
Native OS Support for Persistent Memory with

Regions

Mohammad Chowdhury

Florida International University

Email : mchow017@cis.fiu.edu

Raju Rangaswami

Florida International University

Email : raju@cis.fiu.edu

Abstract—Modern operating systems have been designed
around the hypotheses that (a) memory is both byte-addressable
and volatile and (b) storage is block addressable and persistent.
The arrival of new Persistent Memory (PM) technologies, has
made these assumptions obsolete. Despite much of the recent
work in this space, the need for consistently sharing PM data
across multiple applications remains an urgent, unsolved prob-
lem.

The Region System is a high-performance operating system
stack for PM that implements usable consistency and persistence
for application data. The region system provides support for
consistently mapping and sharing data resident in PM across
user application address spaces. Its high-performance design
minimizes the expensive PM ordering and durability operations
by embracing a minimalistic approach to metadata construction
and management. Finally, the region system creates a novel IPI
based PMSYNC operation, which ensures atomic persistence of
mapped pages across multiple address spaces.

I. INTRODUCTION

Memory and storage have been managed as separate entities

within operating systems (OS) because of their uniquely differ-

ent properties. Whereas memory is byte-addressable, volatile,

and fast, storage is block addressable, persistent, and slow.

The emergence of byte-addressable persistent memory (PM)

hardware, such as ReRAM, STT-MRAM, PCM, and 3D-

XPoint present a combination of properties of both memory

and storage. The current OS software stack, which was not

designed to exploit the unique properties of PM, thus requires

a rethink.

Persistent memory raises two fundamental challenges for

building future systems. First, entirely new approaches to

device access become inevitable with persistent memory de-

vices that offer 2-3 orders of magnitude lower latency than

flash-based SSDs. The latency of PM access affects not just

application latency but also system resource consumption. To

minimize the overhead of using PM, making accesses purely

memory-oriented become inevitable. Second, working with

persistent memory is significantly different than block storage

since it is directly exposed to the CPU. Working with it

correctly can introduce significant complexity to development

work-flow. Radically new approaches for exposing persistent

memory to applications and simplifying the task of the devel-

oper become necessary.

Current OS support for PM involves reusing the abstractions

and interfaces of the file or memory subsystems. Conventional

file systems expose persistent storage by presenting a file ab-

straction to applications and use block-oriented access to per-

sist data. For byte-addressable PM, accessing it in large blocks

slows down both read and write operations significantly, owing

to higher data software stack and data transfer overheads [6],

[7] as well as the read-before-write requirements [19]. On the

other hand, while memory management systems support byte-

granularity access via mapping physical addresses, they do not

support persistent namespaces nor the notion of consistency

or durability of memory updates. What is necessary is a PM-

tailored OS software stack that can address the unique needs

of applications when using PM and simplify their development

without sacrificing the performance benefits of using PM.

Recent work has tackled the above impedance mismatch

by building PM-aware file systems [12], [13], [22], [23], pro-

gramming abstractions [11], [14], [21], PM-optimized block

devices [6], [7], RDMA-based PM file system back-ends [25],

and user-level PM libraries [2]. The PM-specific file systems

build on the well-established POSIX interface, utilize PM’s

byte-addressability, and provide durability guarantees, but they

do not address the consistency of updates to file data – mapped

and shared between applications. Consequently, applications

are required to implement custom mechanisms for ensuring

the consistency of their PM-resident data, a difficult task given

the nuanced treatment necessary for ordering operations to PM

without loss of performance.

Our thesis is that persistent memory will drive new appli-

cations — applications that use it not just for its persistence

but also its memory like properties. Such applications would

ideally want to map PM space within their address spaces

for direct access. Further, they would require arbitrary and

unordered allocation and deallocation of PM space similar

to how memory is used today. Finally, they would want a

simple interface that atomically persists a group of updates

to in-memory state. To fill this need, we propose the region

system, a new PM-specific OS software stack that exposes a

persistent namespace with memory-like operations augmented

with transactional consistency.

The region system is both lightweight and low-overhead; it

minimizes the amount of metadata it maintains and eschews

redundancy to simplify durability and consistency operations.

To support mapping PM space within process address spaces

for direct access, the region system provides a persistent

msync operation pmsync which provides atomicity and gives



Fig. 1. Application requirements for using PM

full control on mapped data persistence to the applications.

