
FRD: A Filtering based Buffer Cache Algorithm that
Considers both Frequency and Reuse Distance

Sejin Park
New Computing Lab

SK Telecom
baksejin@sk.com

Chanik Park
Dept. of Computer Science and Engineering

POSTECH
cipark@postech.ac.kr

Abstract—Buffer cache algorithms play a major role in filling
the large performance gap between main memory and I/O
devices in a mass storage system. Many buffer cache algorithms
have been developed such as the low inter-reference recency set
(LIRS) and adaptive replacement cache (ARC). Careful analysis
of real-world workloads leads us to observe that approximately
50 to 90% blocks are accessed three or fewer times during the
execution of various workloads. These infrequently accessed
blocks are likely to cause high cache pollution by evicting better
blocks from the cache. We also observe that these infrequently
accessed blocks have certain access characteristics regarding
reuse distance: either extremely long or short. Based on our
observations, we propose an algorithm named frequency and
reuse distance (FRD). The proposed algorithm concentrates on
the manner in which to utilize both the access frequency and
reuse distance of a block to determine the entries that must be
stored in a buffer cache. We implemented the FRD algorithm
using two LRU stacks. Experimental results show that the
proposed algorithm outperforms state-of-the-art cache
algorithms such as LIRS and ARC in most cases. We also show
that FRD’s hit ratio is stable under various cache sizes.

Keywords—buffer cache; reuse distance; frequency

I. INTRODUCTION
Buffer cache algorithms play a major role in building a

memory hierarchy in a mass storage system. For instance, a
large performance gap between main memory and a hard disk
drive (HDD) or solid state drive (SSD) is reduced by buffer
cache. For network-attached storage, buffer cache is one of the
key factors for improving performance. Because of its
simplicity and low overhead, a least-recently-used (LRU)
algorithm is one of the most commonly used buffer cache
algorithms. However, the LRU algorithm performs poorly for
the following workloads because of certain characteristics.

• Scanning workload. Because an LRU algorithm evicts
the least-recently-used block, recently accessed blocks
reside in the cache. However, the blocks in the scanning
workload are accessed only a single time. In other
words, the LRU algorithm generates considerable cache
pollution. For instance, although meaningful blocks are
present in the cache, the scanning workload evicts them.

• Cyclic access (loop-like) workload in which loop length
is greater than cache size. For instance, when the cache
size is 3 and the workload’s block request sequence is
1-2-3-4-1-2-3-4-1-2-3-4, the LRU algorithm always

generates a cache miss. In this case, Block 1 will be
evicted as a result of the insertion of Block 4. Thus, the
next request of Block 1 cannot be a cache hit. Therefore,
if the cache size is smaller than the workload’s cyclic
pattern size, the LRU algorithm always generates a
cache miss. This is an inevitable problem of the LRU
algorithm.

To address the problems of LRU, many buffer cache
algorithms have been proposed [1-10]. Among them, two cache
algorithms, adaptive replacement cache (ARC) [2] and low
inter-reference recency set (LIRS) [1], have shown the best
performance for multiple workloads. The ARC algorithm
consists of two queues: one for recency and the other for
frequency. In the LIRS algorithm, cache entries are maintained
in two LRU stacks in terms of inter-reference recency. These
two-LRU stack-based approaches overcome the limitation of
LRU algorithms. However, these sophisticated existing two-
LRU stack-based approaches also suffer from noise blocks,
that is, infrequently accessed blocks. Our observations, as
described in Section 3, show that most real-world workloads
have many noise blocks that are infrequently accessed and can
pollute cache buffers in both ARC and LIRS algorithms. In an
ARC algorithm, most frequently accessed blocks reside in a
frequency queue. However, infrequently accessed blocks (e.g.,
only two or three times accessed blocks) also reside in the
frequency queue because the algorithm determines the two or
more accessed blocks are frequently accessed. The LIRS
algorithm has the same problem. Two or more accessed blocks
are considered low inter-reference recency blocks. Thus, they
reside in the LIR stack even if they are infrequently accessed.

In this study, we propose a buffer cache algorithm, called
frequency and reuse distance (FRD), that considers both
frequency and reuse distance. Through careful analysis on
various real-world workloads, we find that infrequently
accessed blocks are dominant in most cases and such blocks
are the main source of cache pollution. We concentrate on the
manner in which to identify these infrequently accessed blocks
and exclude them from the cache. The contributions of this
study are as follows.

• We analyze real-world workload regarding buffer cache
and find approximately 50 to 90% of blocks are
infrequently accessed (three or fewer times) and their
reuse distance is extremely long or short.

• We propose a simple but effective buffer cache
algorithm that effectively filters out noise blocks that
generate cache pollution.

• A two-LRU stack-based algorithm design can be easily
implemented. It also offers O(1) time complexity for
block eviction.

The remainder of the paper is organized as follows. Section
2 provides background to our study. A detailed analysis of real-
world workload is presented in Section 3. Section 4 describes
the proposed cache algorithm design and Section 5 presents
several experimental results. Section 6 discusses the
effectiveness of our proposed design and suggests future
related studies. Section 7 reviews related work. Section 8
provides concluding remarks.

II. BACKGROUND
In this section, we briefly describe the state-of-the-art cache

algorithms, LIRS [1] and ARC [2]. These two cache algorithms
are generally known to outperform most cache algorithms [5-
10] including LRU in practical workloads.

A. LIRS Algorithm
The LIRS algorithm is based on inter-reference recency

(IRR), which is the same with reuse distance. Reuse distance
represents the number of distinct blocks between two
consecutive accesses to the same block in a request sequence.
For example, when a request sequence is 3-1-2-4-0-2-3, the
reuse distance of Block 3 is 4 and the reuse distance of Block 2
is 2. Therefore, each block has its own IRR (reuse distance) at
time t. The basic idea of the LIRS algorithm is to maintain
blocks with smaller IRRs in a cache. When a new block arrives,
the LIRS algorithm does estimate the new block’s IRR and
decides whether a resident block is to be evicted based on the
estimated IRR. To estimate the new block’s IRR, the LIRS
algorithm maintains the access history information. When the
IRR of a new block cannot be estimated because of a lack of
history information (e.g., when the block was first accessed),
the LIRS algorithm stores the newly arrived block into a
temporary cache buffer that is isolated from the main cache
buffer in which all blocks are sorted according to their IRR.
This is why LIRS algorithm uses two cache buffers in its
design; an HIR stack (or temporary cache buffer) and an LIR
stack (or main cache buffer).

