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Abstract—In chunk-based deduplication systems, logically con-
secutive chunks are physically scattered in different containers
after deduplication, which results in the serious fragmentation
problem. The fragmentation significantly reduces the restore
performance due to reading the scattered chunks from differ-
ent containers. Existing work aims to rewrite the fragmented
duplicate chunks into new containers to improve the restore
performance, which however produces the redundancy among
containers, decreasing the deduplication ratio and resulting in
redundant chunks in containers retrieved to restore the backup,
which wastes limited disk bandwidth and decreases restore
speed. To improve the restore performance while ensuring the
high deduplication ratio, this paper proposes a cost-efficient
submodular maximization rewriting scheme (SMR). SMR first
formulates the defragmentation as an optimization problem of
selecting suitable containers, and then builds a submodular max-
imization model to address this problem by selecting containers
with more distinct referenced chunks. We implement SMR in
the deduplication system, which is evaluated via two real-world
datasets. Experimental results demonstrate that SMR is superior
to the state-of-the-art work in terms of the restore performance
as well as deduplication ratio. We have released the source code
of SMR for public use.

I. INTRODUCTION

Data deduplication has been widely used in backup systems

to save storage space [1], [2], [3], [4], [5], [6]. It divides

incoming data stream into small and variable pieces, called

chunks [7], and identifies each chunk by its small-size sig-

nature, called fingerprint, via hash functions, such as SHA-1,

SHA-256 and MD5 [7], [8]. A fingerprint index maps finger-

prints of the stored chunks to their physical addresses. [9], [10]

These chunks are stored into several large fixed-size storage

units called containers, to preserve the spatial locality of the

backup data stream [2], [9], [11], [12], [13]. A container is

the basic unit of reads and writes. Based on the redundancy of

incoming chunks, a data deduplication system needs to carry

out different operations. Specifically, duplicate chunks are

replaced with the references to existing identical copies stored

in old containers, and unique chunks are written into new

containers. Each backup has a recipe to record the references

to the containers of each backup chunk. In a restore phase,

the restore algorithm scans down the recipe of the backup to

determine which containers need to be retrieved from disks to

the restore cache, which contains the prefetched containers, to

restore the target chunks of the backup stream.

Although data deduplication is space-efficient, logically

consecutive chunks have to be physically scattered in different

containers, thus causing chunk fragmentation [9], [11], [14],

[15], [16]. The fragmentation severely degrades the restore

performance, while the infrequent restore is very important and

becomes the main concern from users [17]. First, original se-

quential disk accesses of reading logically consecutive chunks

become many random ones, while random accesses perform

poorly in disks due to the penalty of disk seeks [11], [18].

Second, due to the fragmentation, some containers, containing

a few referenced chunks (defined as the chunks referenced

by the backup), are retrieved to restore the backup. The

remaining unreferenced chunks in the retrieved containers are

not accessed by the data stream, thus causing the waste of

limited disk bandwidth and decreasing restore speed.

To address the fragmentation problem, several schemes

propose rewriting algorithms to rewrite fragmented dupli-

cate chunks during the backup, such as Capping [11] and

NED [12]. They aim to obtain a suitable trade-off between

deduplication efficiency and restore performance via selective

deduplication upon containers with more referenced chunks.

We observe that with the increase of the number of backup

versions, more and more duplicate chunks are rewritten into

new containers, as described in Section II. Thus, multiple iden-

tical copies of these chunks are stored in different containers,

causing redundancy among containers. However, the contain-

ers selected by existing schemes [11], [12] are suboptimal due

to overlooking the redundancy among the containers. Hence,

some containers with many redundant chunks, which are not

referenced by the backup, are selected, thus wasting some disk

bandwidth and slowing down the restore speed.

To address this problem, we propose a submodular max-

imization rewriting scheme (SMR) to efficiently select con-

tainers for deduplication, and judiciously rewrite duplicate

fragmented chunks. SMR aims to select a limited number

of containers which offer more distinct referenced chunks

for the backup, thus reducing the number of redundant or

unreferenced chunks in the selected containers, to gain a

better trade-off between deduplication efficiency and restore

performance. If more distinct referenced chunks are offered for

the current backup stream, more chunks in the backup stream

can be deduplicated, thus saving storage space. Since less



chunks are rewritten into new containers, SMR decreases the

number of containers retrieved for restore. In addition, SMR

also reduces the disk accesses of redundant and unreferenced

chunks fetched in the restore phase. Hence, SMR achieves

better restore performance as well as deduplication ratio.

In summary, the paper makes the following contributions.

• We observe that due to overlooking the redundancy

among containers, existing solutions [11], [12] poten-

tially choose suboptimal containers with many redundant

chunks, which decreases the restore performance. This

is an important problem for improving entire system

performance.

• We propose a submodular maximization rewriting

scheme, i.e., SMR, to select containers with more distinct

referenced chunks for the backup, reducing the waste

of disk accesses caused by redundant and unreferenced

chunks in the restore phase. It can deduplicate more

chunks and rewrite less chunks, and less containers are

retrieved during the restore, gaining a better trade-off be-

tween deduplication efficiency and restore performance.