The region system supports mapping of PM pages within

multiple application address space at the same time. To achieve

transparent yet consistent sharing across the sharing processes,

updates are reflected across all processes upon invocation of

pmsync by one of the processes. The region system uses an

inter-processor interrupt (IPI) based solution which ensures

that invocation of pmsync by any one of the cooperating

processes gets immediately reflected within the address spaces

of all processes sharing the region. Synchronizing region

updates and persistence operations is done by the cooperating

processes which share such pages. These semantics enable

simple data sharing within persistent memory without sacri-

ficing logical functionality.

The region system implements a novel dual-pointer mecha-

nism to manage its internal metadata that eliminates copy-on-

write amplification throughout the region system metadata tree.

The region system supports the creation and management of

regions which allows for arbitrary and unordered allocation

of PM space at the page granularity. This is a necessary

requirement for applications to fully benefit from memory like

usage of PM. Maintaining consistency of PM requires careful

ordering of updates which involves flushing dirty cache lines

to the PM adding significant cost to the overall process [13],

[15]. As a remedy, the region system employs a non-redundant

metadata architecture requiring only atomic 8-byte updates to

ensure durable PM operation.

The region system performs better than the ext4-DAX

file system when compared for persistent operations (i.e.

operations which update PM resident metadata) with sim-

ilar functionality. Besides that, the region-based version of

libpmem performs competitively with the regular and ext4-

DAX versions (both non-transactional) while providing strong

consistency guarantees.

II. APPLICATION USAGE OF PM

The characteristics of PM devices blurs the conventional

boundary of storage and memory, and exposes the limita-

tions of the existing solutions in managing PM optimally.

We believe that PM access interfaces within the OS should

be tailored to expose the unique properties of PM devices

so applications can exploit the full potential of this new

technology with ease. In this section, we justify a minimum

set of requirements (as shown in Figure 1) that the OS should

meet to satisfy both the support of new PM devices and its

use by applications.

A. Persistent Namespaces

As with conventional storage, applications using PM will

require the ability to identify previously stored data and

distinguish it from unrelated data stored by other applications.

B. Mapped Data Consistency

Unlike block-based persistent storage of today, PM devices

can be accessed directly by the CPU. To utilize this new,

powerful capability, it is valuable to expose PM directly

within a process’ virtual address space. Previous studies have

shown that with PM, the current storage stack contributes

to 97% of the access overhead [5] and that direct CPU

loads/stores can significantly lower latency and improve the

CPU efficiency of applications [1]. Thus, the conventional

memory mapping approach used for volatile DRAM and files

becomes very valuable with PM. However, the possibility of

corruption increases as the PM can contain uncommitted data

after a system failure or crash. Thus, it is necessary to have a

mechanism to achieve atomic durability of mapped data and

to revert back to a previously application defined consistent

state in case of a failure to achieve atomic durability.

C. Consistent Sharing

Direct exposure of PM to CPU load/stores provides an

unique opportunity to reflect all the changes made to a

particular PM location visible to multiple applications simul-

taneously. The current PM-specific solutions does not support

any notion of shared data consistency. The file mapping

mechanism either supports private copies (MAP PRIVATE) of

the data, or shared copies (MAP SHARED) which might not

be transparent across the applications at any given time. We

posit that the applications which map the same PM area have

some motive to do so, and they should be able to transparently

make the updates visible to all concerned parties. However,

the applications may decide durability points by synchronizing

amongst themselves. The OS, in this case, should provide the

basic support for transparent atomic durability of shared PM

areas across sharing applications.

D. Simple Memory-like Interface

Mapping the PM directly to applications address space only

to update the PM areas using a complex transactional mech-

anism would bring little benefit to the application developers.

Current transactional mechanisms [2], [11], [21] require spe-

cific set of steps to start, end, or persist a transaction. In some

cases, the applications have to go through the cumbersome task

of identifying each of the PM resident objects. We believe that

this approach does not yield full benefit of direct PM access,

and makes the development process harder for the developers.

