
A Page-Based Storage Framework for Phase Change Memory
Peiquan Jin1, 2, Zhangling Wu1, 2, Xiaoliang Wang1, 2, Xingjun Hao1, 2, Lihua Yue1, 2

1School of Computer Science and Technology, University of Science and Technology of China
No.96, Jinzhai Road, Hefei, 230027, China

2Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences
No.96, Jinzhai Road, Hefei, 230027, China

jpq@ustc.edu.cn

Abstract—Phase change memory (PCM) has emerged as a

promising candidate for next-generation memories, owing to its
low power consumption, non-volatility, and high storage-density.
However, PCM has limited write endurance, i.e., it can only
undergo a limited number of write operations, leading to a short
lifecycle. Thus, it is an important issue to find out an efficient way
to use PCM in memory hierarchy, so that we can take advantage
of the merits of PCM and prolong its lifecycle. Although PCM can
support byte accesses, currently it has to work on top of page-
based HDDs or SSDs. Therefore, a feasible way is to use PCM as a
page buffer in memory hierarchy. Based on this assumption, in
this paper we propose an efficient page-based storage scheme for
PCM. We propose to use both DRAM and PCM as page buffers,
forming a hybrid page buffer for DBMSs. Particularly, we
develop three new techniques for PCM storage management.
First, we propose a dual-bucket list to organize PCM spaces.
Second, we use a small DRAM cache managed by an age-based
policy to cache writes to PCM pages. Third, we propose a new
page allocation algorithm that considers both page migration and
page swapping to reduce the writes to PCM. We conduct extensive
experiments on a simulated PCM-based storage system over both
synthetic and realistic traces. The results suggest the effectiveness
of our proposal.

Keywords- Phase change memory; Storage management; Buffer

management; Page migration

I. INTRODUCTION
Phase change memory (PCM) as a new kind of storage

media has received much attention from both academia and
industries [1]. PCM is byte-addressable and has low access
latency. In addition, PCM is non-volatile. Particularly, it has
faster read/write speeds than flash memory and magnetic disks.
These features make PCM much promising in achieving higher
I/O performance in future storage systems [2]. However, PCM
suffers from limited write endurance, i.e., it can only undergo a
limited number of write operations. This endurance issue is
critical to the practicability and even the viability of PCM to be
used in future storage systems.

The byte-addressability and non-volatility features of PCM
make it be suitable for both main memory and secondary
storage. However, since the read/write latency of PCM is still
higher than that of DRAM, PCM is not suitable to replace
DRAM as process memory space. In other words, it is more
suitable to be used as a page buffer for files or databases. This
yields a hybrid page buffer including PCM and DRAM. Of
course, there are also other choices of using PCM in the
memory hierarchy, but these are beyond the scope of this paper.

This paper focuses on the storage management schemes for
PCM used as a page buffer. We also assume that DRAM is still

available, i.e., PCM and DRAM can both be used as page
buffers.

There are some challenges for organizing and managing
PCM as a page buffer, because we need to consider the
endurance of PCM. First, existing techniques to prolong the
write endurance of flash memory, such as Hot-DL [3], cannot
be simply applied in PCM-based storage systems. This is
because of the distinct features between these two media. Flash
memory offers page-level read/write operations and block-level
erase operations, but it has to use the erase-before-write policy
when updating data, known as the out-of-place updating [4]. In
contrast, PCM supports in-place updating due to its byte-
addressability and bit-alterability. Second, PCM has the
nanosecond-level access latency and can be used as an
alternative of main memory. Thus, its space management policy
needs to be re-designed, because most of existing studies on
flash memory regard flash memory as secondary storage. Third,
to improve the I/O performance, traditional HDDs and SSDs
often use a small buffer to cache data. Various cache
replacement strategies have been proposed to enhance the cache
hit ratio by utilizing the inherent properties of workloads, such
as access frequency and locality [5, 6]. However, in PCM-based
storage systems, we have to consider other measures, e.g., how
to avoid frequent data between PCM and DRAM.