The LIRS algorithm classifies each block into two
categories according to IRR: HIR for high inter-reference
recency and LIR for low inter-reference recency. If an
incoming block is accessed for the first time, (i.e., when a
cache miss occurs and no access history information is
available), then the incoming block enters the HIR stack and
the associated access history information is inserted into the
LIR stack. Otherwise, if the incoming block is accessed again
(i.e., when a cache hit or miss occurs but access history
information is available), the incoming block is moved to an
LIR stack. This is because the IRR value of the incoming block
is smaller than that of other blocks in the LIR stack. The LIRS
algorithm adopts a heuristic strategy such that when a block is
evicted from an LIR stack, it is reinserted back into an HIR

stack. Therefore, cache eviction occurs only in an HIR stack.
However, a limitation exists in the LIRS algorithm whereby the
access frequency of blocks in an LIR or HIR stack is not to be
considered. In other words, if an incoming block is found in an
LIR or HIR stack (a cache hit), it is inserted into the top of the
LIR stack regardless of its access frequency. This decision
increases cache pollution for infrequently accessed blocks.

B. ARC Algorithms
To manage both recency and frequency in block accesses,

the ARC algorithm uses two LRU cache buffers, the sizes of
which are dynamically adjusted. In this algorithm, a new block
enters into the first LRU stack. This LRU stack is labeled T1
for recency. If the block is accessed again (i.e., a cache hit or
miss occurs by a history buffer hit), the block is moved to the
second LRU stack labeled T2 for frequency. T1 and T2 have
their own history buffers named B1 and B2, respectively. In
these history buffers, the block’s metadata are maintained
when a block is evicted from T1 or T2. The sizes of both T1 +
T2 and B1 + B2 are the same as that of the cache. Interestingly,
the ARC algorithm has a unique feature that adaptively
balances the workload’s recency and frequency. If the recency
is dominant during some execution interval of a workload, T1
increases. If the frequency is dominant during another
execution interval of a workload, T2 increases. However, some
limitations exist with the ARC algorithm. First, infrequently
accessed blocks can be maintained in T2 if the blocks are
accessed more than twice. This causes T2 cache to be polluted.
Second, supporting blocks with long reuse distance is difficult
because its history buffer size is limited to cache size.

C. Brief Summary of the Two Algorithms
These two state-of-the-art cache algorithms have many

similarities, even though their hit ratio results are quite
different.

• First, these two algorithms consist of two LRU stacks to
separate workloads according to their policies. They
also maintain history information for the purposes of
future block access.

• One major purpose of the first stack of the algorithms is
to make cache is scan-resistant. A newly requested
block is entered into the first stack and, if it is reused or
its history is accessed, it can enter into the second stack.
Thus, the second stack can maintain meaningful blocks.

• In most cases, these two algorithms outperform the
LRU algorithm.

Although the two algorithms ensure the cache is scan-
resistant, they possess limitations in terms of handling
infrequently accessed blocks. According to our analysis on
real-world workloads, most blocks are infrequently accessed
and these blocks can pollute the second stack that contains
meaningful blocks. The LIRS algorithm does not consider
access frequency. Thus, infrequently accessed blocks can cause
LIR stack pollution. The ARC algorithm also has the same
pollution problem and it does not consider blocks that have a
long reuse distance. It only concentrates on blocks having a
short reuse distance.

Table 1. Workload description

Name Type Description

OLTP Application Online transaction processing [1]
Web12 Web server A typical retail shop [1]
Web07 Web server A typical retail shop [1]
prxy_0 Data center Firewall/web proxy [2]
wdev_0 Data center Test web server [2]

hm_0 Data center Hardware monitoring [2]
proj_0 Data center Project directories [2]

proj_3 Data center Project directories [2]

src1_2 Data center Source control [2]

III. WORKLOAD ANALYSIS AND OBSERVATIONS
In this section, we analyze a wide range of real-world

workload sets from [11, 12] collected from a single application
trace to various server or working directory traces in data
centers.

Table 1 lists the characteristics of each workload. The
OLTP workload contains a CODASYL database related to a
one-hour period and was used in [2, 4, 5, 9]. The Web12 and
Web07 workloads are both web server workloads that contain
access traces of detail pages about events (music, theater, etc.)
in Munich. These two sets of traces were recorded in
December 2012 and July 2013, respectively. The traces are
long-tail distributions which may be typical for retail shops
[11]. from the workloads prxy_0 to src1_2 are block-level
traces for a single week in an enterprise data center from MSR
Cambridge [12]. We chose 9 workloads from whole sets in [11,
12] neither too large nor too small working sets.

Figure 1. Reuse distance distribution of each workload. The x axis uses a logarithmic scale. Each workload has its
dominant reuse distance period. In the case of workload (h) proj_3, blocks with a 100 K to 1 M reuse distance period are
dominant (more than 95% of the entire workload fall within this period).

Figure 1 shows the reuse distance distribution of each
workload. Specifically, it shows that each workload has a
dominant reuse distance period. In the case of (h) proj_3, more
than 95% of the workload’s reuse distance is 100 K to 1 M. For
a 4-KB block size, this period is approximately 409.6–4096
MB in cache size. Thus, if a cache size is less than 400 MB, it
shows an extremely low hit ratio for an LRU or LRU-like
algorithm (see Figure 5 in Section 5, “Evaluation”). A
dominant reuse distance period may be a good candidate for
designing an effective cache algorithm, but it depends on
workload. As depicted in Figure 1, a dominant reuse distance
does not have any common period among various workloads.
To explore each block’s access characteristics, we analyze the
number of accesses of each block. Figure 2 shows the
cumulative distribution function (CDF) for the number of
accesses of each block. Note that approximately 50 to 90% of
all blocks are accessed three or fewer times in most cases. This
is our first observation for designing a new cache algorithm.