• We implement our scheme in the deduplication sys-

tem and evaluate the performance via two real-world

backup datasets. Compared with the state-of-the-art

schemes [11], [12], experimental results demonstrate that

our scheme obtains higher deduplication ratio as well as

restore performance. We have released the source code of

SMR for public use at https://github.com/courageJ/SMR.

The rest of this paper is organized as follows. In Section II,

we describe the background and motivation. We present the

design of SMR and evaluation respectively in Sections III and

IV. Related work is discussed in Section V. We conclude our

paper in Section VI.

II. BACKGROUND AND MOTIVATION

A. Chunk Fragmentation

Data deduplication saves storage capacity by storing one

copy of the duplicated data. But the logically contiguous

chunks of each backup are scattered all over different con-

tainers, called chunk fragmentation [9], [11], [14], [15], [16].

Thus the restore of each backup needs many random I/Os to

the containers, which perform poorly in disks. Hence, chunk

fragmentation significantly decreases the restore performance.

We simulate the baseline deduplication without rewriting on

two real-world datasets, including GCC [19] and Linux [20]

(detailed in Section IV) to explore the degree of chunk

fragmentation and the restore performance. The chunk frag-

mentation level (CFL) [15], [16] is a quantitative metric to

measure the level of chunk fragmentation per data stream,

which is defined as a ratio of the optimal number of containers

without any deduplication scheme with respect to the number

of containers after deduplication to store the backup data

stream. The CFL ranges from 0 to 1. The smaller CFL

indicates that the physical distribution of the data stream is

more scattered, resulting in lower restore speed. The speed

factor [11] (detailed in Section IV) is a metric to evaluate
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Fig. 1. The chunk fragmentation over time.
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Fig. 2. The speed factor over time.

the restore performance. The higher speed factor indicates the

better restore performance. As shown in Figure 1, the fragmen-

tation level is mainly in a downward trend, indicating that the

physical dispersion becomes more severe. As shown in Figure

2, the speed factor declines severely, indicating the decrease of

restore performance. A few exceptions in the Linux datasets

are the major revision updates, which have more new data

stored consecutively. When more backups arrive, more shared

chunks appear, which exacerbates the backup fragmentation

and decreases the restore performance. Hence, how to mitigate

the large slowdown of restore performance over time caused by

the increasing degree of chunk fragmentation is an important

problem to be concerned.

B. The Selective Container Deduplication Schemes

In order to address the fragmentation problem and improve

restore performance, some schemes about selective container

deduplication have been proposed, e.g., Capping [11] and

NED [12]. They define the fraction of chunks referenced by

the backup in a container as the container’s utilization and

try to select containers with higher utilization for a backup

to deduplicate. These schemes rewrite the duplicate chunks

which refer to lower-utilization containers, to alleviate the

waste of disk bandwidth caused by the unreferenced chunks

in these containers in the restore phase. Hence, the restore



performance has been improved with the cost of decreasing

storage efficiency.

Specifically, Capping splits the backup data stream into

fixed-length segments, and uses a buffer to temporarily store

them. The fingerprint index is further queried to conjecture

which containers can be referenced by the chunks in the

current segment. In fact, this is a trade-off between dedupli-

cation ratio and restore performance by setting the amount

limit CAP T of selected containers for deduplication. If the

amount N of the containers which contain referenced chunks

for the current segment is more than CAP T , the top CAP T

containers are selected and used in deduplication according to

their utilization. The chunks of the segment are deduplicated if

having identical copies in the selected containers. Otherwise,

they are rewritten into new containers. Capping improves

restore performance by limiting the amount of containers that

a segment can refer to, and selects the containers with higher

utilization. Moreover, NED computes the ratio of the sum size

of referenced chunks to that of the stored chunks in each

container for the current backup segment. If the ratio of a

container is lower than a threshold NED T , the chunks in

the segment that can refer to this container are regarded as

fragmented chunks, which are further rewritten into new con-

tainers. NED aims to select some containers with utilization

over the threshold for deduplication, which improves restore

performance and mitigates data fragmentation.

C. Problem Statement

Multiple rewriting schemes, e.g., Capping [11] and

NED [12], have been proposed to rewrite fragmented dupli-

cate chunks to improve restore performance. However, with

the increase of the number of backup versions, more and

more duplicate chunks are rewritten into new containers. In

consequence, many identical chunks are stored in different

containers, thus increasing the redundancy among containers.

Due to overlooking the redundancy among containers, existing

schemes [11], [12] need to count some redundant chunks,

which are not referenced by the backup, in computing the

utilization of containers. Hence, some suboptimal containers

are selected for the backup, which exacerbates disk accesses

and slows down the restore speed.