In this paper, we propose an efficient page-based storage
scheme for PCM-based hybrid memory. We develop a
systematic framework that consists of three components,
namely space management, cache management, and page
allocation. We devise new structures as well as new algorithms
for these components and experimentally demonstrate the
feasibility and efficiency of our designs. Briefly, we make the
following contributions in this paper:

(1) We propose a new structure, called Dual Dynamic
Bucket Lists, to organize the spaces of the hybrid memory
including DRAM and PCM. The dual lists maintain for each
page the write count and age information, which are further
used to improve the performance of buffer management and
page allocation.

(2) We use a small DRAM buffer for PCM to improve the
endurance of PCM. Particularly, we propose an Age-based Lazy
Caching (ALC) policy for the management of the buffer. The
key idea of ALC is to use an age-based LRU list to buffer old
pages and replace cold and young pages. Compared with the
traditional LRU algorithm, the ALC policy can reduce a great
number of writes to PCM and prolong the lifecycle of PCM.

(3) We propose a new page allocation algorithm for PCM. It
incorporates page migration and page swapping to reduce PCM
writes and to control the write amplification of PCM.

(4) We implement a simulated PCM-based storage system
and compare our proposal with three state-of-the-art methods
including PTL [7], the bucket-based WL algorithm [8], and the
random swapping algorithm [9]. Extensive experiments over
both synthetic and real traces show that our proposal
outperforms the compared methods in terms of various metrics.

The rest of the paper is organized as follows. In Section II,
we give a short background and the related work on PCM. In
Section III, we discuss the details of our method. In Section IV,
we present the experimental results. Finally, we conclude the
paper in Section V.

II. RELATED WORK
In this section, we first describe the necessary background

on PCM and then present the related work in the literature.

PCM is a kind of non-volatile semiconductor memories and
is a promising candidate for the storage and the main memory.
The basic unit of PCM, called a PCM cell, uses the phase
change material to store a bit by switching between an
amorphous state and a crystalline state with electrical pulses.
Writing a PCM cell includes two operations: SET, which
requires wild pulse and low current to crystallize the phase
change material, and RESET, which is controlled by high-
power pulse to make the material amorphous. Reading a PCM
cell is done by sensing the resistivity of phase change material,
which requires very low power. As such, PCM, being non-
volatile and bit-addressable, also bears the advantages of having
low idle power and low read latency. However, the long SET
operation increases the write latency, and the PCM cell can only
sustain a limited number of writes, between 106 and 108 times in
general [10]. Therefore, frequently writing to PCM will not only
deteriorate the I/O performance but also shorten the lifetime of
PCM.

In view of the potential write latency of PCM, a hybrid
PCM+DRAM memory system is proposed in the literature,
where DRAM is used to store frequently accessed date or write-
intensive data. For example, a small amount of DRAM is used
in front of PCM to cache PCM data in [11; 12]; in [13; 14],
PCM is used as an alternative main memory. In such hybrid
memory systems, effective data partition methods and efficient
page replacement/migration strategies are desirable. A wide
range of buffer management policies have been proposed on top
of different storage media and different kinds of architectures.
For example, BPLRU [5] and CCF-LRU [15], variants of the
classical LRU policy [16], are proposed for flash-based storages
such as SSD, which nowadays are being increasingly deployed
in the enterprise storage systems. On the other hand, lazy-write
organization [11] and CLOCK-DWF [14] are proposed for
PCM-based hybrid memory. The buffer management policies
therein enforce a mandatory buffering of all requests,
considering the sharp read/write latency gap between the buffer
and the secondary storage. In this paper, we take into account
the negative consequence that a request for a cold page could
evict a frequently accessed page.

Another line of research focuses on dealing with the limited
write endurance issue of PCM. Basically, the proposed
approaches in the literature fall in two categories: the write-
count reduction and the wear leveling. The hybrid
PCM+DRAM approach mentioned above belongs to the former.
Nevertheless, it cannot prolong the life-span of PCM when the
writes to PCM are seriously localized. As such, the wear
leveling approach is proposed as an alternative. Based on
dynamic or static wear leveling, various policies such as DAC
[17], PWL [18], and Hot-DL [3] have been proposed for flash
memories. However, the wear leveling methods for flash
memories cannot be directly applied in PCM-based systems,
due to the distinguished features of PCM like byte-
addressability and in-place updating.