Observation #1. Approximately 50 to 90% of blocks are
infrequently accessed in a real-world workload.

Observation #1 means that most blocks are infrequently
accessed and only a few blocks are frequently accessed. We
expect that if a cache algorithm performs in an LRU manner,
blocks to be frequently accessed may be easily evicted from a
cache because of infrequently accessed blocks. Therefore,
when a cache is full, infrequently accessed blocks should be
evicted prior to frequently accessed blocks, and frequently
accessed blocks should be retained for a long time to make
more cache hits.

For more detailed observation on the characteristics of
infrequently accessed blocks, we analyze the reuse distance
distribution of infrequently accessed blocks. Figure 3 shows
the reuse distance distribution for infrequently accessed blocks
(e.g., blocks accessed three or fewer times). Here, the reuse
distance is represented by the percentage of a given cache size.
For instance, if the reuse distance is 1024 blocks, 4 MB is the
reuse distance in size in which block size is 4 KB. Thus, if a

 0

 20

 40

 60

 80

 100

1 10 100

CD
F

(P
er

ce
nt

ag
e)

(a) OLTP

 0

 20

 40

 60

 80

 100

1 10 100

(b) Web12

 0

 20

 40

 60

 80

 100

1 10 100

(c) Web07

 0

 20

 40

 60

 80

 100

1 10 100

CD
F

(P
er

ce
nt

ag
e)

(d) prxy_0

 0

 20

 40

 60

 80

 100

1 10 100

(e) wdev_0

 0

 20

 40

 60

 80

 100

1 10 100

(f) hm_0

 0

 20

 40

 60

 80

 100

1 10 100

CD
F

(P
er

ce
nt

ag
e)

Number of accessed count for each block

(g) proj_0

 0

 20

 40

 60

 80

 100

1 10 100
Number of accessed count for each block

(h) proj_3

 0

 20

 40

 60

 80

 100

1 10 100
Number of accessed count for each block

(i) src1_2

Figure 2. The cumulative distribution function (CDF) for the number of accessed counts for each block. The x axis uses a
logarithmic scale. In most cases, blocks that are accessed three or fewer times are approximately 50-90% of the CDF. This
kind of block is likely to be a noise that pollutes cache.

cache size is 8 MB, the reuse distance of 1024 is 50% the cache
size. We analyze a reuse distance distribution using various
cache sizes. From Figure 3 (a) to (i), we can classify these
infrequently accessed workloads into two types according to
reuse distance distribution:

• Type 1: Infrequently accessed with a long reuse
distance.

• Type 2: Infrequently accessed with a short reuse
distance.

In the LRU algorithm, Type 1 blocks generate pure cache
pollution and this algorithm cannot be a cache hit as well.
Apparently, we must exclude these kinds of blocks from a
cache buffer. The Type 2 blocks might be a cache hit because it
has a short reuse distance. However, after a cache hit, it still
produces cache pollution because it has infrequently accessed

characteristics. In Figure 3, Workloads (f)–(i) can be classified
as Type 1 and Workloads (a)–(e) can be classified as a
combination of Types 1 and 2. Interestingly, in all workloads,
reuse distance distribution from 10 to 100% of a given cache
size is extremely low. For instance, in the Workload (d) prxy_0
with 8-MB cache size, the distribution from 10 to 100% of
cache size proves to be less than 1%. Other workloads show a
similar trend. In other words, most infrequently accessed
blocks are distributed in the range of 0 to 10% of a given cache
size or greater than 100% of a given cache size. This is our
second observation.

Observation #2. Reuse distance for infrequently accessed
blocks is either very short or very long. Regarding cache size,
most distribution is less than 10% or greater than 100% of
cache size.

Figure 3. Reuse distance for three or fewer times in which blocks are accessed. The reuse distance is represented by the
percentage of cache size. Because the working set size of each workload is different, we analyze according to various cache
sizes (1, 8 and 32 MB or 8, 64, and 512 MB). The x axis uses a logarithmic scale. A reuse distance of 100% means the reuse
distance is the same as the cache size, and 1000% means 10 times the cache size.

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%

CD
F

(P
er

ce
nt

ag
e)

(a) OLTP

Cache: 32MB
Cache: 8MB
Cache: 1MB

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%

(b) Web12

Cache: 32MB
Cache: 8MB
Cache: 1MB

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%

(c) Web07

Cache: 32MB
Cache: 8MB
Cache: 1MB

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%

CD
F

(P
er

ce
nt

ag
e)

(d) prxy_0

Cache: 512MB
Cache: 64MB

Cache: 8MB

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%

(e) wdev_0

Cache: 512MB
Cache: 64MB

Cache: 8MB

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%

(f) hm_0

Cache: 512MB
Cache: 64MB

Cache: 8MB

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%

CD
F

(P
er

ce
nt

ag
e)

Reuse distance (represented with percentage of cache size)

(g) proj_0

Cache: 512MB
Cache: 64MB

Cache: 8MB

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%
Reuse distance (represented with percentage of cache size)

(h) proj_3

Cache: 512MB
Cache: 64MB

Cache: 8MB

 0

 20

 40

 60

 80

 100

0.1% 1% 10% 100% 1000% 10000%
Reuse distance (represented with percentage of cache siz

(i) src1_2

Cache: 512MB
Cache: 64MB

Cache: 8MB

IV. PROPOSED ALGORITHM
In this section, we propose a buffer cache algorithm that

considers both access frequency and reuse distance, known as
FRD. This algorithm is based on the two observations
described in Section 3. The FRD effectively filters out cache
polluting blocks using a filter stack and effectively maintains
meaningful blocks using a reuse distance stack.

A. Block Classification
From Observation #1, infrequently accessed blocks are

approximately 50 to 90% of all blocks. Thus, we must exclude
these infrequently accessed blocks. In Section 3, we have
classified the infrequently accessed blocks by reuse distance
(Type 1 and 2). In this section, we expand the block
classification into four classes. We classify characteristics of
blocks by combining frequency and reuse distance. Table 2
shows the block classification.