Specifically, there exist multiple identical chunks among

the selected containers referenced by the backup. One of

these identical chunks can be referenced to deduplicate and

restore all chunks with identical context of the backup. Due

to playing the same function, other redundant chunks are

not needed to be referenced by the backup. These redundant

chunks in the selected containers hence fail to be regarded

as referenced chunks in computing the utilization for these

selected containers that are mistakenly considered to achieve

higher utilization.

We take Capping [11] as an example to show the effects of

the redundancy among containers on the restore performance.

As shown in Figure 3, three data streams with thirteen chunks

are backed up and the amount of the selected containers in

Capping, CAP T , is set as 2. The number of chunks stored

in each container is fixed as 5. The chunks in the first stream

are stored in containers I, II, and III. When the second stream

arrives, the utilizations are computed for each container: I

is 5, II is 2 and III is 3. The containers I and III are the

top 2 selected containers. Two chunks F and G referring to

the container II and the remaining three unique chunks are

written into the new container IV. Moreover, when the third

stream arrives, the utilizations for each container are also

computed: I is 3, II is 5, III is 0 and IV is 4. Thus top 2

selected containers are II and IV. 7 chunks are deduplicated.

6 remaining chunks which do not refer to the two containers

are stored in new containers. As shown in the third stream

backup, both containers II and IV have chunks F and G. Thus,

in a restore phase, fetching the container IV only restores the

chunks O and P, since the chunks F and G have been already

restored by the container II. This scheme deduplicates less data

due to selecting the container IV to deduplicate the chunks F

and G that have been deduplicated by the container II. Thus,

the chunks F and G in the container IV are considered to

be referenced chunks when the Capping scheme counts the

utilization for the container IV to select container IV, but

the chunks F and G actually are not, wasting disk accesses.

As shown in the example above, more backups lead to more

rewritten chunks in the new containers. Hence, there are more

identical chunks stored in different containers, increasing the

redundancy among containers. Existing schemes [11], [12]

determine a chunk as the referenced chunk as long as it

can be referenced by the backup. But considering all chunks

in the selected containers, some chunks are redundant to be

referenced, leading to extra disk accesses in a restore phase.

D. Observations and Motivations

1) The Redundancy Among Containers: More and more

chunks are rewritten into new containers in a backup for better

restore performance, and thus multiple copies are stored in

different containers for identical chunks, increasing the redun-

dancy among containers. We explore the redundancy among

containers in two real-world datasets, including GCC [19] and

Linux [20] (detailed in Section IV). We use Capping [11] as

the example of the rewriting algorithm to backup the con-

secutive versions of each dataset in two backup experiments.

One is to backup the datasets under the constant Capping

level, i.e., CAP T . The other is to backup under different

CAP T values. The default size of segment in Capping is

20MB, which is recommended in the Capping paper [11].

The constant Capping level in the first experiment is set as

20 containers per 20MB segment.

We classify the stored chunks into two categories: unique

chunks (i.e., chunks only stored in one container) and re-

dundant chunks (i.e., chunks with multiple copies stored in

different containers). We count the amount of the two kinds

of chunks respectively.

As shown in Figure 4, the amount of redundant chunks

becomes far more than that of unique chunks. The reason

is that original unique chunks become chunks with multiple

copies since incoming identical chunks are rewritten into new
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(a) The first backup stream
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(b) Data layout after the first
backup stream

������������������������������������������	�����
����������������
�����

(c) The second backup stream
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(d) Data layout after the second backup
stream
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(e) The third backup stream
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(f) Data layout after the third backup stream

Fig. 3. An example of three consecutive backups with the Capping rewriting
scheme.

containers. More and more containers have identical chunks.

As shown in Figure 5, CAP T values vary from 5 to 40 per

segment. Smaller CAP T indicates that less containers are

selected for segments, achieving better restore performance,

and more chunks are rewritten into new containers, which

results in more redundant chunks. As shown in the two

experiments, more and more chunks are rewritten into new

containers to reduce data fragmentation, however increasing

the redundancy among containers.

2) Motivations: Although existing selective container dedu-

plication schemes improve restore performance by limiting the

amount of the selected containers with less referenced chunks

for deduplication, the redundancy among containers results in

multiple identical chunks to be selected for deduplication and
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(b) Linux

Fig. 4. The redundancy among containers in consecutive versions backups
with the Capping rewriting scheme.

fetched to restore the same chunks, wasting disk accesses.

In essence, the wasted disk accesses in the restore phase are

caused by selecting different containers with redundant chunks

to deduplicate. Thus, when fetching containers to restore data

stream, both unreferenced and redundant chunks in containers

cause the waste of disk bandwidth and decrease the restore

performance.

TABLE I
THE AMOUNT OF DISTINCT REFERENCED CHUNKS FOR EVERY 2

CONTAINERS.

Container ID Distinct Referenced Chunks Chunks Amount

I, II A B C F G H I J 8

I, III A B C 3

I, IV A B C F G O P 7

II, III F G H I J 5

II, IV F G H I J O P 7

III, IV F G O P 4

We aim to improve the restore performance by selecting

a subset of containers with more distinct referenced chunks

for deduplication under the limits of selected containers to

reduce the number of unreferenced and redundant chunks in

the selected containers. For example, we perform our selection

strategy on the three backup streams as shown in Figure 3.