Next, we focus on wear leveling methods for PCM. One line
is the deterministic age-based swapping [12; 19; 20], where a
page whose age exceeds the threshold could be swapped out.
The age of a PCM page reflects the write count of the page. An
adaptive multiple data swapping and shifting scheme is
proposed for PCM in [12]. The write patterns are tracked and
used to determine whether page-level swapping and line-level
shifting should be performed. This scheme implements wear
leveling in multiple granularity and performs well in general,
but it brings heavy storage overhead for maintaining the write
counts of PCM. Zhou et al. [19] proposed two methods, row
shifting and segment swapping, to achieve wear leveling of
PCM. Compared with [12], these two methods spend less
storage to maintain metadata; yet, they introduce high cost of
searching for candidate segments to be swapped when the
capacity of PCM is large. In addition, they swap pages at a fix
interval, which may expose wearing out PCM pages under the
attacks of malicious processes. The general age-based wear
leveling methods suffer from the space overhead, especially
when they are used at a fine granularity. To this end, random-
based wear leveling methods are proposed to reduce the space
overhead, where a randomized algorithm is used to swap data to
a randomly selected place [9; 20]. For such random-based
swapping methods, the selection of an accurate randomized
algorithm and the determination of the swapping interval are of
significant importance, since these two factors greatly influence
the time performance and the effect of wear leveling.

Recently, it is pointed out that both age-based swapping and
random-based swapping algorithms could incur the problem of
write amplification. DSA, a table-based wear leveling
technique, is proposed to tackle the write amplification problem
in [21]. Rather than swapping the physical spaces of hot and
cold data, DSA maintains chunk-level write counts for recently
used segments, and reallocates a new physical chunk if the write
count of a chunk exceeds certain threshold. In [7], a PRAM
translation layer (PTL), which serves to dynamically translate
logical addresses to physical addresses, is proposed to avoid
write amplification; however, in this approach, the age
difference between read-only pages and frequently updated
pages will become bigger.

III. PAGE-BASED STORAGE MANAGEMENT FOR PHASE
CHANGE MEMORY

Figure 1 shows the overall architecture of the PCM-based
hybrid memory. The entire space consists of two parts, namely

the PCM space and the DRAM buffer. In this paper, we use the
hybrid memory as the data page buffer for DBMSs; therefore
both the DRAM buffer and PCM spaces are organized as page
lists.

Particularly, the DRAM buffer is used to cache requests to
PCM pages. If a page request is hit on the DRAM buffer, we
simply process the request in the DRAM. If the requested page
is in PCM, we will use a buffer management policy to
determine whether to read the page from PCM into DRAM.

Figure 2 shows the detailed structure of our space
management scheme for PCM. Let's now focus on the PCM
space, which includes the data area and the meta-data area. The
data area is the actual physical space available for data storage,
while the meta-data area is responsible for maintaining two
kinds of meta-data information of pages in the data area. The
first kind of meta-data is the page age, which is determined by
the write count of the page and is increased by one whenever
the page is updated. The second kind of meta-data is a mapping
table from the physical page number (PPN) to the logical page
number (LPN). This mapping table is dynamically reconstructed
when the device is initialized. The LPN-PPN mapping changes
frequently. If we store the LPN-PPN mapping on PCM, it will
be difficult to predict and reduce the wear counts of PCM cells.
As a consequence, the mapping table area will be worn out if no
wear leveling method with a finer granularity is applied. On the
contrary, storing the PPN-LPN mapping on PCM will not incur

PCM

DRAM Buffer

Page-level
Read/Write

PCM Space
Management

DRAM Buffer
Management

PCM Page
Management

Controller

PCM-Based Hybrid Memory

byte/page-level
write

byte/page-level
read

Page-level
Read/Write

Fig. 1. Overall architecture of PCM-based hybrid memory

Fig. 2. Structure of the space management of PCM

Old
group

Middle-
age

group

Young
groupi

j

n

m

……

k+1

k l

allocated dynamic bucket list free dynamic bucket list
Fig. 3. Dual dynamic bucket lists

the wearing problem, because the write count of PCM cells
storing the PPN-LPN mapping is always less than the wear
count of the pages in the corresponding data area. In conclusion,
the PPN-LPN mapping is suitable to be maintained in PCM,
while the LPN-PPN mapping is suitable to be stored in DRAM.