Table 2. Block Classification

Class Description

FS Frequently accessed, short reuse distance

FL Frequently accessed, long reuse distance

IS Infrequently accessed, short reuse distance

IL Infrequently accessed, long reuse distance

Class FS and FL blocks are the most preferable blocks with
respect to the cache algorithm because these blocks are likely
to generate cache hits. By contrast, Class IS or IL blocks are
likely to pollute a cache in most cases. However, Class IS can
also generate a cache hit because Class IS blocks can be reused
(e.g., a cache hit by its short reuse distance). However,
immediately after reuse, they begin to pollute a cache.
Therefore, these kinds of blocks should be carefully handled in
a cache buffer. Of course, Class IL blocks should not be
maintained in a cache.

B. Two-buffer-based Design
Cache pollution caused by Class IS or IL commonly occurs

as a result of a scan-like workload in a LRU cache algorithm.
To avoid this cache pollution, we design our cache algorithm
using two types of buffers: temporal and actual cache buffers.
In this design, a newly requested block is inserted into a
temporal cache buffer. If any block in the temporal buffer is re-
accessed, then this block is moved to the most recently used
(MRU) position of the temporal buffer (Class FS or IS). If a
block in the temporal buffer is not re-accessed in a short time,
then this block is evicted because the temporal buffer size is
relatively small. This simple design effectively causes a cache
algorithm to be scan-resistant. The proposed algorithm also
retains block accessed history as a history block so that the
evicted block can be inserted into the actual cache buffer. If the
evicted block is re-accessed, it moves to the MRU position of
the actual cache buffer because it is considered a frequently
accessed block with long reuse distance (Class FL). Therefore,
the dominant Class FL blocks are maintained in the actual

cache buffer. In addition, Class IS or IL cannot produce cache
pollution because those blocks are located in the temporal
buffer and quickly evicted without any interference to the
actual cache buffer.

In our proposed cache algorithm, two types of blocks are
maintained: (1) a history block that does not have actual data
but only metadata (e.g., block number); (2) a resident block
that has actual data. Figure 4 is an illustration of our proposed
algorithm (FRD) that maintains two cache buffers. The
temporal buffer and the actual buffers are named filter stack
and reuse distance stack, respectively.

The filter stack has two purposes. One purpose is to
identify noise blocks (e.g., Class IS or IL), and the other
purpose is to identify blocks with short reuse distance (e.g.,
Class IS or FS). The reuse distance stack also has two purposes.
One purpose is to maintain history block in reuse distance
order up to the last resident block in the reuse distance stack.
The other purpose is to store frequently accessed blocks for
later used (e.g., Class FL).

The filter stack contains only resident blocks, but the reuse
distance stack contains both resident and history blocks. When
a block is inserted into the filter stack, its history block is
automatically generated and inserted into the reuse distance
stack. Thus, regardless of block types (resident or history), the
reuse distance stack is ordered with a reuse distance sequence.

The reuse distance stack maintains history blocks up to the
oldest resident block. In other words, the maximum reuse
distance for the history block in this algorithm is at most the
oldest resident block’s reuse distance minus 1. As depicted in
Figure 4, each stack is managed in an LRU manner and has its
own eviction point at the end of the stack (e.g., the LRU
position of each stack).

Filter Stack

Reuse distance Stack

History Block
Insertion

New
Entry

Resident Block
Insertion

Cache Miss

Cache Hit

Cache Hit

Eviction

Eviction

LRU

LRUMRU

MRU

Resident Block History Block

Figure 4. Illustration of FRD cache algorithm. Filter
stack and reuse distance stack are managed in an LRU
manner. When a new block is requested, its resident block
is inserted into the filter stack and its history block is
inserted to the re use distance stack.

Initially, both the filter and reuse distance stacks are filled
with newly arrived blocks from the reuse distance stack to the
filter stack. Therefore, we can assume without loss of
generality that both filter and reuse distance stacks are fully
occupied. By default, the filter stack size is 10% of the given
cache size based on our Observation #2.

When the two stacks are full, a total of four cases are
possible for a block request because of the history block
accesses. Specifically, a cache miss has two cases: one with
and one without a history hit. A cache hit also has two cases:
one in the filter stack and one in the reuse distance stack.

Detailed descriptions of each case are as follows.

• Case 1) Cache miss and history miss: Evict the oldest
block in the filter stack. Then, insert the missed block
into the filter stack and generate a history block for the
missed block. In addition, insert the history block into
the reuse distance stack. No eviction occurs in the reuse
distance stack because the history block contains only
metadata.

• Case 2) Cache miss but history hit: Remove all
history blocks between the 2nd oldest and the oldest
resident blocks. Next, evict the oldest resident block
from the reuse distance stack. Then, move the history
hit block to the MRU position in the reuse distance
stack and change it to a resident block. No insertion or
eviction occurs in the filter stack.

• Case 3) Cache hit in the filter stack: Move the
corresponding block to the MRU position of the filter
stack. The associated history block should be updated to
maintain reuse distance order (i.e., move its history
block in the reuse distance stack to the MRU position of
the reuse distance stack).

• Case 4) Cache hit in the reuse distance stack: Move
the corresponding block to the MRU position of the
reuse distance stack. If the corresponding block is in the
LRU position of the reuse distance stack (i.e., the oldest
resident block), the history blocks between the LRU
position and the 2nd oldest resident block are removed.
Otherwise, no history block removing occurs.

C. Analysis of FRD Algorithm
In the proposed algorithm, the size of the filter stack is the

only tunable parameter. Based on Observation #2, we allocate
10% of the cache size for the filter stack. Note that most of the
infrequently accessed blocks have either very short or very
long reuse distance and most of their distributions are less than
10% or greater than 100% of the cache size. Although we set
the filter stack size to 10% of the total cache size by default,
the experimental results in Section 5 reveal that the efficiency
of the proposed algorithm is insensitive to this parameter.

We next describe the manner in which the proposed
algorithm handles the four block access types shown in Table 2.

If a block is Class FS, it will reside in the filter stack with
frequent cache hits. If the filter stack is not sufficiently large to
cache it, a cache miss will occur in the filter stack. However,

the block will be moved to the reuse distance stack because of
its short reuse distance. Once it is stored in the reuse distance
stack, the block access contributes to a cache hit.