Our proposal is that applications should be able to continue

their current approach of using in-memory objects and should



TABLE I
A SUMMARY OF RECENT RESEARCH ON PM-SPECIFIC SOFTWARE SOLUTIONS

Namespace
Mapped Data
Consistency

Consistent
Sharing

Memory
Like

Transactions

Arbitrary and
Unordered
Allocation

File systems [12], [13], [16], [22], [26] ✓ ✗ ✗ ✗ ✗

Memory subsystem ✗ ✗ ✗ ✓ ✓

Block devices [6], [7], [9] ✓ ✗ ✗ ✗ ✗

Persistent Heaps [2], [11], [21] ✓ ✓[transactional] ✗ ✗ ✓

NOVA [23] ✓ ✓[private] ✗ ✓ ✗

Mojim [25] ✓ ✓[replicated] ✗ ✓ ✗

Atomic Msync [17], [20] ✓ ✓[non-PM] ✗ ✓ ✗

not have to worry about individually ensuring each objects

durability. They should be able to make changes to objects in

a PM area and persist the updates with a simple call like msync

at a single point in time. The changes that were made durable

at a certain time should be recoverable until the application

issues durability for a second set of modifications to the same

region.

E. Arbitrary and Unordered PM Allocation

Let’s assume an use case where an application wants to

construct and manipulate a persistent B-tree to store some

data. The application would allocate memory for the B-

tree internal nodes as well as data nodes and these could

have different sizes. The allocated nodes can be deleted in

arbitrary order depending on the applications requirements.

The memory subsystem can easily handle the use case by

allocating chunks of memory for the B-tree nodes, which can

later be de-allocated irrespective of the order of allocation.

The only issue here is that the memory subsystem does not

support associating a persistent namespace to the allocations.

This capability is also not supportable using the file interface,

where files are sequential byte streams that do not support

arbitrary and unordered allocation of PM. Some file systems

support punching holes in a file, but the support is offset

by the complexity of managing arbitrary chunk sizes. We

postulate that, for future PM consuming applications, adding

and removing PM areas of arbitrary sizes within a defined

namespace in an unordered manner would be a primary

requirement.

III. RELATED WORK

Research on PM-centric software stacks has mainly ad-

dressed two areas: (i) application usage of the persistent

memory, and (ii) native OS support for PM. As we discuss

below, these two classes of solutions have been developed

as silos and solutions that span the concerns of both areas

remain unexplored. While we discuss individual solutions

in the remainder of this section, Table I summarizes the

recent research in this space evaluated against the requirements

introduced in Section II.

A. Application usage of PM

The work on application usage of persistent memory has

focused on new programming abstractions and models [11],

[14], [21]. NV-Heaps [11] and Mnemosyne [21] propose per-

sistent heap-based solutions for PM. Both utilize the mmap()

system call to create the abstraction of persistent heaps. The

persistent memory library effort [2] provides object-based

transactional support (libpmemobj) built on top of low level

persistent memory library (libpmem). These solutions rely on

memory transactions to make direct PM updates atomic and

durable. Moreover, while these solutions support consistent

updates and provide transactional consistency, they require

that applications explicitly specify individual updates to PM,

a cumbersome task. Finally, there is no support for sharing

data stored in PM across processes in these solutions.

B. Native OS support for PM

OS stacks built for block devices [4], [6], [7], [9] forfeit

the benefit of mapping PM to the application address space

reducing the scope for improvement over traditional storage.

Block-based file systems are unable to fully exploit the capa-

bilities of low-latency persistent memory devices [18]. Recent

file systems such as PMFS [13], BPFS [12], SCMFS [22],

HVMFS [26], FCFS [16] provide PM-specific file manage-

ment solutions. These solutions all provide persistent names-

pace and support mapping portions of files to process address

spaces. However most of these file systems do not support

atomic durability of mapped data and none of them support

arbitrary and unordered allocation/deallocation of PM-resident

data.

Solutions for consuming PM mostly target supporting the

vast majority of applications that consume storage using the

file read/write/fsync interface. This interface is not best

suited for PM which can support direct load/stores from

CPU. When using the mmap interface to make this possible,

most existing solutions does not provide consistency and

atomic durability guarantee for all possible use cases. The

importance of failure-atomic msync when using file systems

has been articulated well by Park and Verma et al. [17],

[20]. Though their proposed solutions are independent of

the underlying storage type, they are designed for specific

file systems. Mojim [25] and Nova [23] address the issue

of mapped PM data consistency when being updated by a

single application with some restrictions. Thus surprisingly,

despite being a very important usage model for PM, the

topic of mapped data durability remains largely unexplored.



Virtual File System

DRAM

APPLICATIONS

3

Memory library (POSIX)

ReRAMSTTRAMPCM

nvmfsRegion
...