Pages in the data area are divided into three categories based
on their write counts: young group, middle-age group, and old
group. The division of the three groups serves to facilitate the
page allocation of PCM space and the buffer utilization.

In the following, we describe the above mentioned
mechanisms in detail. First, to efficiently classify pages into
three categories, we propose a new structure, called dual
dynamic bucket lists, in Section III.A. Next, in Section III.B, we
present the age-based lazy caching (ALC) policy, which serves
to decide whether a non-buffered page is qualified to occupy the
buffer space, and the page replacement policy, which is used to
evict one buffered page in order to make room for the page that
is newly allowed to be buffered. If the page to be purged from
the buffer is dirty, it needs to be written back to the PCM. In this
case, the system shall decide the placement of the page, i.e.,
being updated in-place or out-of-place, which depends on the
category this page belongs to. And we present such page
management algorithm in Section III.C.

A. PCM Space Management
The dual dynamic bucket list is used to organize all the

pages in the data area of PCM. More specifically, we use two
dynamic bucket lists to organize free pages (called free dynamic
bucket list) and allocated pages (called allocated dynamic
bucket list) respectively. The two lists share the same structure –
a list of buckets – but with different lengths, as shown in Fig. 3.
Each node in the list is a bucket; and each bucket is associated
with a number indicating the age of pages in the bucket. Let w
be a parameter of basic write count. When a page p is updated
by n times ((𝑖 − 1) × 𝑤 ≤ 𝑛 < 𝑖 × 𝑤), then its age a(p) is set
to be i. That is, 𝑎(𝑝) = ⌈𝑛/𝑤⌉. All pages with the same age
shall be put in the same bucket. We do not differentiate the
order of pages within the same bucket. With the increasing of
page write count, a page shall be moved to up-level buckets. In
the beginning, there is only one bucket node in the free dynamic
bucket list, encompassing all the available pages in PCM;
correspondingly, the allocated dynamic bucket list is initially
empty with no real data being stored in PCM.

The purpose of wear leveling is to prevent old pages from
being worn out. As such, it is necessary to identify the oldness
of pages in the data area. As mentioned above, we divide pages

Data area Metadata area

PPN-LPN Write count

…… ……

Buffer management

Old group

Middle-age group

Young group

old

Middle-age

young

Not cached

Cached

in the lists into three groups: young group, middle-age group,
and old group. Each group contains a set of pages and is
circumscribed by the dotted boxes in Fig. 3. To partition pages
into groups, we introduce a metric, the average write count
(AW), which is calculated by (3.1) and reflects the average write
count of all pages in PCM. The value of this metric is
achievable, since the write counts of pages are being tracked in
the dynamic bucket list.

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑟𝑖𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 =
𝑡𝑜𝑡𝑎𝑙 𝑤𝑟𝑖𝑡𝑒 𝑐𝑜𝑢𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑔𝑒𝑠
 (3.1)

Let TH be a threshold of write count. A page is categorized
into one of the three groups based on the following rules: i) if its
write count is less than (AW-TH), it is put into the young group;
ii) if its write count is greater than (AW+TH), it is put into the
old group; iii) otherwise, it is put into the middle-age group. It is
worth noting that the group to which a page belongs may
change with the variation of AW value.

To achieve wear leveling, we can simply choose pages from
the youngest bucket in the free dynamic bucket list, whenever
any page allocation request arrives. However, this simple
greedy policy may lead to poor effectiveness in scenarios where
the free dynamic bucket list only contains old pages. Allocating
old pages bring more writes to these pages, thereby
deteriorating the write endurance of PCM. To alleviate this
situation, we propose a new effective approach for page
management in Section III.C.

B. DRAM Buffer Management
In our proposed PCM-based storage system, a small buffer

is used to cache pages in PCM, which helps to reduce the write
count of PCM, delay the updating of old pages, and improve the
overall write performance of PCM.