The amount of the selected containers is also set as 2, which

is the same as Capping level, i.e, CAP T in Figure 3. The
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(a) GCC
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(b) Linux

Fig. 5. The observations of redundancy among containers in various CAP T
levels.

backup processes and containers distributions after the first

two stream backup are the same as those in Figure 3. For the

third data stream, when selecting 2 containers to deduplicate,

we first count the amount of distinct referenced chunks for

every 2 containers, as shown in Table I. The number of distinct

referenced chunks in the subset, consisting of the containers I

and II, is more than any other subsets. Selecting the containers

I and II can deduplicate 8 chunks and write 5 chunks. The

distributions of containers after the third backup stream are

shown in Figure 6.
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(a) The third backup stream
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(b) Data layout after the third backup stream

Fig. 6. The distributions of containers after the third backup.

Compared with Capping in Figure 3, we deduplicate 8

chunks A, B, C, F, G, H, I and J while Capping deduplicates

7 chunks F, G, H, I, J, O and P. We rewrite 2 duplicate

fragmented chunks O and P into new containers while Capping

rewrites 3 duplicate fragmented chunks A, B and C. Hence, we

deduplicate more chunks and rewrite less chunks, saving more

storage space. In the restore phase, we only fetch three contain-

ers I, II, V to restore the third data stream while Capping needs

to retrieve four containers II, IV, V, VI. The reason is that we

select two containers I and II, which have the largest number of

distinct referenced chunks and no redundant chunks. Capping

selects containers II and IV, which have higher utilizations

and however contain two redundant chunks. The redundancy

causes the actual number of referenced chunks in container

IV to be much smaller than that in container I. Capping

mistakenly considers the utilization of container IV to be the

one of top 2 containers, which is selected for deduplication.

Therefore, selecting containers with more distinct referenced

chunks can deduplicate more chunks, rewrite less chunks and

reduce the number of redundant and unreferenced chunks in

the selected containers, achieving higher deduplication ratio

and also improving restore performance.

III. THE DESIGN OF SMR

A. An Architectural Overview

To reduce data fragmentation, our proposed Submodular

Maximization Rewriting Scheme (SMR) selectively rewrites

some fragmented duplicate chunks into new containers, and

deduplicates the remaining duplicate chunks. SMR aims to

trade the slight decrease of deduplication ratio for the high

restore performance via efficiently selecting a limited number

of old containers with more distinct referenced chunks for

deduplication by a submodular maximization model. Specifi-

cally, in an old container, if there are many unreferenced and

redundant chunks which are not needed to be referenced by the

backup, there are few referenced chunks in the container. Thus,

SMR rewrites the few referenced chunks of the old containers

to reduce disk accesses caused by the unreferenced and

redundant chunks in the restore phase. In a backup phase, there

are many old containers sharing the duplicate chunks with the

backup data stream. How to select the containers to perform

deduplication is a trade-off between the restore performance

and the deduplication ratio. Hence, SMR selects a suitable

subset of containers to obtain better restore performance while

ensuring the high deduplication ratio.

Figure 7 illustrates the architecture of SMR in a dedupli-

cation system. In the main memory, the system splits the

input data streams into chunks and uses hash functions to

identify them, then the chunks are grouped into segments. For

each segment, after redundancy identification, in order to gain

a suitable trade-off between deduplication ratio and restore

performance, SMR determines which chunks are deduplicated

or rewritten according to the redundancy information of seg-

ments. Finally, these rewritten and unique chunks are stored

into the container pool. Meanwhile, the index and recipe are

updated according to the fingerprints and addresses of these

chunks.
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Fig. 7. The SMR Architecture.

Specifically, before a backup, the SMR level, i.e., T old con-

tainers selected for the deduplication of every S MB segment,

is configured and the backup stream is split into chunks, which

are further grouped into segments. For each segment, we first

read each chunk of the segment, and then determine which

chunks have identical copies stored in containers and their

located container IDs by inquiring the fingerprint index. In

detail, the complete fingerprint index is stored on disks while

the hot part is stored in memory to accelerate the indexing

of fingerprints. Afterwards, we select T old containers with

the largest number of distinct referenced chunks to perform

deduplication. Finally, for each chunk in the segment, if

finding an identical copy in the selected containers, the chunk

is deduplicated. Otherwise, it is treated as new chunks to be

stored in new containers.

B. The Submodular Maximization Rewriting Scheme

In a restore phase, the containers containing the target

chunks of the restored data stream are read from disks to the

memory. One way to improve restore performance is to reduce

the number of the retrieved containers.

In order to achieve this goal, SMR limits the number of

old containers that referenced by the backup and reduces the

amount of new containers storing the rewritten and unique

chunks. Limiting the number of old containers means selecting

a subset of old containers for the backup in deduplication.