2

kernel

of the

Rest

1

FS library (POSIX)PM libraries

Block Layer

Page Tables

SSDDISK

4

existing fs (ext4, ntfs, etc.)

U
S

E
R

...

5

Memory

Virtual

K
E

R
N

E
L

System

Fig. 2. A PM-specific memory/storage stack – 1© Applications use PM directly using region system interfaces. 2© Applications consume PM through PM
libraries (e.g. pmem.io), which can use region system or PM-specific file systems to access PM. 3© Applications access PM using traditional POSIX interface
through 4© Applications using PM using traditional file systems. 5© Rest of the kernel accessing PM using region system.

Furthermore, how such data would be shared across multiple

processes or applications remains unaddressed.

The Nova [23] file system implements support for atomic-

mmap with strong consistency guarantees. However, the

atomic-mmap primitive does not present actual file pages

to an applications address space as it only maps copies of

the persistent pages. Though this version of atomic-mmap

achieves consistency, it forfeits sharing of mapped pages

across multiple applications.

Mojim [25] proposed a set of replication schemes with

varied degree of reliability and consistency guarantees. The

OS service provides the applications with simpler interfaces

for creating sync points for the data area by calling specific

system calls (such as msync or gmsync). Mojim provides

availability, reliability, and consistency guarantees via replica-

tion to a peer node. However, no consistency guarantees are

provided for the application-mapped data areas for the general

un-replicated case.

Recent file systems have introduced new techniques for PM

interaction such as epochs, short-circuit-shadow paging [12],

atomic-in-place updates [13], [23], and fine grained metadata

journaling [8] to optimize metadata updates. However, these

solutions do not minimize the number of metadata updates

necessary for a given operation. For instance, appending to

or increasing the size of a file may require an addition of

a new data block, which could result in multiple updates

to the inode including rewriting the file size, initializing

data pointers, and free-space bitmap updates. In fact, the

existing PM-specific solutions all store redundant metadata for

ensuring the consistency of data stored in PM, a design that has

seamlessly percolated from legacy file systems designed for

block storage. The more pieces of metadata a PM managing

layer maintains, the greater the burden of ordering these

updates, which in turn impacts performance [11]–[14], [21],

[23]. NV-tree [24] proposed a B+ tree data structure specially

designed to reduce metadata ordering by carefully separating

metadata depending on their ordering requirements. However,

it does store redundant metadata. NoFS [10], on the other

hand, proposes a back-pointer based metadata structure which

eliminates the need for ordering but increases the number of

overall updates made to the persistent storage.

IV. DESIGN RATIONALE

The region system is designed to fulfill the requirements

outlined in Section II, and to primarily achieve the following

goals described below.

A. Atomic Durability for Mapped Data

As we discuss in Section III, PM-specific solutions, either

as OS optimizations or development of new programming

abstractions, fall short on providing comprehensive support

for mapped application data management. Agreeing upon a

single, new mechanism to achieve application data consistency

is difficult because of varied consistency requirements across

applications. However, we can agree that applications would

like to ensure that their data remains consistent in a state

that the application can recover from after a system crash or

a power failure. To tolerate arbitrary points of failure, data

durably stored in PM must be continuously maintained in

states that meet application consistency definitions. While the

durability requirements of applications could vary arbitrarily,

we recognize a fundamental requirement that applies across

applications—the capability to make a set of changes to a

set of application data reach the PM (i.e. are made durable)

atomically.

A relevant question then would be –Why advocate for

larger granularity mmap based access in preference to smaller

granularity atomic writes?

Several applications today mmap multiple file pages, modify

those pages, and invoke msync to finally make the write

durable (e.g., MongoDB). This batch durability of mapped

data typically achieves higher throughput given the spatial

locality of access and batched I/O operations in comparison

to multiple interposed smaller PM writes to a out-of-place



TABLE II
SYSTEM CALL INTERFACE TO PERSISTENT MEMORY. Syscalls address one

or more of the following classes of functions: (1) Namespace management,

(2) Allocation, (3) Mapping, (4) Consistency, and (5) Sharing.