Buffer management has been a common technique in
computer systems to boost I/O performance, such as the
traditional buffer used in HDDs and flash-based SSDs.
However, the traditional buffer management strategies cannot
be simply applied to PCM-based storage systems. This arises
from the inherent differences between these two kinds of
systems. In traditional DRAM buffer based storage system, the
access latency between the DRAM buffer and the secondary
storage is huge; and undoubtedly, using a DRAM buffer can
evidently improve the I/O performance of the system.
Nevertheless, in PCM-based storage systems, the difference of
access latency in buffer and PCM is small. As a consequence, in
PCM-based storage systems it is unnecessary to buffer all the
requested pages from the perspective of reducing access
latency; this is in stark contrast to the “buffering all” policy in
traditional DRAM buffer. In fact, buffer in PCM-based storage
systems undertakes the role of balancing the “wear-out” of PCM
pages to a greater extent, rather than reducing the access
latency. Therefore, the buffer management in PCM-based
storage systems has a different design goal from that in
traditional DRAM buffers.

We propose a new buffer management scheme, which
consists of two parts: an age-based lazy caching policy (ALC)
and a replacement strategy. The ALC policy determines whether
a PCM page is qualified to be cached in the buffer. The

replacement strategy decides which victim page to be purged
from the buffer to make room for a newly buffered page. As
highlighted in the above, the primary usage of buffer in a PCM-
based storage system is as a vehicle to mitigate the “wear-out”
of old pages. For this purpose, ALC gives higher priority to the
buffering of pages with larger “age” values. In addition, ALC
chooses to avoid buffering cold data so that hot data have
chance to reside in the buffer for a longer time. Obviously, this
reflects one of the “classical” goals of buffer management, i.e.,
achieving high utilization of the buffer space. For example, in
Web caches, the caching decision policy often avoids caching
the so-called “one-timers”, the Web pages that are accessed
only once by users, since caching one-timers benefits nothing.
Similarly, ALC gives preference to buffering hot data. Finally, it
is worth pointing out that the concept of “cold” and “hot” is
with respect to the recency of page access in the buffer, while
the division of the “young”, “middle-age”, and “old” (in Section
III.A) group refers to the age of PCM pages. For example, if the
data in a young PCM page is accessed frequently in recent time,
this page is viewed to be hot; conversely, if the data in an old
PCM page is seldom accessed recently, this page is viewed as a
cold page.

Before describing the details of ALC, we first present the
instrumental data structure for making caching decisions, an
age-based extended LRU list (A-eLRU), as shown in Fig. 4. The
A-eLRU list maintains the information of recently accessed
pages, each one being a record node in the list. Each record
includes three types of information: i) the page age, ii) a status
flag, indicating whether the page is cached in the buffer, and iii)
the physical page address, if the page is cached. The record
position of a page in the A-eLRU list represents the recency of
that page. Specifically, the end of the list tagged with “lru”
represents the least recently accessed page; the end of the list
tagged with “mru” represents the most recently accessed page.
In addition, we use a square and a cycle to represent a buffered
and non-buffered page respectively. We also use three colors to
represent the three groups into which a page has been
categorized.

The procedure of handling a page request is described as
follows. When a new request arrives, the system first decides
the LPN of the page for the requested data. Next, it checks
whether that page currently resides in the buffer with the aid of
the A-eLRU list. If not, we need to decide whether this page
should be brought to the buffer, controlled by the ALC policy.
In case the buffer is not yet full (not a common situation), the
requested page will be brought to the buffer so as to make full
use of the buffer space. In most other cases, the buffer is full;
and thus an existing buffered page needs to be purged if a
positive caching decision is made for the newly requested page.

lrumru

Non-buffered

buffered

Old group

Middle-age group

Young group

Age and recency based LRU list

Fig. 4. Structure of the age-based extended LRU

Algorithm 1: Age-based Lazy Caching Policy

Input: logical page number p, operation type op /*LPN the
requested data belongs to*/
Output: record(p) /*a metadata information that represents
page p is being accessed*/

1: record(p)=ListSearch(p) /*check whether the access
record of LPN exist in A-eLRU list */

2:

