or more accessed blocks 
are considered low inter-reference recency blocks. Thus, they 
reside in the LIR stack even if they are infrequently accessed. 

In this study, we propose a buffer cache algorithm, called 
frequency and reuse distance (FRD), that considers both 
frequency and reuse distance. Through careful analysis on 
various real-world workloads, we find that infrequently 
accessed blocks are dominant in most cases and such blocks 
are the main source of cache pollution. We concentrate on the 
manner in which to identify these infrequently accessed blocks 
and exclude them from the cache. The contributions of this 
study are as follows. 

• We analyze real-world workload regarding buffer cache 
and find approximately 50 to 90% of blocks are 
infrequently accessed (three or fewer times) and their 
reuse distance is extremely long or short. 



• We propose a simple but effective buffer cache 
algorithm that effectively filters out noise blocks that 
generate cache pollution. 

• A two-LRU stack-based algorithm design can be easily 
implemented. It also offers O(1) time complexity for 
block eviction. 

The remainder of the paper is organized as follows. Section 
2 provides background to our study. A detailed analysis of real-
world workload is presented in Section 3. Section 4 describes 
the proposed cache algorithm design and Section 5 presents 
several experimental results. Section 6 discusses the 
effectiveness of our proposed design and suggests future 
related studies. Section 7 reviews related work. Section 8 
provides concluding remarks. 

II. BACKGROUND 
In this section, we briefly describe the state-of-the-art cache 

algorithms, LIRS [1] and ARC [2]. These two cache algorithms 
are generally known to outperform most cache algorithms [5-
10] including LRU in practical workloads. 

A. LIRS Algorithm 
The LIRS algorithm is based on inter-reference recency 

(IRR), which is the same with reuse distance. Reuse distance 
represents the number of distinct blocks between two 
consecutive accesses to the same block in a request sequence. 
For example, when a request sequence is 3-1-2-4-0-2-3, the 
reuse distance of Block 3 is 4 and the reuse distance of Block 2 
is 2. Therefore, each block has its own IRR (reuse distance) at 
time t. The basic idea of the LIRS algorithm is to maintain 
blocks with smaller IRRs in a cache. When a new block arrives, 
the LIRS algorithm does estimate the new block’s IRR and 
decides whether a resident block is to be evicted based on the 
estimated IRR. To estimate the new block’s IRR, the LIRS 
algorithm maintains the access history information. When the 
IRR of a new block cannot be estimated because of a lack of 
history information (e.g., when the block was first accessed), 
the LIRS algorithm stores the newly arrived block into a 
temporary cache buffer that is isolated from the main cache 
buffer in which all blocks are sorted according to their IRR. 
This is why LIRS algorithm uses two cache buffers in its 
design; an HIR stack (or temporary cache buffer) and an LIR 
stack (or main cache buffer). 

The LIRS algorithm classifies each block into two 
categories according to IRR: HIR for high inter-reference 
recency and LIR for low inter-reference recency. If an 
incoming block is accessed for the first time, (i.e., when a 
cache miss occurs and no access history information is 
available), then the incoming block enters the HIR stack and 
the associated access history information is inserted into the 
LIR stack. Otherwise, if the incoming block is accessed again 
(i.e., when a cache hit or miss occurs but access history 
information is available), the incoming block is moved to an 
LIR stack. This is because the IRR value of the incoming block 
is smaller than that of other blocks in the LIR stack. The LIRS 
algorithm adopts a heuristic strategy such that when a block is 
evicted from an LIR stack, it is reinserted back into an HIR 

stack. Therefore, cache eviction occurs only in an HIR stack. 
However, a limitation exists in the LIRS algorithm whereby the 
access frequency of blocks in an LIR or HIR stack is not to be 
considered. In other words, if an incoming block is found in an 
LIR or HIR stack (a cache hit), it is inserted into the top of the 
LIR stack regardless of its access frequency. This decision 
increases cache pollution for infrequently accessed blocks.  

B. ARC Algorithms 
To manage both recency and frequency in block accesses, 

the ARC algorithm uses two LRU cache buffers, the sizes of 
which are dynamically adjusted. In this algorithm, a new block 
enters into the first LRU stack. This LRU stack is labeled T1 
for recency. If the block is accessed again (i.e., a cache hit or 
miss occurs by a history buffer hit), the block is moved to the 
second LRU stack labeled T2 for frequency. T1 and T2 have 
their own history buffers named B1 and B2, respectively. In 
these history buffers, the block’s metadata are maintained 
when a block is evicted from T1 or T2. The sizes of both T1 + 
T2 and B1 + B2 are the same as that of the cache. Interestingly, 
the ARC algorithm has a unique feature that adaptively 
balances the workload’s recency and frequency. If the recency 
is dominant during some execution interval of a workload, T1 
increases. If the frequency is dominant during another 
execution interval of a workload, T2 increases. However, some 
limitations exist with the ARC algorithm. First, infrequently 
accessed blocks can be maintained in T2 if the blocks are 
accessed more than twice. This causes T2 cache to be polluted. 
Second, supporting blocks with long reuse distance is difficult 
because its history buffer size is limited to cache size. 