Class Name

region_d open(char *region_name, flags f);

int close(region_d rd);

1 int delete(char *region_name);

ppage_number alloc_ppage(region_d rd);

2 int free_ppage(region_d rd, ppage_number ppn);

vaddr pmmap(vaddr va, region_d rd, ppage_number

ppn, int nbytes, flags f);

3,5 int pmunmap(vaddr va);

4,5 int pmsync(region_d rd);

logging structure. Besides that, it empowers programmers with

a simple interface to commit data when they deem fit to do

so without specifying individual transactions. Furthermore, it

is likely to require significantly greater modification to the

application’s work-flow, design, and implementation to employ

smaller granularity logging of updates. The region system

primitives, pmmap and pmsync, help these applications to

achieve batch durability of mapped data atomically, and it will

help programmers to evolve in-PM data structures consistently

without the need for introducing complex transactions in

application logic.

B. Minimize Cache Flush

If multiple inter-dependent objects reside in a system, the

updates to those objects require to happen simultaneously to

maintain data integrity. With file systems for instance, the

file inode and free-space bitmap contain redundant informa-

tion, which need to be atomically written out to maintain

consistency. Conventionally, such redundant information is

maintained for performance reasons; loading all file inodes

to reconstruct the free-space bitmap was considered expen-

sive and thus the redundant persistent versions. However,

the redundancy also adds complexity to file system design

and overhead during runtime. Furthermore, updates to PM

requires careful ordering of instructions, and the problems of

not doing so are well-described in contemporary PM research

literature [11]–[14], [21], [23]. The absence of correlated

metadata significantly lowers the ordering requirements for

PM updates. The region system design uses no metadata

redundancy which facilitates implementing the atomicity of

metadata related operations using atomic single word PM

updates.
V. REGION SYSTEM

A. Interface and Usage

Persistent Memory can be accessed using a variety of mech-

anisms as depicted in Figure 2. Our main concern is to present

persistent memory within an applications address space for

direct access without burdening the application developers

with the complexities of maintaining transactional consistency

of their data. We propose an interface that empowers the

PM application developer with namespace support, atomic

metadata operations, and shared mapped data consistency.

Table II lists the region system call interface.

Listing 1. Region System usage illustration

#define PAGE SIZE 4096

int rd = open(” region 1”);
int ppage no = alloc ppage(rd);
void ∗log = pmmap(NULL, rd, ppage no, PAGE SIZE,

MAP SHARED);

/∗ write to log ∗/

pmsync(rd);
unmap(log);
close(rd);

The region system creates the region abstraction for using

persistent memory. A region is an unordered collection of

persistent pages (ppages) identified by an unique region

descriptor. Ppages, which are distinguished by page numbers,

can be added to a region and deleted later in any sequence

irrespective of the sequence in which they were allocated.

Unlike conventional file systems, there is no read/write

access to regions; memory-mapping of ppages is the only

mechanism to consume PM. The pmmap system call allows

the application to map ppages to the process address space,

while pmunmap reverses the mapping. By invoking pmsync,

applications can make all the changes to a regions’ mapped

ppages atomically durable. The code snippet in Listing 1

illustrates how an application would consume PM through the

region system interface.

B. Non-redundant Metadata Structure

To support low-latency operations, the region system adopts

a lightweight and low-overhead approach to managing PM.

First, it carefully avoids keeping any redundant data persis-

tently. Avoiding the use of redundant metadata eliminates

the need for atomic updates to inter-dependent metadata,

simplifying the task of keeping metadata consistent. Only a

single version of the metadata necessary to reconstruct the

region system state is kept up-to-date on the PM device. Free-

space bitmaps are only persisted on clean shutdowns and not

during normal operation. During crash recovery, to reconstruct

free space information, the region system scans through region

metadata in the background. The process is initiated during

region system mount time. The volatile and persistent metadata

for the region system and their relations are depicted and

described in Figure 3.

System calls that update metadata are designed to maintain

consistency. The same general principle holds for all the

system calls—all region metadata get updated atomically to

implement atomicity of the system calls themselves. For

all the persistent metadata operations, we identify the dura-

bility point, and make sure that all updates preceding the

durability point are made durable using a persistent barrier

(CLWB+SFENCE) followed by the final durability operation.

The durability point of each operation is the last 8-byte update

which marks the completion of the operation. For an example,



Fig. 3. Region system layout and separation of volatile and persistent
metadata.

updating the r node status to RNODE VALID is the durabil-

ity point for creating a region. All internal metadata updates

are done before this step, and the status update protected by

the persistent barrier finalizes the operation.

C. Consistency of Mapped Data

The pmsync interface simplifies the consistent management

of durable data mapped into an application’s address space.