3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

if (record(p) exists or (op is write and p is mapped to a
PCM page in the old group))
if (record(p) does not exist) then
 create record(p) and update record(p).age;
move record(p) in mru of the A-eLRU list;
if (record(p).status=”non-buffered”) then

 q=page replacement policy();
 read page p from PCM and write to page q;

 record(p).status=buffered; record(p).ppa=q;
else /*negative caching decision*/

create record(p) and update record(p).age;
place record(p) in the mru end of the A-eLRU list;
record(p).status=non-buffered; record(p).ppa=null;
if (op==write) then record(p).age+=1;

return record(p);

Algorithm 1 describes the ALC policy, i.e., the overall

procedure of making a caching decision. The caching decision
of whether a page should be cached in the buffer is made based
on the age of the corresponding physical page in PCM and the
state of the LPN in the A-eLRU list. Suppose the LPN of the
requested page is p. Recall that the supreme goal of introducing
buffer is to alleviate the wear problem of PCM pages. As such,
ALC gives old pages higher priority to be cached. Specifically,
if the request is to write a page in the old group, ALC always
makes a positive caching decision, no matter whether the page
is cold or hot. In other cases, that is, the requested page being in
either the young or middle-age group, ALC makes caching
decisions based on the status of the A-eLRU list, which records
the access information of pages. If the access record of p does
not exist in the A-eLRU list (which also indicates the page p is
currently non-buffered), it means the page p has not been
accessed recently and thus p is viewed as a cold page. For a cold
and non-old page, ALC makes a negative caching decision. For
such a page, its read/write operations shall happen directly in
PCM. The rationale behind this is that: on one hand, caching a
cold page pays the price of evicting a warmer page, which may
degrade the buffer utilization; on the other hand, there is no
evident performance improvement of accessing a cold page in
the buffer, compared with that in PCM. If the access record of p
exists in the A-eLRU list, p is viewed as a hot page. Essentially,
the position of a page's access record in the A-eLRU list reflects
the recent Inter-Reference Recency (IRR) [22], which
represents the number of other pages accessed between two
consecutive accesses to a page. It is easy to see that the IRR
value of a page p is smaller than that of pages behind it (towards
the lru end) in the A-eLRU list. That is, a page p is warmer than

those pages behind it. Thus, ALC makes a positive caching
decision for p.

When ALC makes a positive caching decision for a page p,
it means the page p shall be stored in the buffer. Specifically,
the access record of p will be created if necessary and then be
placed/moved in the mru end of the A-eLRU list (line 3-5). If
the page p has already been cached in the buffer, no buffer
eviction is needed. Otherwise, the page replacement policy is
responsible for evicting certain page q to make room for page p
(line 7-8). Meanwhile, the status flag and the physical buffer
page address of record(p) in the A-eLRU list need to be updated
(line 9). When ALC makes a negative caching decision for a
page p, it means the page p shall be directly accessed in PCM.
Although p is not cached in the buffer, we still create an access
record of p and insert it into the mru end of the A-eLRU list
(line 11-12). The status flag in the access record will be set
“non-buffered” (line 13). This gives the currently cold page a
chance to be cached in the buffer if it would be accessed again
very soon in the future. Note that, whenever it is a write request,
the write count of the page is increased by one (line 14), which
keeps consistent the page age information in A-eLRU list and
PCM metadata after the write request is completed.

Next, we describe the page replacement policy, which serves
to free one buffer slot and is quite simple. The A-eLRU list
maintains an invariant that the access record in the lru end
corresponds to a buffered page. Recall that the access records in
the A-eLRU could track non-buffered pages. To make room for
the newly buffered page, the one represented by the access
record of the lru end is purged from the buffer. If the evicted
page is dirty, it needs to be written back to PCM. The write-
back operation may incur page migration or swapping in PCM
and we defer the discussion of this in Section III.C. It should be
noted that to maintain the invariant mentioned above, after
removing the lru end of the A-eLRU list, a certain number of
neighboring records, i.e., corresponding to non-buffered pages,
need to be deleted until a record of any buffered page is met.