Reducing the amount of new containers means reducing the

number of rewritten chunks, which depends on the old contain-

ers selection. Considering that the unreferenced and redundant

chunks in old containers waste disk accesses in a restore phase,

if a set of old containers with more distinct referenced chunks

are selected for the backup to perform deduplication, we are

able to deduplicate more chunks and reduce the number of the

chunks to be rewritten into new containers. Thus, the number

of the retrieved containers is reduced while alleviating the

waste of disk accesses caused by unreferenced and redundant

chunks, improving the restore performance.

We formulate the problem of container selection as a subset

selection problem.

Definition 1: (Subset Selection Problem) Given a set of

old containers to be selected V = (C1, C2, ..., C|V |) and a

budget T , i.e., the amount of selected containers, we aim to

find a container subset S ⊆ V , |S| ≤ T , which can offer the

largest number of distinct referenced chunks for the backup

to perform deduplication under the constraints of the budget

amount.

Here, we set the SMR level metric as the amount budget

to limit the amount of old containers to be selected, which

constrains the number of containers that need to be read in

the restore phase to accelerate restore speed. The number

of deduplicated chunks depends on the number of distinct

referenced chunks in the selected containers. Hence, the con-

tainer subset with the largest number of distinct referenced

chunks can deduplicate the maximum number of chunks,

and new containers ideally store the minimum number of

rewritten chunks, which decreases the storage consumption.

Moreover, we determine which subset of containers can be

selected, rather than determining whether to be selected for

each container, thus preventing redundant chunks from being

counted into the number of the referenced chunks.

To address the problem of container subset selection, we

build a submodular maximization model [21]. We first design a

scoring function F : 2V → R to indicate the amount of distinct

referenced chunks in a subset. Thus the subsets offering more

distinct referenced chunks are mapped to higher scores and the

subsets offering less distinct referenced chunks are mapped to

lower scores. The subset selection can be performed by the

following computation:

S∗ ∈ argmax
S⊆V

F (S) s.t. |S| ≤ T.

In order to describe the distinct referenced chunks in contain-

ers, the scoring function F is designed as:

F (S) =

∣

∣

∣

∣

∣

⋃

Ci∈S

w(Ci)

∣

∣

∣

∣

∣

.

Specifically, w(Ci) represents all referenced chunks in the

container Ci.
⋃

denotes the union of a collection of sets,

indicating the set of all distinct elements in the collection.

The |·| denotes the number of all elements in the set. Hence,

F(S) denotes the number of all distinct referenced chunks that

all containers Ci ∈ S can offer.

In general, for arbitrary set functions, computing S∗ is

intractable [22]. Moreover, in the subset selection problem,

there are
(

N

M

)

possible cases of selecting M containers from

N containers, which is exponentially large for any reasonable

M and N [23]. Hence, it is inefficient to compute all possible



cases. However, the maximization for any monotone submod-

ular functions under some constraints can be efficiently solved

by the greedy algorithm in a constant-factor mathematical

quality guarantee [24]. The scoring function F is exactly a

monotone submodular function, which is proved below. Thus,

we can address the subset selection problem efficiently via the

greedy algorithm [21].

We first introduce the definition and property of submodular

functions [25].

Definition 2: (Submodular) Given a finite set, a set function

f : 2V → R that maps subset S ⊆ V of a finite ground

set V to real numbers, is submodular if it satisfies: for any

S ⊆ T ⊆ V and a ∈ V \ S,

f(S ∪ {a})− f(S) ≥ f(T ∪ {a})− f(T )).

This states that the incremental benefit of adding an element

to a smaller set is not less than that of adding an element to

a larger set.

Definition 3: (Monotone) A set function f : 2V → R is

monotone if for every S ⊆ T ⊆ V , f(S) ≤ f(T ).
Based on the definition and property, we prove the scoring

function F is a monotone submodular function. The operation

∩ in the formulation, e.g, A ∩ B denotes the intersection of

two sets A and B, indicating a set that contains all elements

of sets A and B.

Statement 1: The scoring function F (S) =
∣

∣

⋃

Ci∈S w(Ci))
∣

∣

is submodular.

Proof 1: Given any set S ⊆ T ⊆ V and element Ca ∈ V \S,

we have

F (S ∪ {Ca})− F (S) = |w(Ca)| −

∣

∣

∣

∣

∣

w(Ca) ∩ (
⋃

Ci∈S

w(Ci))

∣

∣

∣

∣

∣

,

indicating the number of chunks in container Ca but not in

any containers Ci ∈ S, and

F (T ∪ {Ca})−F (T ) = |w(Ca)| −

∣

∣

∣

∣

∣

w(Ca) ∩ (
⋃

Ci∈T

w(Ci))

∣

∣

∣

∣

∣

,

indicating the number of chunks in container Ca but not in

any containers Ci ∈ T . Thus we have

F (S ∪ {Ca})− F (S)− (F (T ∪ {Ca})− F (T ))

=

∣

∣

∣

∣

∣

w(Ca) ∩ (
⋃

Ci∈T

w(Ci))

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

w(Ca) ∩ (
⋃

Ci∈S

w(Ci))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

w(Ca) ∩ (
⋃

Ci∈(T\S)

w(Ci))

∣

∣

∣

∣

∣

∣

≥ 0.