With pmsync, an application can choose when it wants to make

any of its in-memory data durable. Initially, when a group of

ppages from a region is mapped to an application’s address

space, updates to the ppages are not made durable until a

pmsync is invoked. On pmsync, all updates to the ppages

since the previous pmsync are made atomically durable. Any

updates to ppages after the latest pmsync get discarded in

case of a system crash or failure. Regardless of the number of

ppages mapped to a process’ address space, all updates to a

region are always made atomically durable.

To accomplish atomic durability, CPU load/store capability

has to be revoked immediately for all pages of the region

after the pmsync invocation until all the pages are in a

protected state. However, CPUs may not deprive other tasks

from executing for more than a short period of time to

preserve system responsiveness. To achieve these goals the

region system issues an IPI to all CPUs and puts them in

a non-maskable interrupt state immediately after acquiring the

region-wide lock which protects a region from modifications.

One of the CPUs IPI-handler write-protects all the dirty pages,

while other CPUs wait for the completion of write protection

so that they may not alter the contents of the pages.

The second step is to flush all the dirty cache lines to the

PM. Upon returning from the IPI, the active CPU also flushes

the dirty cache lines for the region referenced by the kernel

virtual address. At this point region system relies on CPU

cache snooping to make the pages consistently visible across

all the processors. After cache flush, an idempotent execution

of pmsync is initiated. First, the region r node status is up-

dated to pmsync_in_progress. The region system metadata

architecture, as shown in Figure 3, is designed to have two

pointers per ppage, one for the current mapped version,

and other for the snapshot version. Dual pointers, used in

combination with the r_node flags - pmsync_in_progress

and pmsync_complete, ensure an idempotent pmsync.

After the r node is set to pmsync_in_progress, pmsync is

guaranteed to finish successfully, even after a system crash.

Finally, the snapshot pointer is modified to point to the

current page and delete the previous snapshot if there was

any, before setting the region status to pmsync_complete.

The modifications to the r_node status are protected by the

(clwb+sfence) persistent barrier to enforce proper ordering

of updates.

CoW Optimization: During normal operation, any access

to a mapped page within a pmsync’ed region results in a

copy of the current page, and the snapshot pointer is changed

to point to the copied page while the current (old) page is

made accessible to the user. Existing snapshot mechanisms

allow the copy-on-write (CoW) update to propagate to

intermediate layers of metadata, even up to the root. The

region systems novel dual pointer technique eliminates

such CoW amplification by limiting recursive updates to the

lowest metadata layer in the region system metadata hierarchy.

Recovery: Region system can be brought back to a consistent

state by traversing the metadata tree and informed by the

rs root and r node flags. Due to space limitations, we avoid

the discussion here and intend to provide a detailed description

of these in a separate article.

VI. IMPLEMENTATION

The region system is implemented as kernel module for

Linux kernel 3.10.14. A small (<100 LOC) kernel patch has to

be applied before the module can be installed. The kernel patch

involves the modification to task struct and other minor kernel

data structures to support the region system. Once the module

is installed, the region system can be mounted by specifying

the start address (physical) and size of the region that falls

within the PM’s physical address range. The module has been

successfully deployed and tested using Intel’s hardware based

PM emulator [13] which emulates PM latency according to

the administrator-defined PM configuration.

VII. EXPERIMENTAL EVALUATION

We evaluated region system performance using microbench-

marks and several real-world applications. Due to space

limitations, we only present microbenchmark evaluation and

demonstrate a case where regular PM applications/libraries

achieve stronger consistency guarantees by using the region

system.

A. Microbenchmarks

The region system exports a minimal interface to the ap-

plications for mmap based usage of PM. The system calls



Persistent Operations

Fig. 4. Average latency of region system operations relative to ext4-DAX

in Table II are designed based on the POSIX standard file

system calls in terms of functionality. We wrote several simple

applications to compare the performance of similar operations

when using the region system and the ext4-DAX file system.

However, ext4-DAX does not provide any of the atomic

durability for data as provided by the region system. The

main purpose of this evaluation is thus an evaluation of the

cost of the additional features provided by the region system

relative to the state-of-the-art ext4-DAX performance features.

Ext4-DAX also supports punching holes via the fallocate

system call. To evaluate this, we compare the performance of

deallocating every alternate pages after a file/region is initially

allocated. As we can see from Figure 4, for the majority

of persistent operations, region system performs better than

ext4-DAX. This is attributable to the non-redundant metadata

design leading to reduced updates to PM.