C. Brief Summary of the Two Algorithms 
These two state-of-the-art cache algorithms have many 

similarities, even though their hit ratio results are quite 
different.  

• First, these two algorithms consist of two LRU stacks to 
separate workloads according to their policies. They 
also maintain history information for the purposes of 
future block access. 

• One major purpose of the first stack of the algorithms is 
to make cache is scan-resistant. A newly requested 
block is entered into the first stack and, if it is reused or 
its history is accessed, it can enter into the second stack. 
Thus, the second stack can maintain meaningful blocks. 

• In most cases, these two algorithms outperform the 
LRU algorithm. 

Although the two algorithms ensure the cache is scan-
resistant, they possess limitations in terms of handling 
infrequently accessed blocks. According to our analysis on 
real-world workloads, most blocks are infrequently accessed 
and these blocks can pollute the second stack that contains 
meaningful blocks. The LIRS algorithm does not consider 
access frequency. Thus, infrequently accessed blocks can cause 
LIR stack pollution. The ARC algorithm also has the same 
pollution problem and it does not consider blocks that have a 
long reuse distance. It only concentrates on blocks having a 
short reuse distance. 



Table 1. Workload description 

Name Type Description 

OLTP Application Online transaction processing [1] 
Web12 Web server A typical retail shop [1]  
Web07 Web server A typical retail shop [1] 
prxy_0 Data center Firewall/web proxy [2] 
wdev_0 Data center Test web server [2] 

hm_0 Data center Hardware monitoring [2] 
proj_0 Data center Project directories [2] 

proj_3 Data center Project directories [2] 

src1_2 Data center Source control [2] 

 
 

III. WORKLOAD ANALYSIS AND OBSERVATIONS 
In this section, we analyze a wide range of real-world 

workload sets from [11, 12] collected from a single application 
trace to various server or working directory traces in data 
centers.  

Table 1 lists the characteristics of each workload. The 
OLTP workload contains a CODASYL database related to a 
one-hour period and was used in [2, 4, 5, 9]. The Web12 and 
Web07 workloads are both web server workloads that contain 
access traces of detail pages about events (music, theater, etc.) 
in Munich. These two sets of traces were recorded in 
December 2012 and July 2013, respectively. The traces are 
long-tail distributions which may be typical for retail shops 
[11]. from the workloads prxy_0 to src1_2 are block-level 
traces for a single week in an enterprise data center from MSR 
Cambridge [12]. We chose 9 workloads from whole sets in [11, 
12] neither too large nor too small working sets. 

Figure 1. Reuse distance distribution of each workload. The x axis uses a logarithmic scale. Each workload has its 
dominant reuse distance period. In the case of workload (h) proj_3, blocks with a 100 K to 1 M reuse distance period are 
dominant (more than 95% of the entire workload fall within this period).  

  



Figure 1 shows the reuse distance distribution of each 
workload. Specifically, it shows that each workload has a 
dominant reuse distance period. In the case of (h) proj_3, more 
than 95% of the workload’s reuse distance is 100 K to 1 M. For 
a 4-KB block size, this period is approximately 409.6–4096 
MB in cache size. Thus, if a cache size is less than 400 MB, it 
shows an extremely low hit ratio for an LRU or LRU-like 
algorithm (see Figure 5 in Section 5, “Evaluation”). A 
dominant reuse distance period may be a good candidate for 
designing an effective cache algorithm, but it depends on 
workload. As depicted in Figure 1, a dominant reuse distance 
does not have any common period among various workloads. 
To explore each block’s access characteristics, we analyze the 
number of accesses of each block. Figure 2 shows the 
cumulative distribution function (CDF) for the number of 
accesses of each block. Note that approximately 50 to 90% of 
all blocks are accessed three or fewer times in most cases. This 
is our first observation for designing a new cache algorithm. 

Observation #1. Approximately 50 to 90% of blocks are 
infrequently accessed in a real-world workload. 

Observation #1 means that most blocks are infrequently 
accessed and only a few blocks are frequently accessed. We 
expect that if a cache algorithm performs in an LRU manner, 
blocks to be frequently accessed may be easily evicted from a 
cache because of infrequently accessed blocks. Therefore, 
when a cache is full, infrequently accessed blocks should be 
evicted prior to frequently accessed blocks, and frequently 
accessed blocks should be retained for a long time to make 
more cache hits.  