If a block is Class FL, it may generate a cache miss at the
second request because the filter stack size is not sufficiently
large to cover the block’s reuse distance. However, the block
will be maintained in the reuse distance stack because the
block’s reuse distance is most likely to be shorter than the
longest reuse distance. From this point forward, the block
access will contribute to many cache hits for a considerable
period.

If a block is Class IS, the block access is most likely
frequent in some intervals and infrequent in other intervals. In
the proposed algorithm, the block is likely to be maintained in
the filter stack during frequent access intervals and will be
evicted from the filter stack during infrequent access intervals.
Therefore, the proposed algorithm not only generates cache
hits from the blocks in Class IS but also effectively isolates
them from any blocks in other classes (e.g., Classes FS and FL).

If a block is Class IL, the block is always inserted into the
filter stack because the associated history information cannot
be found because of its large reuse distance. Therefore, these
infrequently accessed blocks cannot pollute the reuse distance
stack. Note that the filter stack effectively filters out Class IS
and IL blocks because not having those blocks inserted into the
reuse distance stack is preferable.

Because the proposed algorithm is based on two LRU
stacks, cache eviction is accomplished with O(1) time
complexity.

D. Comparison of FRD to ARC to LIRS
Similar to ARC and LIRS, FRD uses two cache buffers in

its design. ARC’s T1, LIRS’s HIR stack, and FRD’s filter stack
are the first stack; and ARC’s T2, LIRS’s LIR stack, and
FRD’s reuse distance are the second stack. One primary
purpose of the first stack is to make the cache scan-resistant. In
other words, one-time accessed blocks cannot enter into the
second stack.

However, the manner in which to handle the first stack in
FRD is different from the operations in ARC and LIRS. When
an incoming block is found in the first stack, that is, a cache hit
occurs there, FRD moves the block to the top of the first stack.
By contrast, LIRS and ARC move the hit block to the top of
the second stack. This decision in both LIRS and ARC cannot
prevent such blocks from causing cache pollution in the second
stack.

FRD has two eviction points. These are the LRU positions
in the two stacks. This causes complete isolation of the blocks
having similar characteristics. However, LIRS has only a single
eviction point: the LRU position of the HIR stack.

FRD maintains all history blocks up to the oldest resident
block in the second stack. By contrast, the ARC maintains
history up to cache size * 2. This limitation of the ARC
algorithm causes poor performance for workloads whose reuse
distance is greater than a given cache size.

V. EVALUATION
To show the performance of our FRD algorithm, we

implemented a trace driven simulator written in C. The
simulator contains one fixed-size LRU stack for the filter stack
and one resizable LRU stack for the reuse distance stack to
maintain history blocks dynamically. In this evaluation, we did
not count the metadata size for the cache because it is
negligible. Detailed information about the overhead is
explained in Section 5.5

We compared the proposed FRD algorithm with the LRU,
LIRS, ARC, and OPT [13] algorithms using various real-world
workloads listed in Table 1. The OPT is an optimal offline
cache algorithm that is not feasible as online cache. However,
it is useful for comparing the maximum performance with that
of various cache algorithms. For LIRS algorithm, we set 1% of
the cache size and unlimited LIR stack size for the non-resident
block as the default setting from the LIRS algorithm [1].

A. Workload Hit Ratio Analysis
Figure 5 shows the experimental results for real-world

workloads. On average, FRD showed the highest hit ratio for
various cache sizes among the cache algorithms. We precisely
analyzed the results of the hit ratio comparison for each
algorithm.

(a) OLTP: As previously determined in [2], the ARC
algorithm outperforms LIRS in this workload. However, in our
study, FRD outperformed ARC. This is because ARC could
not effectively consider those blocks having a long reuse
distance. In this workload, more than 70% of the blocks were
infrequently accessed (Figure 2) and the short reuse distance
accesses were dominant (Figure 1). We could then conclude
that this workload is Class IS dominant (i.e., is infrequently
accessed and has a short reuse distance). As explained, in the
LIRS algorithm, the Class IS block can easily pollute the
second stack (LIR stack). In addition, many cache misses occur
because of a relatively small first stack size (HIR stack).

(b) Web12 and (c) Web07: These workloads have many
blocks of Classes IS and IL (Figure 3) and more than 80%
blocks are infrequently accessed (Figure 2). Thus, LIRS suffers
from cache pollution by blocks of Class IS; ARC shows better
performance than LIRS. However, on average FRD performed
better than ARC because ARC does not handle blocks with a
long reuse distance even though they are frequently accessed.

 (d) prxy_0: This workload has many Class IS blocks
(Figure 3) and the results show that FRD performed best for all
cache sizes. In other words, FRD not only generated many
cache hits, but also effectively filtered out Class IS blocks.
Other algorithms cannot filter out Class IS blocks, which
causes cache pollution. This is why their hit ratios are low.

 (e) wdev_0: LIRS and FRD showed similar hit ratio curves,
but FRD performed better. When cache size was small (≤ 4
MB), ARC performed the best, but when cache size was large
(> 4 MB), ARC’s performance was worse than that of both
LIRS and FRD. This derives from the reuse distance
distribution of wdev_0 (Figure 1). This workload contains
more blocks having long reuse distances than short reuse
distance.

(f) hm_0: In this workload, blocks of Class IL are dominant,
whereas blocks of Class IS are small (Figure 3). Thus,
algorithms such as LIRS and ARC do not suffer from cache
pollution with this kind of workload. The reuse distance
distribution of this workload also has no special point or period
(Figure 1). As depicted in Figure 5, it showed moderate results
for all cache algorithms. Figure 5 does not reveal the algorithm
that performed best, but Table 3 reveals that the overall average
performance for the FRD algorithm remained the highest .