This indicates the number of chunks in Ca, which are not in

any containers Ci ∈ T \ S. The left expression is not less

than 0 in any case. Specially, when the chunk intersection of

containers Ca and Ci ∈ T \ S is empty, the left expression is

equal to 0. Thus,

F (S ∪ {Ca})− F (S) ≥ F (T ∪ {Ca})− F (T ),

indicating F is submodular according to Definition 2. That

means when adding the new container Ca to the smaller set

S, the incremental number of distinct referenced chunks is not

smaller than that of adding Ca to the larger set T .

Statement 2: The scoring function F (S) =
∣

∣

⋃

Ci∈S w(Ci))
∣

∣

is monotone.

Proof 2: Given any set S ⊆ T ⊆ V , we have

F (T )− F (S) =

∣

∣

∣

∣

∣

⋃

Ci∈T

w(Ci)

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

⋃

Ci∈S

w(Ci)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋃

Ci∈T\S



w(Ci)− w(Ci) ∩ (
⋃

Cj∈S

w(Cj))





∣

∣

∣

∣

∣

∣

≥ 0.

F (T ) is always not smaller than F (S), indicating F is mono-

tone according to Definition 3. That means the number of

distinct referenced chunks in the larger set T is not smaller

than that in the smaller set S. As shown above, the scoring

function F is proved to be submodular and monotone.

We design a greedy algorithm to select the subset of

containers with the largest number of distinct referenced

chunks effectively. As shown in Algorithm 1, the algorithm

sequentially finds a container ci in the remaining set V \ Si

for each iteration. Moreover, ci has the maximum quantity in

offering the chunks which are different from chunks in Si.

Adding ci to Si offers more distinct referenced chunks for the

segment than other containers. When adding the containers

from the set V \ Si to Si, if the increased number of distinct

referenced chunks is not larger than 0, the iteration will stop,

preventing containers without any referenced chunks from

being selected and reducing disk accesses.

Algorithm 1 Greedy Selection Algorithm

Input: A set of containers to be selected: V . Submodular

monotone function: F (·). All chunks in each container:

w(·). The amount of containers selected: T.

Output: A set of containers S ⊆ V , where |S| ≤ T .

1: S0 ← Ø, i← 0
2: while |Si| ≤ T do

3: Choose ci ∈ argmaxci∈V \Si
(F (Si ∪ {ci})− F (Si))

4: if (F (Si ∪ {ci})− F (Si) == 0) then

5: Break

6: end if

7: Si+1 ← Si ∪ {Ci}
8: i← i+ 1
9: end while

10: return Si

IV. PERFORMANCE EVALUATION

A. Experiment Setup

We configure our experimental environment by extending a

real-world open-source deduplication system, i.e., Destor [26],



which has been used in multiple research schemes and sys-

tems [9], [27], [28]. To examine the restore performance of our

scheme, we compare SMR with two state-of-the-art selective

rewriting schemes that leverage containers in deduplication

systems, i.e, Capping [11] and NED [12], described in Section

II.

We implement our scheme in Destor [26] on the CentOS

operating system running on a 4-core Intel E5620 2.40GHz

system with 24GB memory and 1TB hard disk. Due to the

lack of source code of Capping, we faithfully implement its

idea and main components described in its paper [11], which

is also released in our public source code.

Two real-world datasets, including Linux and GCC, are used

for evaluation, which have been evaluated for deduplication

in the storage community [9], [29], [30], [31]. Specifically,

Linux consists of 96 consecutive versions of unpacked Linux

kernel sources from linux-4.0 to linux-4.7. The total size of

the dataset is about 97GB. Moreover, GCC [19] consists of

the source code of the GNU Complier Collection. There are

89 consecutive versions from gcc-2.95 to gcc-6.1.0. The total

size of the dataset is about 56GB.

In a deduplication system, each dataset is divided into

variable-size chunks by using the content-based Rabin chunk-

ing algorithm [32]. The SHA-1 hash function [8] is used to

generate the fingerprints of chunks. Since this paper mainly

focuses on improving the restore performance rather than

the fingerprint index access boosting, we simply store the

complete fingerprint index in memory in these experiments.

The restore cache stores the prefetched containers, in which

the LRU replacement algorithm is used [11].

We use the speed factor [11] as the metric of the restore

performance and the deduplication ratio and throughput to

examine the deduplication efficiency. Specifically, speed fac-

tor [11] is to compute 1 divided by mean container read

per MB of data restored, which is widely used to evaluate

the restore performance [9], [11], [12]. Higher speed factor

means that less containers are needed for the restored data

per MB, thus indicating better restore performance. Moreover,

deduplication ratio is the ratio of total size of the removed

duplicate chunks to that of all backed up chunks. Furthermore,

deduplication throughput is the amount of backed up data

per second. The higher deduplication throughput indicates the

faster backup speed.