For more detailed observation on the characteristics of 
infrequently accessed blocks, we analyze the reuse distance 
distribution of infrequently accessed blocks. Figure 3 shows 
the reuse distance distribution for infrequently accessed blocks  
(e.g., blocks accessed three or fewer times). Here, the reuse 
distance is represented by the percentage of a given cache size. 
For instance, if the reuse distance is 1024 blocks, 4 MB is the 
reuse distance in size in which block size is 4 KB. Thus, if a 
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Figure 2. The cumulative distribution function (CDF) for the number of accessed counts for each block. The x axis uses a 
logarithmic scale.  In most cases, blocks that are accessed three or fewer times are approximately 50-90% of the CDF. This 
kind of block is likely to be a noise that pollutes cache.  

 



cache size is 8 MB, the reuse distance of 1024 is 50% the cache 
size. We analyze a reuse distance distribution using various 
cache sizes. From Figure 3 (a) to (i), we can classify these 
infrequently accessed workloads into two types according to 
reuse distance distribution: 

• Type 1: Infrequently accessed with a long reuse 
distance. 

• Type 2: Infrequently accessed with a short reuse 
distance. 

In the LRU algorithm, Type 1 blocks generate pure cache 
pollution and this algorithm cannot be a cache hit as well. 
Apparently, we must exclude these kinds of blocks from a 
cache buffer. The Type 2 blocks might be a cache hit because it 
has a short reuse distance. However, after a cache hit, it still 
produces cache pollution because it has infrequently accessed 

characteristics. In Figure 3, Workloads (f)–(i) can be classified 
as Type 1 and Workloads (a)–(e) can be classified as a 
combination of Types 1 and 2. Interestingly, in all workloads, 
reuse distance distribution from 10 to 100% of a given cache 
size is extremely low. For instance, in the Workload (d) prxy_0 
with 8-MB cache size, the distribution from 10 to 100% of 
cache size proves to be less than 1%. Other workloads show a 
similar trend. In other words, most infrequently accessed 
blocks are distributed in the range of 0 to 10% of a given cache 
size or greater than 100% of a given cache size. This is our 
second observation. 

Observation #2. Reuse distance for infrequently accessed 
blocks is either very short or very long. Regarding cache size, 
most distribution is less than 10% or greater than 100% of 
cache size. 

 

Figure 3. Reuse distance for three or fewer times in which blocks are accessed. The reuse distance is represented by the 
percentage of cache size. Because the working set size of each workload is different, we analyze according to various cache 
sizes (1, 8 and 32 MB or 8, 64, and 512 MB). The x axis uses a logarithmic scale. A reuse distance of 100% means the reuse 
distance is the same as the cache size, and 1000% means 10 times the cache size. 
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IV. PROPOSED ALGORITHM 
In this section, we propose a buffer cache algorithm that 

considers both access frequency and reuse distance, known as 
FRD. This algorithm is based on the two observations 
described in Section 3. The FRD effectively filters out cache 
polluting blocks using a filter stack and effectively maintains 
meaningful blocks using a reuse distance stack. 

A. Block Classification 
From Observation #1, infrequently accessed blocks are 

approximately 50 to 90% of all blocks. Thus, we must exclude 
these infrequently accessed blocks. In Section 3, we have 
classified the infrequently accessed blocks by reuse distance 
(Type 1 and 2). In this section, we expand the block 
classification into four classes. We classify characteristics of 
blocks by combining frequency and reuse distance. Table 2 
shows the block classification.  

Table 2. Block Classification 

Class Description 

FS Frequently accessed, short reuse distance 

FL Frequently accessed, long reuse distance 

IS Infrequently accessed, short reuse distance 

IL Infrequently accessed, long reuse distance 

 

Class FS and FL blocks are the most preferable blocks with 
respect to the cache algorithm because these blocks are likely 
to generate cache hits. By contrast, Class IS or IL blocks are 
likely to pollute a cache in most cases. However, Class IS can 
also generate a cache hit because Class IS blocks can be reused 
(e.g., a cache hit by its short reuse distance). However, 
immediately after reuse, they begin to pollute a cache. 
Therefore, these kinds of blocks should be carefully handled in 
a cache buffer. Of course, Class IL blocks should not be 
maintained in a cache. 

B. Two-buffer-based Design 
Cache pollution caused by Class IS or IL commonly occurs 

as a result of a scan-like workload in a LRU cache algorithm. 
To avoid this cache pollution, we design our cache algorithm 
using two types of buffers: temporal and actual cache buffers. 
In this design, a newly requested block is inserted into a 
temporal cache buffer. If any block in the temporal buffer is re-
accessed, then this block is moved to the most recently used 
(MRU) position of the temporal buffer (Class FS or IS). If a 
block in the temporal buffer is not re-accessed in a short time, 
then this block is evicted because the temporal buffer size is 
relatively small. This simple design effectively causes a cache 
algorithm to be scan-resistant. The proposed algorithm also 
retains block accessed history as a history block so that the 
evicted block can be inserted into the actual cache buffer. If the 
evicted block is re-accessed, it moves to the MRU position of 
the actual cache buffer because it is considered a frequently 
accessed block with long reuse distance (Class FL). Therefore, 
the dominant Class FL blocks are maintained in the actual 

cache buffer. In addition, Class IS or IL cannot produce cache 
pollution because those blocks are located in the temporal 
buffer and quickly evicted without any interference to the 
actual cache buffer. 