(g) proj_0: In most cases, FRD outperformed ARC and
LIRS. As depicted in Figure 3, this workload contains
approximately 10% of Class IS blocks that cause cache
pollution. The results show that FRD effectively filtered out
these blocks. Interestingly, the ARC algorithm shows relatively
worse hit ratio than ARD or FRD when cache size is 512 MB.
Figure 1 reveals the reason for this limitation. More than 50%
of the reuse distance distribution is concentrated in the period
from 100 K to 1 M. In a 4-KB block system, this value is
converted to 409.6 to 4096 MB size. Because the ARC
algorithm maintains history blocks at most cache size * 2, the
blocks having a long reuse distance (e.g., longer than cache
size * 2) cannot enter into the frequency stack and this
generates many cache misses.

(h) proj_3: On average, LIRS showed the best performance
for this workload. The filtering effect was minimized because
most infrequently accessed blocks have a long reuse distance
(Class IL). In fact, this workload is a special case. In Figure 1,
the reuse distance distribution for proj_3 shows that more than
95% of blocks are concentrated in the period from 100 K to 1
M. Structurally, the LIRS algorithm can maintain longer
history blocks than can the FRD algorithm because the oldest
resident block in the LIR stack is moved to the HIR stack. This
is because the LRU position of the HIR stack is the only
eviction point. This is the reason the LIRS performs best for
this workload. By contrast, the FRD algorithm does not move
the oldest resident block in the reuse distance stack to the filter
stack but instead evicts it. In FRD, the filter stack has
meaningful blocks such as Class IS or FS. Therefore, moving
the oldest resident block to the filter stack generates more
cache pollution for the filter stack. Note that the HIR stack of
the LIRS algorithm is used as a temporal space that contains a
mixed set of new and old blocks. There’s one more interesting
point at 1024MB cache size. ARC shows the best hit ratio. This
is because of the LRU-friendly workloads. The relative hit ratio
difference of LRU compared to LIRS or FRD at 1024 MB is
smaller than other cache sizes. It means, there are many blocks
at 1024 MB cache size environment that LRU algorithm can
handle. Specifically, LIRS or FRD can generate inevitable
cache miss at second block access whose reuse distance is
longer than the HIR size or filter stack size, respectively.
However, LRU can generate cache hit at second block access
for those blocks and ARC can adjust its T1 stack that works
like LRU. Therefore, because LIRS or FRD generates more
cache miss than ARC in this situation, ARC shows the best
performance.

(i) src1_2: If cache size was small (≤ 64 MB), ARC
performed the best, but if cache size was large (> 64 MB),
LIRS performed the best. However, on average, FRD shows
the most stable result which is revealed in Table 3. Like (h)

proj_0, more than 50% of the reuse distance distribution is
concentrated in the period from 100k to 1M. However, (i)
src1_2 has one more concentrated point around the period from
100 to 1k (Figure 1) and it contains rare Class IS blocks
(Figure 3). That means, a cache algorithm does not suffer from
cache pollution by Class IS blocks and it results in good
performance in ARC when the cache size is small and good
performance in LIRS when the cache size is large. Note that,
when cache size is small, ARC could maintain newly accessed
blocks longer than LIRS because ARC’s T1 could bigger than
LIRS’ HIR stack size.

B. Cache Performance Stability
In our evaluation, the FRD algorithm showed the most

stable performance with respect to various cache sizes. This
means that FRD does not have a significantly low hit ratio for
specific cache sizes. However, other algorithms showed a
similar unstable point. The LIRS algorithm performs poorly
for: (a) OLTP, (b) Web12, and (c) Web07 when cache size is
small. This is because of Class IS blocks. As presented in
Figure 2 and 3, these workloads have many blocks of Class IS.
The blocks of Class IS easily pollute the LIR stack with the

Figure 5. Hit ratio comparison using LRU, ARC, LIRS, OPT and FRD cache algorithm.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 4 8 16 32 64

H
itr

at
io

(a) OLTP

LRU
ARC
LIRS
FRD
OPT

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

0.5 1 2 4 8 16 32

(b) Web12

LRU
ARC
LIRS
FRD
OPT

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

0.5 1 2 4 8 16 32

(c) Web07

LRU
ARC
LIRS
FRD
OPT

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8 16 32 64 128 256 512

H
itr

at
io

(d) prxy_0

LRU
ARC
LIRS
FRD
OPT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64

(e) wdev_0

LRU
ARC
LIRS
FRD
OPT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

8 16 32 64 128 256 512 1024

(f) hm_0

LRU
ARC
LIRS
FRD
OPT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

8 16 32 64 128 256 512 1024

H
itr

at
io

Cache size (MB)

(g) proj_0

LRU
ARC
LIRS
FRD
OPT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

8 16 32 64 128 256 512 1024
Cache size (MB)

(h) proj_3

LRU
ARC
LIRS
FRD
OPT

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

8 16 32 64 128 256 512 1024
Cache size (MB)

(i) src1_2

LRU
ARC
LIRS
FRD
OPT

LIRS algorithm. This results in a low hit ratio when cache size
is small. However, in the case of FRD, the cache performance
is more stable than that of LIRS even if the cache size is small.
This result derives from the filter stack, which does not allow
the Class IS block to be inserted into the reuse distance stack.

The ARC and LRU algorithms perform poorly for: (g)
proj_0 and (h) proj_3 when cache size is small. This is because
of the Class FL blocks. As depicted in Figure 2 and 3, these
workloads have many blocks of Class FL. Even if a block is
frequently accessed, its reuse distance is greater than the cache
size. This means it is difficult for cache hits to occur with the
ARC and LRU algorithms. This is because of the limited
history stack size. In the case of (h) proj_3, the ARC hit ratio
for 256 MB is approximately three times less than that of the
LIRS or FRD algorithm. This is a major problem because
cache size can be smaller than the working set size. However,
the FRD can support blocks of Class FL because of the reuse
distance stack with history blocks.

C. Overall Comparison with OPT
Although FRD shows the best performance among existing

cache algorithms, a performance gap exists with OPT. Figure 5
contains the hit ratio comparison between FRD and OPT.

Table 3 summarizes the overall results when using an
average hit ratio value. We calculate the “hit ratio of a given
cache algorithm / hit ratio of OPT algorithm” for all cache sizes
and we calculate their average values. As shown in Table 3,
FRD outperforms other state-of-the-art cache algorithms except
for workload proj_3, which has a special reuse distance
distribution. As revealed, designing a better cache algorithm is
possible.