B. The Configurations of Parameters

1) The Segment Size: The chunks of a backup stream

are grouped into fixed-sized segments in the backup and

restore phases. The segment size sets the scale of fragment

identification. Figure 8 shows the restore performance of SMR

under various segment sizes. We observe that increasing the

segment size makes little difference to the speed factor. Larger

segment sizes fail to produce better results than smaller ones.

For example, the deduplication and restore performance when

the segment size is set as 20MB are better than that of the

40MB size.Hence, the segment size is set as 20MB by default,

which is also the recommended setting in Capping and NED.
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(b) Linux

Fig. 8. The effect of segment sizes varies from 10MB to 40MB on
deduplication and speed for selected SMR ratios (SMR level to the segment
size). SMR ratios are 5/10, 10/10, 15/10, 20/10, 25/10, 30/10 containers per
MB.

2) The Cache Size: Due to restoring the target data stream,

the corresponding containers are retrieved to restore cache

from disks. We consider the restore cache size for temporarily

storing the containers in the restore phase. Figure 9 shows

the restore performance of SMR under various cache sizes.

Specifically, SMR T stands for a SMR level of T containers

for each segment. For example, SMR 10 indicates that for

each segment, 10 containers are selected for deduplication.

We observe that if the cache size continuously increases, the

restore speed is faster. The reason is that larger cache sizes

allow more containers to be stored in the cache to restore

chunks, reducing the time overhead of fetching containers

when the cache misses occur. In addition, the increasing

trend of speed factor becomes slower. We argue that for a

large proportion of backup segments, about 20 containers are

sufficient to restore a segment. For most segments, when the

cache size is over 20, all containers can be fetched into cache at

once without replacement. But the speed factor still increases

since the total size of containers needed by a few segments is

larger than the cache size. Hence, we set the default cache size

as the total size of 30 containers with LRU cache replacement

scheme, which can cater to temporary store needs of most

cases.

3) The Container Size: Figure 10 illustrates the restore

speed and deduplication ratio results of SMR when the



�

���

�

���

�

���

�� �� �� �� �� ��

�
�
�
�
�
��
�
�
	

�

	
��
����


������ ������ ������

����	� ����
� ������

(a) GCC

�

���

�

���

�

�� �� �� �� �� ��

�
�
��
�
��
�
�	


�

	
��
����


������ ������ ������

����	� ����
� ������

(b) Linux

Fig. 9. The effect of various cache sizes on the restore performance. The
cache size is the total size of # containers. SMR T denotes a SMR level of
T containers per 20MB segment.

configured container sizes are set to be 1MB, 2MB, 4MB

respectively. We use various SMR levels to conjecture the

relationship between restore speed and deduplication ratio.

Specifically, more containers can restore more chunks in one

access, resulting in better restore performance under the same

deduplication ratio. Hence, the default size of container is

set as 4MB, which is also well-recognized in deduplication

systems [2], [9], [11], [12], [26].

C. Experimental Results and Analysis

SMR aims to obtain a suitable trade-off between dedu-

plication efficiency and restore performance. We compare

our scheme with two state-of-the-art schemes, i.e., Capping

and NED. The experimental settings of Capping and NED

faithfully follow the recommended parameters of their publica-

tions [11], [12]. For example, the segment size is set as 20MB.

We evaluate the overall speed factor, deduplication through-

put and deduplication ratio under different rewrite thresholds

in SMR and the two compared schemes. Specifically, the

Capping levels change from 5 to 60 containers per 20MB

segment. The NED thresholds change from 0.1 to 1.0 per

20MB segment. Moreover, SMR levels vary from 5 to 60

containers per 20MB segment.
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(b) Linux

Fig. 10. The effect of various container sizes on the restore performance and
speed factor. The container sizes are set to 1MB, 2MB, and 4MB respectively.

1) The Relationship between Deduplication Ratio and

Speed Factor: In general, higher speed factor results in lower

deduplication ratio, since more duplicate fragmented chunks

are rewritten. As shown in Figure 11, the speed factors of

SMR are larger than those of Capping and NED in the

same deduplication ratios. Similarly, the deduplication ratios

of SMR are larger than those of Capping and NED in the same

speed factors. SMR can deduplicate more data while gaining

better restore performance. Like our analysis in Section II, our

scheme improves restore performance by reducing the amount

of unreferenced and redundant chunks fetched in the restore

phase. Thus, more chunks are deduplicated by more distinct

referenced chunks in the selected containers. Less chunks are

rewritten into new containers and less containers are needed

to be retrieved during the restore.

2) Deduplication Throughput: As shown in Figure 12, we

compare the deduplication throughputs of SMR, Capping and

NED under the same restore performance. In most cases, the

deduplication throughputs of SMR are higher than those of

Capping and NED.