In our proposed cache algorithm, two types of blocks are 
maintained: (1) a history block that does not have actual data 
but only metadata (e.g., block number); (2) a resident block 
that has actual data. Figure 4 is an illustration of our proposed 
algorithm (FRD) that maintains two cache buffers. The 
temporal buffer and the actual buffers are named filter stack 
and reuse distance stack, respectively.  

The filter stack has two purposes. One purpose is to 
identify noise blocks (e.g., Class IS or IL), and the other 
purpose is to identify blocks with short reuse distance (e.g., 
Class IS or FS). The reuse distance stack also has two purposes. 
One purpose is to maintain history block in reuse distance 
order up to the last resident block in the reuse distance stack. 
The other purpose is to store frequently accessed blocks for 
later used (e.g., Class FL). 

The filter stack contains only resident blocks, but the reuse 
distance stack contains both resident and history blocks. When 
a block is inserted into the filter stack, its history block is 
automatically generated and inserted into the reuse distance 
stack. Thus, regardless of block types (resident or history), the 
reuse distance stack is ordered with a reuse distance sequence. 

The reuse distance stack maintains history blocks up to the 
oldest resident block. In other words, the maximum reuse 
distance for the history block in this algorithm is at most the 
oldest resident block’s reuse distance minus 1. As depicted in 
Figure 4, each stack is managed in an LRU manner and has its 
own eviction point at the end of the stack (e.g., the LRU 
position of each stack).  

Filter Stack

Reuse distance Stack

History Block
Insertion

New 
Entry

Resident Block 
Insertion

Cache Miss

Cache Hit

Cache Hit

Eviction

Eviction

LRU

LRUMRU

MRU

Resident Block History Block

Figure 4. Illustration of FRD cache algorithm.  Filter 
stack and reuse distance stack are managed in an LRU 
manner. When a new block is requested, its resident block 
is inserted into the filter stack and its history block is 
inserted to the re use distance stack. 

 



Initially, both the filter and reuse distance stacks are filled 
with newly arrived blocks from the reuse distance stack to the 
filter stack. Therefore, we can assume without loss of 
generality that both filter and reuse distance stacks are fully 
occupied. By default, the filter stack size is 10% of the given 
cache size based on our Observation #2.   

When the two stacks are full, a total of four cases are 
possible for a block request because of the history block 
accesses. Specifically, a cache miss has two cases: one with 
and one without a history hit. A cache hit also has two cases: 
one in the filter stack and one in the reuse distance stack. 

Detailed descriptions of each case are as follows. 

• Case 1) Cache miss and history miss: Evict the oldest 
block in the filter stack. Then, insert the missed block 
into the filter stack and generate a history block for the 
missed block. In addition, insert the history block into 
the reuse distance stack. No eviction occurs in the reuse 
distance stack because the history block contains only 
metadata. 

• Case 2) Cache miss but history hit: Remove all 
history blocks between the 2nd oldest and the oldest 
resident blocks. Next, evict the oldest resident block 
from the reuse distance stack. Then, move the history 
hit block to the MRU position in the reuse distance 
stack and change it to a resident block. No insertion or 
eviction occurs in the filter stack. 

• Case 3) Cache hit in the filter stack: Move the 
corresponding block to the MRU position of the filter 
stack. The associated history block should be updated to 
maintain reuse distance order (i.e., move its history 
block in the reuse distance stack to the MRU position of 
the reuse distance stack). 

• Case 4) Cache hit in the reuse distance stack: Move 
the corresponding block to the MRU position of the 
reuse distance stack. If the corresponding block is in the 
LRU position of the reuse distance stack (i.e., the oldest 
resident block), the history blocks between the LRU 
position and the 2nd oldest resident block are removed. 
Otherwise, no history block removing occurs. 

C. Analysis of FRD Algorithm 
In the proposed algorithm, the size of the filter stack is the 

only tunable parameter. Based on Observation #2, we allocate 
10% of the cache size for the filter stack. Note that most of the 
infrequently accessed blocks have either very short or very 
long reuse distance and most of their distributions are less than 
10% or greater than 100% of the cache size. Although we set 
the filter stack size to 10% of the total cache size by default, 
the experimental results in Section 5 reveal that the efficiency 
of the proposed algorithm is insensitive to this parameter. 

We next describe the manner in which the proposed 
algorithm handles the four block access types shown in Table 2.  

If a block is Class FS, it will reside in the filter stack with 
frequent cache hits. If the filter stack is not sufficiently large to 
cache it, a cache miss will occur in the filter stack. However, 

the block will be moved to the reuse distance stack because of 
its short reuse distance. Once it is stored in the reuse distance 
stack, the block access contributes to a cache hit.  