Table 3. Overall result: an average value of each algorithm’s hit
ratio over that of OPT. Close to 1.0 means approximating OPT’s

hit ratio. (Underscored: best value)

 LRU ARC LIRS FRD

OLTP 0.674 0.746 0.691 0.753

Web12 0.829 0.852 0.827 0.857

Web07 0.800 0.839 0.812 0.847

prxy_0 0.844 0.870 0.870 0.898

wdev_0 0.647 0.723 0.728 0.745

hm_0 0.598 0.700 0.723 0.724

proj_0 0.612 0.722 0.740 0.780

proj_3 0.172 0.241 0.516 0.478

src1_2 0.620 0.697 0.799 0.813

D. Filter Stack Performance
FRD uses the first stack (i.e., filter stack) to maintain Class

FS and IS blocks whose reuse distance is short. Figure 6 shows
the hit ratio for the filter and reuse distance stacks. When a
given cache size is small, the filter stack is more powerful. In
prxy_0 workload with an 8-MB cache size, approximately 35%
of the cache hit occurred in the filter stack, which is only 10%
of the whole cache size. For the 1- and 2-GB cases, a cache hit
occurred only from the reuse distance stack. In this case, the
size of the reuse distance stack was sufficiently large to contain
all blocks in the workload. In hm_0 workload, approximately
20% of the cache hit occurred in the filter stack with only 10%
of the whole cache size. This shows that the filter stack not
only works as a filtering buffer but also works as a cache buffer.

Figure 6. Hit ratio analysis of the filter stack and reuse distance stack.

E. Sensitivity and Overhead Analysis
The filter stack is a tunable parameter for the FRD cache

algorithm. If we set the value to 100% of the cache, the FRD
will yield the same result as in the LRU cache because the filter
cache itself does not maintain any history blocks. In addition, if
the size of the filter stack is too small, the hit ratio will be
slightly lower because the blocks having a short reuse distance
(i.e., Classes FS and IS) will be missed at the first reuse request.
However, this does not generate a considerable performance
gap because subsequent requests for the blocks will produce
cache hits, as the blocks will be located in the reuse distance
stack as a result of their history information. Figure 7 shows
the sensitivity of the filter stack size from 1 to 25% of the
cache size. As shown, the size of the filter stack is not sensitive
to the hit ratio. However, empirically, 10% show the best
performance among the many cache sizes. In the reuse distance
stack, history blocks are maintained. Although the number of
history blocks of the FRD can be greater than those in the
ARC’s ghost buffers, which is twice the size of a given cache,
it is not greater than LIRS’s LIR stack size because LIR uses
99% of a given cache size and we use 90% of given cache size.
In addition, the history block is much smaller than the resident
block because a history block contains only a block number.
For a system with a 4-KB block size and 64-bit addressing, a
history block (8 bytes) resides in only 0.2% of a resident block
(4 KB).

VI. DISCUSSION AND FUTURE WORK
The workload proj_3 is an LIRS-friendly workload that

includes many blocks with a long reuse distance. In an LIRS
algorithm, when a new resident block is inserted into the LIR
stack, the oldest resident block in the LIR stack will be moved
to the HIR stack. This operation lengthens the life of a block

and this is suitable for a workload with a long reuse distance.
However, in the FRD cache, because the two LRU stacks have
their own eviction points, such an operation is not possible.
Instead, if we decrease the size of the filter stack, we can
achieve a similar effect whereby a block’s life is lengthened.

By contrast, OLTP, Web12, and Web07 are not LIRS-
friendly workloads because they contain many blocks with
infrequently accessed short reuse distances. LIRS does not
filter out these blocks. As shown in Figure 5, ARC or FRD can
effectively handle this kind of workload because ARC will
increase its T1 buffer to maintain blocks with a short reuse
distance, and FRD will effectively exclude such blocks from
being inserted into the reuse distance stack.

The experimental results of ARC show a low hit ratio for
the workloads whose reuse distance is greater than a given
cache size such as proj_0, proj_3, or wdev_0. This limitation
derives from the limited history buffer. Although ARC has this
limitation, its adaptive-resizing mechanism effectively balances
the variety of workload characteristics. An adaptive-resizable
filter stack represents our continuing work. If we can apply this
feature to FRD, it will achieve a higher hit ratio for an
increasing variety of workloads.

VII. RELATED WORK
Because a buffer cache algorithm is a traditional topic of

research, many studies have been conducted. Traditionally, the
LRU and Clock [14] algorithms, the latter being an
approximation of LRU, are the most widely used. LIRS and
ARC also have Clock-based designs known as Clock-Pro [15]
and CAR [16], respectively.

To solve the problem of LRU cache, many previous studies
offered history-based approaches. Many cache algorithms such
as LRU-2 [4], 2Q [5], LRFU [9], EELRU [8], LIRS [1], and

Figure 7. Sensitivity of the filter stack size from 1 to 25% of cache size. The variation in the hit ratio curve is not
sensitive to the filter stack size.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

8MB 16MB 32MB 64MB 96MB 128MB 256MB 512MB 1024MB 2048MB

H
itr

at
io

Cache size

(a) hm_0

1% Filter Stack
10% Filter Stack
25% Filter Stack

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

8MB 16MB 32MB 64MB 96MB 128MB 256MB 512MB 1024MB2048MB
Cache size

(b) prxy_0

1% Filter Stack
10% Filter Stack
25% Filter Stack

ARC [2] use history information for evicted blocks. In most
cases, this type of approach outperforms the LRU algorithm.
However, this kind of algorithm concentrates on blocks that
should be cached in the buffer. As seen, infrequently accessed
blocks can be cached based on their policies and this generates
cache pollution.

Frequency based approaches such as LFU or FBR [10] also
suffers from cache pollution as a result of blocks having a high
reference count but no recent access.

Other approaches exist that detect workload patterns on
various I/O path levels. SEQ [17] detects patterns at a block
level, whereas UBM [7], AFC [18], and DEAR [19] detect
patterns on both file and application levels. In addition,
program-counter or context-based approaches such as PCC
[20] and AMP [21] have been proposed. They detect and
classify sequential, looping, and other references
simultaneously. However, this kind of algorithm has many
tunable parameters or functions to detect various workloads. In
addition, this kind of approach requires expensive
computational resource to detect pre-defined patterns.