D. The SMR Level Settings

In our scheme, the SMR level, defined as the number of

old containers selected for deduplication, i.e., is adjustable to

improve restore performance to meet the needs of different

cases. Figure 13 shows the effects of various SMR-level

settings on the speed factor. The smaller SMR level results in
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(b) Linux

Fig. 11. Deduplication ratios versus speed factors for various thresholds in
the Capping levels, SMR levels and NED thresholds in two datasets.
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(b) Linux

Fig. 12. Deduplication throughput versus speed factor as Capping levels,
SMR levels and NED thresholds vary in two data sets.
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Fig. 13. The effects of various SMR levels on speed factor. SMR T denotes
a SMR level of T containers per 20MB segment.

the higher speed factor. Because selecting less containers slows

down the accumulation speed of data fragmentation. Less

data fragmentation leads to better restore performance. Lower

SMR level setting can alleviate the waste of disk accesses

caused by unreferenced or redundant chunks in the retrieved

containers. The SMR level is the key element to tradeoff

deduplication efficiency and restore performance, and can be

altered according to the demands of restore performance.

V. RELATED WORK

In order to address the fragmentation problem, existing

schemes mainly propose to leverage rewriting-based solutions

to rewrite the duplicate fragmented chunks to mitigate the

decrease of the restore performance, which is actually a trade-

off between deduplication ratio and restore performance.

In the primary storage deduplication, iDedup [18] dedupli-

cates a sequence of chunks whose physical addresses are also

sequential exceeding a minimum length threshold. POD [33]

identifies capacity-insensitive and performance-sensitive small

duplicate writes and files to further improve restore perfor-

mance. Unlike them, SMR aims to improve restore perfor-

mance in deduplication-based backup storage systems.

Nam et al. [15], [16] selectively deduplicate chunks with the

proposed quantitative metric called chunk fragmentation level

(CFL) for backup workloads. This scheme becomes inefficient

to deduplicate chunks that are not included in the sequence



like former backups. The backup and restore units in SMR

are segments. Due to overlooking the order of chunks in a

segment, the chunks which are not in the sequence like former

backups can still be deduplicated.

Context-Based Rewriting(CBR) [34] rewrites fragmented

chunks by judging the degree of the difference between stream

and disk contexts. It limits the entire amount of deduplica-

tion loss to a small value, which overlooks the unbounded

fragmentation and decreases restore speeds. Capping [11]

selectively deduplicates chunks referring to top T containers

ordered by the number of referenced chunks in containers,

and rewrites the remaining duplicate chunks to improve restore

speed. NED [12] selectively rewrites fragmented chunks if the

reference ratio of the referred storage is lower than a threshold.

In fact, CBR, Capping and NED determine the fragmented

chunks in the write buffer using their fragmentation metric.

CBR aims to guarantee the deduplication ratio to exceed a

limit with the cost of deduplicating some fragmented chunks.

SMR mainly aims to gain better restore performance. Capping

and NED share the similar design goal with SMR, but they

overlook the redundancy among containers. Hence, redundant

chunks in different containers are all counted in the utiliza-

tion for each container. But one chunk can deduplicate and

restore all chunks with identical contexts, and other redundant

chunk copies are unreferenced. SMR considers the redundancy

among containers and eliminates redundant copies counted

in the utilization for containers. As shown in Section IV-

C, compared with Capping and NED, SMR achieves better

restore performance and higher deduplication ratio. Moreover,

HAR [9] classifies fragmentation into two categories: sparse

and out-of-order containers. It exploits historical information

of backup versions to identify sparse containers and rewrites

chunks in sparse containers to improve data locality. In fact,

HAR is orthogonal with SMR. HAR rewrites the chunks in the

sparse containers which can offer less referenced chunks for

multiple consecutive backups. SMR rewrites chunks in each

backup phase mainly to ensure high restore performance for

the current backup. Chunks which are not rewritten in HAR

are further examined by SMR.

VI. CONCLUSION

The fragmentation problem significantly decreases the re-

store performance in chunk-based deduplication systems. We

observe that existing rewriting schemes addressing the frag-

mentation problem often result in significant redundancy

among containers, decreasing the deduplication ratio and caus-

ing redundant chunks to be read from disks to restore the

backup, which wastes limited disk bandwidth and decrease

the restore performance. The main challenge to alleviate the

fragmentation is how to select suitable referenced containers to

perform deduplication during the backup. In order to address

this problem, this paper proposes a submodular maximization

rewriting scheme (SMR). SMR formulates this challenge as

an optimal container selection problem, which is addressed

by building a submodular maximization model. The salient

feature of SMR is to reduce the number of redundant and

unreferenced chunks in selected containers, alleviating the

waste of disk accesses caused by unreferenced and redundant

chunks to improve the restore performance. Our experimental

results based on two real-world datasets demonstrate SMR

outperforms the state-of-the-art work in terms of both restore

performance and deduplication ratio.
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