If a block is Class FL, it may generate a cache miss at the 
second request because the filter stack size is not sufficiently 
large to cover the block’s reuse distance. However, the block 
will be maintained in the reuse distance stack because the 
block’s reuse distance is most likely to be shorter than the 
longest reuse distance. From this point forward, the block 
access will contribute to many cache hits for a considerable 
period. 

If a block is Class IS, the block access is most likely 
frequent in some intervals and infrequent in other intervals. In 
the proposed algorithm, the block is likely to be maintained in 
the filter stack during frequent access intervals and will be 
evicted from the filter stack during infrequent access intervals. 
Therefore, the proposed algorithm not only generates cache 
hits from the blocks in Class IS but also effectively isolates 
them from any blocks in other classes (e.g., Classes FS and FL).  

If a block is Class IL, the block is always inserted into the 
filter stack because the associated history information cannot 
be found because of its large reuse distance. Therefore, these 
infrequently accessed blocks cannot pollute the reuse distance 
stack. Note that the filter stack effectively filters out Class IS 
and IL blocks because not having those blocks inserted into the 
reuse distance stack is preferable.  

Because the proposed algorithm is based on two LRU 
stacks, cache eviction is accomplished with O(1) time 
complexity. 

D. Comparison of FRD to ARC to LIRS 
Similar to ARC and LIRS, FRD uses two cache buffers in 

its design. ARC’s T1, LIRS’s HIR stack, and FRD’s filter stack 
are the first stack; and ARC’s T2, LIRS’s LIR stack, and 
FRD’s reuse distance are the second stack. One primary 
purpose of the first stack is to make the cache scan-resistant. In 
other words, one-time accessed blocks cannot enter into the 
second stack.  

However, the manner in which to handle the first stack in 
FRD is different from the operations in ARC and LIRS. When 
an incoming block is found in the first stack, that is, a cache hit 
occurs there, FRD moves the block to the top of the first stack. 
By contrast, LIRS and ARC move the hit block to the top of 
the second stack. This decision in both LIRS and ARC cannot 
prevent such blocks from causing cache pollution in the second 
stack. 

FRD has two eviction points. These are the LRU positions 
in the two stacks. This causes complete isolation of the blocks 
having similar characteristics. However, LIRS has only a single 
eviction point: the LRU position of the HIR stack.  

FRD maintains all history blocks up to the oldest resident 
block in the second stack. By contrast, the ARC maintains 
history up to cache size * 2. This limitation of the ARC 
algorithm causes poor performance for workloads whose reuse 
distance is greater than a given cache size. 



V. EVALUATION 
To show the performance of our FRD algorithm, we 

implemented a trace driven simulator written in C. The 
simulator contains one fixed-size LRU stack for the filter stack 
and one resizable LRU stack for the reuse distance stack to 
maintain history blocks dynamically. In this evaluation, we did 
not count the metadata size for the cache because it is 
negligible. Detailed information about the overhead is 
explained in Section 5.5  

We compared the proposed FRD algorithm with the LRU, 
LIRS, ARC, and OPT [13] algorithms using various real-world 
workloads listed in Table 1. The OPT is an optimal offline 
cache algorithm that is not feasible as online cache. However, 
it is useful for comparing the maximum performance with that 
of various cache algorithms. For LIRS algorithm, we set 1% of 
the cache size and unlimited LIR stack size for the non-resident 
block as the default setting from the LIRS algorithm [1]. 

A. Workload Hit Ratio Analysis 
Figure 5 shows the experimental results for real-world 

workloads. On average, FRD showed the highest hit ratio for 
various cache sizes among the cache algorithms. We precisely 
analyzed the results of the hit ratio comparison for each 
algorithm.  

(a) OLTP: As previously determined in [2], the ARC 
algorithm outperforms LIRS in this workload. However, in our 
study, FRD outperformed ARC. This is because ARC could 
not effectively consider those blocks having a long reuse 
distance. In this workload, more than 70% of the blocks were 
infrequently accessed (Figure 2) and the short reuse distance 
accesses were dominant (Figure 1). We could then conclude 
that this workload is Class IS dominant (i.e., is infrequently 
accessed and has a short reuse distance). As explained, in the 
LIRS algorithm, the Class IS block can easily pollute the 
second stack (LIR stack). In addition, many cache misses occur 
because of a relatively small first stack size (HIR stack).  

(b) Web12 and (c) Web07: These workloads have many 
blocks of Classes IS and IL (Figure 3) and more than 80% 
blocks are infrequently accessed (Figure 2). Thus, LIRS suffers 
from cache pollution by blocks of Class IS; ARC shows better 
performance than LIRS. However, on average FRD performed 
better than ARC because ARC does not handle blocks with a 
long reuse distance even though they are frequently accessed.  