B. PMEM.IO with Region System

PMEM.IO [2] is a suite of persistent memory libraries

developed for making persistent memory programming easier.

PMEM.IO’s libpmem provides an interface to map PM via the

underlying PM specific file system (e.g., ext4-DAX). However,

it implements PM specific functions such as pmem_flush,

pmem_drain, etc. in user space without involving the un-

derlying file system. Libpmem can also be configured to

use ext4-DAX’s msync instead of the user level flushing

functions. We call the former variation as LIBPMEM and the

latter variation as LIBPMEM-DAX. Neither variant provides

support for transactional consistency of the data stored using

libpmem. We created a variant of libpmem which is built

to consume regions implemented by the region system and

supports mapping ppages to the user address space. We call

this variant LIBPMEM-REGION. By using LIBPMEM-REGION,

pending data updates are made transactionally durable when

using pmsync. We compared the LIBPMEM-REGION which

provides atomic durability of PM changes with the non trans-

actional LIBPMEM and LIBPMEM-DAX. We ran the libpmem

library’s pmem_flush benchmark [3] for all three systems.

This benchmark writes a single byte to several pages of the

mapped file/region and flushes the contents later. We ran the

Fig. 5. Normalized average libpmem and libpmem-DAX latency with respect
to libpmem-region

tests for different sizes of files/regions (12MB to 786MB)

while pmembench executed multi-threaded (1 to 16). To deter-

mine how the region system performs on an average relative

to these two variants we calculated their normalized average

latency over the same dataset. Pmsync performs within 2% of

LIBPMEM-DAX msync, and 30% of LIBPMEM pmem flush.

The normalized average latency of LIBPMEM and LIBPMEM-

DAX are shown in Figure 5. For an application that dirties

a small number of pages between consecutive syncs, the

performance of LIBPMEM-REGION is competitive relative to

its less transactional variants.

VIII. CONCLUSIONS

The region system is a new kernel subsystem for managing

PM consistently and exposing it directly into process address

spaces. A fundamental driving principle behind the region

system is to reduce development complexity significantly

when using PM to develop powerful stateful applications.

Applications benefit from a simple durability interface that

makes a group of application updates to PM-resident data

atomically durable. This paper highlights the ease of use,

sharing capabilities, and strong consistency and data durability

guarantees for mmap based usage. The region system also

supports arbitrary and unordered allocation/deallocation of

data within regions at the page granularity.

The design of region system opens a new window for

the existing mmap based applications to migrate to using

PM effectively and easily. Applications like Kyoto Cabinet,

SQLite, and other key-value stores which predominantly rely

on msync can be ported to achieve atomic durability by

switching the underlying storage manager from existing file

systems to region system. Persistent heap based solutions

can also be built by utilizing the region system’s atomic

API calls. Most importantly, applications can be developed

without worrying about complex transactional mechanisms.

We anticipate that the new design points exposed by the

region system pave the way for future implementations of PM-

optimized operating system and application-level software.



REFERENCES

[1] Fusion-io directFS and ACM. http://www.fusionio.com/blog/blurring-
the-line-between-memory-and-storage-introducing-filesystem-support-
for-persistent-memory/.

[2] Persistent Memory Programming. http://pmem.io.
[3] Pmem.io Benchmarks. https://github.com/pmem/nvml/tree/master/src/be

nchmarks.
[4] CAMPELLO, D., LOPEZ, H., USECHE, L., KOLLER, R., AND RAN-

GASWAMI, R. Non-blocking writes to files. In Proceedings of the

USENIX Conference on File and Storage Technologies (February 2015).
[5] CAULFIELD, A., AND SWANSON, S. QuickSAN: A Storage Area

Network for Fast, Distributed Solid State Disks, March 2013.
[6] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I., GUPTA,

R. K., AND SWANSON, S. Moneta: A high-performance storage array
architecture for next-generation, non-volatile memories. In Proceedings

of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture (Washington, DC, USA, 2010), MICRO ’43, IEEE
Computer Society, pp. 385–395.

[7] CAULFIELD, A. M., MOLLOV, T. I., EISNER, L. A., DE, A., COBURN,
J., AND SWANSON, S. Providing safe, user space access to fast, solid
state disks. In ASPLOS (2012).