Recent cache algorithms such as CIO-LRU or CIO-ARC
[22] support collective IO for HPC environment. However,
these algorithms also require an additional external pattern
detection module which introduces additional overhead. Multi-
level buffer cache algorithm such as MQ [6], RED [23],
PROMOTE [24] are introduced for multi-tiered storage. These
algorithms concentrate on cache exclusiveness between multi-
leveled cache buffers.

VIII. CONCLUSION
In this study, we proposed a buffer cache algorithm called

FRD that considers both frequency and reuse distance. The
primary purpose of the proposed algorithm is to exclude
infrequently accessed blocks that may cause cache pollution
and to maintain frequently accessed blocks based on reuse
distance. Experimental results from our study showed that the
proposed algorithm outperformed state-of-the-art cache
algorithms such as ARC or LIRS and that FRD’s hit ratio was
stable for various cache sizes. The two-LRU stacks-based
design enables easy implementation and low-eviction overhead
with O(1) complexity.

ACKNOWLEDGMENT
This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korean Government
(MEST) (No. 2011-0016972) and supported by Brain Korea 21
PLUS project for POSTECH Computer Science & Engineering
Institute.

REFERENCES

[1] Jiang, Song, and Xiaodong Zhang. "LIRS: an efficient low inter-
reference recency set replacement policy to improve buffer cache
performance." ACM SIGMETRICS Performance Evaluation Review
30.1 (2002): 31-42.

[2] Megiddo, Nimrod, and Dharmendra S. Modha. "ARC: A Self-Tuning,
Low Overhead Replacement Cache." FAST. Vol. 3. 2003.

[3] Jiang, Song, et al. "DULO: an effective buffer cache management
scheme to exploit both temporal and spatial locality." Proceedings of the
4th conference on USENIX Conference on File and Storage
Technologies. Vol. 4. 2005.

[4] O'neil, E.J., O'neil, P.E., and Weikum, G.: ‘The LRU-K page
replacement algorithm for database disk buffering’, ACM SIGMOD
Record, 1993, 22, (2), pp. 297-306

[5] Johnson, T., and Shasha, D.: ‘2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm’, Proceedings of the 20th
VLDB Conference. 1994.

[6] Zhou, Yuanyuan, James Philbin, and Kai Li. "The Multi-Queue
Replacement Algorithm for Second Level Buffer Caches." USENIX
Annual Technical Conference, General Track. 2001.

[7] Kim, Jong Min, et al. "A low-overhead high-performance unified buffer
management scheme that exploits sequential and looping references."
Proceedings of the 4th conference on Symposium on Operating System
Design & Implementation-Volume 4. USENIX Association, 2000.

[8] Smaragdakis, Y., Kaplan, S., and Wilson, P.: ‘The EELRU adaptive
replacement algorithm’, Performance Evaluation, 2003, 53, (2), pp. 93-
123

[9] Lee, D., Choi, J., Kim, J.-H., Noh, S.H., Min, S.L., Cho, Y., and Kim,
C.S.: ‘LRFU: A spectrum of policies that subsumes the least recently
used and least frequently used policies’, IEEE transactions on
Computers, 2001, (12), pp. 1352-1361

[10] Robinson, J.T., and Devarakonda, M.V.: ‘Data cache management using
frequency-based replacement’ (ACM, 1990. 1990)

[11] cache2k - High Performance Java Caching, Benchmarks for cache2k,
https://github.com/cache2k/cache2k-benchmark

[12] Narayanan, D., Donnelly, A., and Rowstron, A.: ‘Write off-loading:
Practical power management for enterprise storage’, ACM Transactions
on Storage (TOS), 2008, 4, (3), pp. 10

[13] Belady, L.A.: ‘A study of replacement algorithms for a virtual-storage
computer’, IBM Systems journal, 1966, 5, (2), pp. 78-101

[14] Corbato, F.J.: ‘A paging experiment with the multics system’, In Honor
of P. M. Morse, 1969, MIT Press, pp. 217–228

[15] Jiang, Song, Feng Chen, and Xiaodong Zhang. "CLOCK-Pro: An
Effective Improvement of the CLOCK Replacement." USENIX Annual
Technical Conference, General Track. 2005.

[16] Bansal, Sorav, and Dharmendra S. Modha. "CAR: Clock with Adaptive
Replacement." FAST. Vol. 4. 2004.

[17] Glass, Gideon, and Pei Cao. Adaptive page replacement based on
memory reference behavior. Vol. 25. No. 1. ACM, 1997.

[18] Choi, Jongmoo, et al. "Towards application/file-level characterization of
block references: a case for fine-grained buffer management." ACM
SIGMETRICS Performance Evaluation Review. Vol. 28. No. 1. ACM,
2000.

[19] Choi, Jongmoo, et al. "An Implementation Study of a Detection-Based
Adaptive Block Replacement Scheme." USENIX Annual Technical
Conference, General Track. 1999.

[20] Chris Gniady , Ali R. Butt , Y. Charlie Hu, Program-counter-based
pattern classification in buffer caching, Proceedings of the 6th
conference on Symposium on Opearting Systems Design &
Implementation, p.27-27, 2004.

[21] Z Zhou, Feng, J. Robert von Behren, and Eric A. Brewer. "AMP:
Program Context Specific Buffer Caching." USENIX Annual Technical
Conference, General Track. 2005.

[22] Lu, Yin, et al. Revealing applications' access pattern in collective i/o for
cache management. In: Proceedings of the 28th ACM international
conference on Supercomputing. ACM, 2014. pp. 181-190.

[23] Zhao, Yingjie; Xiao Nong; Liu, Fang. Red: An efficient replacement
algorithm based on REsident distance for exclusive storage caches.
In: Mass Storage Systems and Technologies (MSST), 2010

[24] B. S. Gill, “On Multi-level Exclusive Caching: Offline Optimality and
Why promotions are better than demotions”, in Proc. FAST Conf. , 2008.
pp. 49-65.