 (d) prxy_0: This workload has many Class IS blocks 
(Figure 3) and the results show that FRD performed best for all 
cache sizes. In other words, FRD not only generated many 
cache hits, but also effectively filtered out Class IS blocks. 
Other algorithms cannot filter out Class IS blocks, which 
causes cache pollution. This is why their hit ratios are low.  

 (e) wdev_0: LIRS and FRD showed similar hit ratio curves, 
but FRD performed better. When cache size was small (≤ 4 
MB), ARC performed the best, but when cache size was large 
(> 4 MB), ARC’s performance was worse than that of both 
LIRS and FRD. This derives from the reuse distance 
distribution of wdev_0 (Figure 1). This workload contains 
more blocks having long reuse distances than short reuse 
distance.  

(f) hm_0: In this workload, blocks of Class IL are dominant, 
whereas blocks of Class IS are small (Figure 3). Thus, 
algorithms such as LIRS and ARC do not suffer from cache 
pollution with this kind of workload. The reuse distance 
distribution of this workload also has no special point or period 
(Figure 1). As depicted in Figure 5, it showed moderate results 
for all cache algorithms. Figure 5 does not reveal the algorithm 
that performed best, but Table 3 reveals that the overall average 
performance for the FRD algorithm remained the highest . 

(g) proj_0: In most cases, FRD outperformed ARC and 
LIRS. As depicted in Figure 3, this workload contains 
approximately 10% of Class IS blocks that cause cache 
pollution. The results show that FRD effectively filtered out 
these blocks. Interestingly, the ARC algorithm shows relatively 
worse hit ratio than ARD or FRD when cache size is 512 MB. 
Figure 1 reveals the reason for this limitation. More than 50% 
of the reuse distance distribution is concentrated in the period 
from 100 K to 1 M. In a 4-KB block system, this value is 
converted to 409.6 to 4096 MB size. Because the ARC 
algorithm maintains history blocks at most cache size * 2, the 
blocks having a long reuse distance (e.g., longer than cache 
size * 2) cannot enter into the frequency stack and this 
generates many cache misses. 

(h) proj_3: On average, LIRS showed the best performance 
for this workload. The filtering effect was minimized because 
most infrequently accessed blocks have a long reuse distance 
(Class IL). In fact, this workload is a special case. In Figure 1, 
the reuse distance distribution for proj_3 shows that more than 
95% of blocks are concentrated in the period from 100 K to 1 
M. Structurally, the LIRS algorithm can maintain longer 
history blocks than can the FRD algorithm because the oldest 
resident block in the LIR stack is moved to the HIR stack. This 
is because the LRU position of the HIR stack is the only 
eviction point. This is the reason the LIRS performs best for 
this workload. By contrast, the FRD algorithm does not move 
the oldest resident block in the reuse distance stack to the filter 
stack but instead evicts it. In FRD, the filter stack has 
meaningful blocks such as Class IS or FS. Therefore, moving 
the oldest resident block to the filter stack generates more 
cache pollution for the filter stack. Note that the HIR stack of 
the LIRS algorithm is used as a temporal space that contains a 
mixed set of new and old blocks. There’s one more interesting 
point at 1024MB cache size. ARC shows the best hit ratio. This 
is because of the LRU-friendly workloads. The relative hit ratio 
difference of LRU compared to LIRS or FRD at 1024 MB is 
smaller than other cache sizes. It means, there are many blocks 
at 1024 MB cache size environment that LRU algorithm can 
handle. Specifically, LIRS or FRD can generate inevitable 
cache miss at second block access whose reuse distance is 
longer than the HIR size or filter stack size, respectively. 
However, LRU can generate cache hit at second block access 
for those blocks and ARC can adjust its T1 stack that works 
like LRU. Therefore, because LIRS or FRD generates more 
cache miss than ARC in this situation, ARC shows the best 
performance. 

(i) src1_2: If cache size was small ( ≤  64 MB), ARC 
performed the best, but if cache size was large (> 64 MB), 
LIRS performed the best. However, on average, FRD shows 
the most stable result which is revealed in Table 3. Like (h) 



proj_0, more than 50% of the reuse distance distribution is 
concentrated in the period from 100k to 1M. However, (i) 
src1_2 has one more concentrated point around the period from 
100 to 1k (Figure 1) and it contains rare Class IS blocks 
(Figure 3). That means, a cache algorithm does not suffer from 
cache pollution by Class IS blocks and it results in good 
performance in ARC when the cache size is small and good 
performance in LIRS when the cache size is large. Note that, 
when cache size is small, ARC could maintain newly accessed 
blocks longer than LIRS because ARC’s T1 could bigger than 
LIRS’ HIR stack size. 