[8] CHEN, C., YANG, J., WEI, Q., WANG, C., AND XUE, M. Fine-grained
metadata journaling on nvm. In IEEE 32nd International Conference

on Massive Storage Systems and Technology (2016), MSST ’16.
[9] CHEN, F., MESNIER, M., AND HAHN, S. A protected block device for

persistent memory. In Mass Storage Systems and Technologies (MSST),

2014 30th Symposium on (2014).
[10] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Consistency without ordering. In Proceedings

of the 10th USENIX Conference on File and Storage Technologies

(Berkeley, CA, USA, 2012), FAST’12, USENIX Association, pp. 9–9.
[11] COBURN, J., CAULFIELD, A., AKEL, A., GRUPP, L., GUPTA, R.,

JHALA, R., AND SWANSON, S. Nv-heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories. In ASPLOS

(2011).
[12] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., BURGER,

D., LEE, B., AND COETZEE, D. Better i/o through byte-addressable,
persistent memory. In SOSP (2009).

[13] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A., LANTZ, P.,
REDDY, D., SANKARAN, R., AND JACKSON, J. System software for
persistent memory. In Proceedings of the Ninth European Conference

on Computer Systems (New York, NY, USA, 2014), EuroSys ’14, ACM,
pp. 15:1–15:15.

[14] GUERRA, J., MARMOL, L., CAMPELLO, D., CRESPO, C., RAN-
GASWAMI, R., AND WEI, J. Software persistent memory. In USENIX

ATC (2012).

[15] LANTZ, P., DULLOOR, S., KUMAR, S., SANKARAN, R., AND JACK-
SON, J. Yat: A validation framework for persistent memory software. In
2014 USENIX Annual Technical Conference (USENIX ATC 14) (2014).

[16] OU, J., AND SHU, J. Fast and failure-consistent updates of application
data in non-volatile main memory file system. In IEEE 32nd Interna-

tional Conference on Massive Storage Systems and Technology (2016),
MSST ’16.

[17] PARK, S., KELLY, T., AND SHEN, K. Failure-atomic msync(): A simple
and efficient mechanism for preserving the integrity of durable data. In
Proceedings of the 8th ACM European Conference on Computer Systems

(2013), EuroSys ’13.
[18] SANTANA, R., RANGASWAMI, R., TARASOV, V., AND HILDEBRAND,

D. A fast and slippery slope for file systems. ACM Operating Systems

Review 49, 2 (December 2015).
[19] USECHE, L., KOLLER, R., RANGASWAMI, R., AND VERMA, A. Truly

non-blocking writes. In Proceedings of the 3rd USENIX Conference on

Hot Topics in Storage and File Systems (2011), HotStorage’11.
[20] VERMA, R., MENDEZ, A. A., PARK, S., MANNARSWAMY, S. S.,

KELLY, T. P., AND III, C. B. M. Failure-atomic updates of application
data in a linux file system. In Proc. of the USENIX Conference on File

and Storage Technologies (FAST 15) (Feb. 2015).
[21] VOLOS, H., TACK, A. J., AND SWIFT, M. Mnemosyne: Lightweight

persistent memory. In Proc. of ASPLOS (2011).
[22] WU, X., AND REDDY, A. L. N. Scmfs: a file system for storage class

memory. In Proc. of SC (2011).
[23] XU, J., AND SWANSON, S. Nova: A log-structured file system for hybrid

volatile/non-volatile main memories. In 14th USENIX Conference on

File and Storage Technologies (FAST 16) (Santa Clara, CA, Feb. 2016),
USENIX Association, pp. 323–338.

[24] YANG, J., WEI, Q., CHEN, C., WANG, C., YONG, K. L., AND HE,
B. Nv-tree: Reducing consistency cost for nvm-based single level
systems. In Proceedings of the 13th USENIX Conference on File and

Storage Technologies (Berkeley, CA, USA, 2015), FAST’15, USENIX
Association, pp. 167–181.

[25] ZHANG, Y., YANG, J., MEMARIPOUR, A., AND SWANSON, S. Mojim:
A reliable and highly-available non-volatile memory system. In Proceed-

ings of the Twentieth International Conference on Architectural Support

for Programming Languages and Operating Systems (2015), ASPLOS
’15.

[26] ZHENG, S., HUANG, L., LIU, H., WU, L., AND ZHA, J. Hmvfs: A
hybrid memory versioning file system. In IEEE 32nd International

Conference on Massive Storage Systems and Technology (2016), MSST
’16.