B. Cache Performance Stability 
In our evaluation, the FRD algorithm showed the most 

stable performance with respect to various cache sizes. This 
means that FRD does not have a significantly low hit ratio for 
specific cache sizes. However, other algorithms showed a 
similar unstable point. The LIRS algorithm performs poorly 
for: (a) OLTP, (b) Web12, and (c) Web07 when cache size is 
small. This is because of Class IS blocks. As presented in 
Figure 2 and 3, these workloads have many blocks of Class IS. 
The blocks of Class IS easily pollute the LIR stack with the 

Figure 5. Hit ratio comparison using LRU, ARC, LIRS, OPT and FRD cache algorithm.  
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LIRS algorithm. This results in a low hit ratio when cache size 
is small. However, in the case of FRD, the cache performance 
is more stable than that of LIRS even if the cache size is small. 
This result derives from the filter stack, which does not allow 
the Class IS block to be inserted into the reuse distance stack.  

The ARC and LRU algorithms perform poorly for: (g) 
proj_0 and (h) proj_3 when cache size is small. This is because 
of the Class FL blocks. As depicted in Figure 2 and 3, these 
workloads have many blocks of Class FL. Even if a block is 
frequently accessed, its reuse distance is greater than the cache 
size. This means it is difficult for cache hits to occur with the 
ARC and LRU algorithms. This is because of the limited 
history stack size. In the case of (h) proj_3, the ARC hit ratio 
for 256 MB is approximately three times less than that of the 
LIRS or FRD algorithm. This is a major problem because 
cache size can be smaller than the working set size. However, 
the FRD can support blocks of Class FL because of the reuse 
distance stack with history blocks. 

C. Overall Comparison with OPT 
Although FRD shows the best performance among existing 

cache algorithms, a performance gap exists with OPT. Figure 5 
contains the hit ratio comparison between FRD and OPT.  

Table 3 summarizes the overall results when using an 
average hit ratio value. We calculate the “hit ratio of a given 
cache algorithm / hit ratio of OPT algorithm” for all cache sizes 
and we calculate their average values. As shown in Table 3, 
FRD outperforms other state-of-the-art cache algorithms except 
for workload proj_3, which has a special reuse distance 
distribution. As revealed, designing a better cache algorithm is 
possible.  

Table 3. Overall result: an average value of each algorithm’s hit 
ratio over that of OPT. Close to 1.0 means approximating OPT’s 

hit ratio. (Underscored: best value) 

 LRU ARC LIRS FRD 

OLTP 0.674 0.746 0.691 0.753 

Web12 0.829 0.852 0.827 0.857 

Web07 0.800 0.839 0.812 0.847 

prxy_0 0.844 0.870 0.870 0.898 

wdev_0 0.647 0.723 0.728 0.745 

hm_0 0.598 0.700 0.723 0.724 

proj_0 0.612 0.722 0.740 0.780 

proj_3 0.172 0.241 0.516 0.478 

src1_2 0.620 0.697 0.799 0.813 

D. Filter Stack Performance 
FRD uses the first stack (i.e., filter stack) to maintain Class 

FS and IS blocks whose reuse distance is short. Figure 6 shows 
the hit ratio for the filter and reuse distance stacks. When a 
given cache size is small, the filter stack is more powerful. In 
prxy_0 workload with an 8-MB cache size, approximately 35% 
of the cache hit occurred in the filter stack, which is only 10% 
of the whole cache size. For the 1- and 2-GB cases, a cache hit 
occurred only from the reuse distance stack. In this case, the 
size of the reuse distance stack was sufficiently large to contain 
all blocks in the workload. In hm_0 workload, approximately 
20% of the cache hit occurred in the filter stack with only 10% 
of the whole cache size. This shows that the filter stack not 
only works as a filtering buffer but also works as a cache buffer. 

Figure 6. Hit ratio analysis of the filter stack and reuse distance stack. 



E. Sensitivity and Overhead Analysis 
The filter stack is a tunable parameter for the FRD cache 

algorithm. If we set the value to 100% of the cache, the FRD 
will yield the same result as in the LRU cache because the filter 
cache itself does not maintain any history blocks. In addition, if 
the size of the filter stack is too small, the hit ratio will be 
slightly lower because the blocks having a short reuse distance 
(i.e., Classes FS and IS) will be missed at the first reuse request. 
However, this does not generate a considerable performance 
gap because subsequent requests for the blocks will produce 
cache hits, as the blocks will be located in the reuse distance 
stack as a result of their history information. Figure 7 shows 
the sensitivity of the filter stack size from 1 to 25% of the 
cache size. As shown, the size of the filter stack is not sensitive 
to the hit ratio. However, empirically, 10% show the best 
performance among the many cache sizes. In the reuse distance 
stack, history blocks are maintained. Although the number of 
history blocks of the FRD can be greater than those in the 
ARC’s ghost buffers, which is twice the size of a given cache, 
it is not greater than LIRS’s LIR stack size because LIR uses 
99% of a given cache size and we use 90% of given cache size. 
In addition, the history block is much smaller than the resident 
block because a history block contains only a block number. 
For a system with a 4-KB block size and 64-bit addressing, a 
history block (8 bytes) resides in only 0.2% of a resident block 
(4 KB). 

VI. DISCUSSION AND FUTURE WORK 
The workload proj_3 is an LIRS-friendly workload that 

includes many blocks with a long reuse distance. In an LIRS 
algorithm, when a new resident block is inserted into the LIR 
stack, the oldest resident block in the LIR stack will be moved 
to the HIR stack. This operation lengthens the life of a block 

and this is suitable for a workload with a long reuse distance. 
However, in the FRD cache, because the two LRU stacks have 
their own eviction points, such an operation is not possible. 
Instead, if we decrease the size of the filter stack, we can 
achieve a similar effect whereby a block’s life is lengthened.  

By contrast, OLTP, Web12, and Web07 are not LIRS-
friendly workloads because they contain many blocks with 
infrequently accessed short reuse distances. LIRS does not 
filter out these blocks. As shown in Figure 5, ARC or FRD can 
effectively handle this kind of workload because ARC will 
increase its T1 buffer to maintain blocks with a short reuse 
distance, and FRD will effectively exclude such blocks from 
being inserted into the reuse distance stack.  

The experimental results of ARC show a low hit ratio for 
the workloads whose reuse distance is greater than a given 
cache size such as proj_0, proj_3, or wdev_0. This limitation 
derives from the limited history buffer. Although ARC has this 
limitation, its adaptive-resizing mechanism effectively balances 
the variety of workload characteristics. An adaptive-resizable 
filter stack represents our continuing work. If we can apply this 
feature to FRD, it will achieve a higher hit ratio for an 
increasing variety of workloads. 

VII. RELATED WORK 
Because a buffer cache algorithm is a traditional topic of 

research, many studies have been conducted. Traditionally, the 
LRU and Clock [14] algorithms, the latter being an 
approximation of LRU, are the most widely used. LIRS and 
ARC also have Clock-based designs known as Clock-Pro [15] 
and CAR [16], respectively.  

To solve the problem of LRU cache, many previous studies 
offered history-based approaches. Many cache algorithms such 
as LRU-2 [4], 2Q [5], LRFU [9], EELRU [8], LIRS [1], and 

Figure 7. Sensitivity of the filter stack size from 1 to 25% of cache size. The variation in the hit ratio curve is not 
sensitive to the filter stack size. 

 

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

8MB 16MB 32MB 64MB 96MB 128MB 256MB 512MB 1024MB 2048MB

H
itr

at
io

Cache size

(a) hm_0

1% Filter Stack
10% Filter Stack
25% Filter Stack

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

8MB 16MB 32MB 64MB 96MB 128MB 256MB 512MB 1024MB2048MB
Cache size

(b) prxy_0

1% Filter Stack
10% Filter Stack
25% Filter Stack



ARC [2] use history information for evicted blocks. In most 
cases, this type of approach outperforms the LRU algorithm. 
However, this kind of algorithm concentrates on blocks that 
should be cached in the buffer. As seen, infrequently accessed 
blocks can be cached based on their policies and this generates 
cache pollution.  

Frequency based approaches such as LFU or FBR [10] also 
suffers from cache pollution as a result of blocks having a high 
reference count but no recent access.  

Other approaches exist that detect workload patterns on 
various I/O path levels. SEQ [17] detects patterns at a block 
level, whereas UBM [7], AFC [18], and DEAR [19] detect 
patterns on both file and application levels. In addition, 
program-counter or context-based approaches such as PCC 
[20] and AMP [21] have been proposed. They detect and 
classify sequential, looping, and other references 
simultaneously. However, this kind of algorithm has many 
tunable parameters or functions to detect various workloads. In 
addition, this kind of approach requires expensive 
computational resource to detect pre-defined patterns.  

Recent cache algorithms such as CIO-LRU or CIO-ARC 
[22] support collective IO for HPC environment. However, 
these algorithms also require an additional external pattern 
detection module which introduces additional overhead. Multi-
level buffer cache algorithm such as MQ [6], RED [23], 
PROMOTE [24] are introduced for multi-tiered storage. These 
algorithms concentrate on cache exclusiveness between multi-
leveled cache buffers.  

VIII. CONCLUSION 
In this study, we proposed a buffer cache algorithm called 

FRD that considers both frequency and reuse distance. The 
primary purpose of the proposed algorithm is to exclude 
infrequently accessed blocks that may cause cache pollution 
and to maintain frequently accessed blocks based on reuse 
distance. Experimental results from our study showed that the 
proposed algorithm outperformed state-of-the-art cache 
algorithms such as ARC or LIRS and that FRD’s hit ratio was 
stable for various cache sizes. The two-LRU stacks-based 
design enables easy implementation and low-eviction overhead 
with O(1) complexity. 
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