Figure 5 shows how the buffer management scheme
presented above works. Initially, we assume the buffer is full
(i.e., the full capacity of buffer is 5 pages) and the A-eLRU list
is depicted by Fig. 5(a). Suppose a read/write request for page E
arrives and page E belongs to the young group. Since there is no
access record of page E in the A-eLRU list, page E is viewed as
a cold page and ALC makes a negative caching decision. Thus,
page E is directly accessed in PCM; and a new access record of
E is created on the fly and inserted into the mru end of A-eLRU,
as shown in Fig. 5(b). Next, a read/write request for page B
arrives. The non-buffered page B does not belong to the old
group, but the access record of page B is found in the A-eLRU
list, indicating page B to be hot. Based on Algorithm 1, ALC
makes a positive caching decision and thus page B will be
brought to the buffer. Before that, the page replacement policy
chooses to evict page C, being referred to by the lru end of the
A-eLRU list. To ensure the invariant of the lru end being
buffered page, the access record of page D is removed from the
list. Meanwhile, the access record of page B is created and
placed in the mru end of the list. The result is shown in Fig.
5(c). Finally, a write request for page D arrives, neither page D
being buffered nor its access record existing in the A-eLRU list.

G CA B D

lrumru

Age based extended LRU list

(a)

EYoung

Read/
write

G CA B D (b)E

BMiddle-age

Read/
write GAE (c)B

FOld
write

F AEB (d)

Old group

Middle-age group

Young group

Fig. 5. An example of buffer managing scheme

Nevertheless, page D is an old page and thus ALC gives
preference to caching it. Accordingly, page G, whose access
record is located in the lru end, is evicted from the buffer. After
that, the status of the A-eLRU list is captured by Fig. 5(d).

Note that the A-eLRU list is used to record accessing
records of pages. In the first place, all the access records of
pages in the buffer should appear in the list. In addition, the A-
eLUR list should be long enough in order to accurately identify
cold or hot pages.

C. PCM Page Management
In this section, we propose a novel page management

scheme for PCM on the basis of the dual dynamic bucket lists
that track the write counts of PCM pages.

The goal of wear leveling is to make the write count of each
page close to the average write count, thereby lengthening the
overall lifetime of PCM. To achieve such balance, young pages
are expected to absorb more write requests. However, the access
frequencies of logical pages from up-level programs are out of
our control. But the knob we can twist is the mapping from
logical page to physical page. Before presenting the page
allocation algorithm, we use an example in Fig.6 to illustrate our
basic idea. Suppose the logical page C has been evicted from
the buffer. Page C being dirty, it needs to be written back to
update the corresponding physical PCM page. Initially, page C
was mapped to the physical page PPN10 that is an old page, as
marked by (1) in Fig. 6. In this case, we can do an out-of-place
updating. Rather than updating the content of logical page C
still in PPN10, we select another free and young physical page
PPN7 and update the page content there, as marked by (2) in
Fig. 6. Then, the page mapping information in meta-data area
will be updated accordingly to reflect such change. After that,
the physical page PPN10 is reclaimed to be a free page. As we
can see, with the above out-of-place updating, we avoid
increasing the write count of the old page PPN10 by remapping
the logical page C to a free and young physical page PPN7.

Generally, a page allocation request originates from two
cases: (i) that a buffered dirty logical page is written back to an
old physical page; and (ii) that a new logical page needs to be
allocated with a free physical page. In the above, we have
described the first case with Fig. 6. For the second case, due to
the temporal locality of data access, a new logical page will
often be accessed soon. In this case, allocating a young or
middle-age physical page for this new logical page is preferred.
However, at the time of allocation, it is possible that the free
dynamic bucket list contains only old pages. We prefer to move
an allocated young page that is occupied by a cold logical page

CB

PPN3

PPN7 PPN 10

B-PPN3
C-PPN10
D-PPN16

…

B-PPN3
C-PPN7

D-PPN16
…

victim

Age-based extended LRU list
lrumru

PCM

Maplist Maplist

Allocate PPN7 to C, Free PPN10

(1)
(1)

(2)
(2)

Old Middle-age young
Fig. 6. The procedure of out-of-place updating

i*w

k*w
>AW+TH

l*w
<AW+TH

j*w A

i*w

k*w
>AW+TH

…

…

…

…

i*w

k*w
>AW+TH

l*w
<AW+TH

j*w

i*w

k*w
>AW+TH

A

…

…

…

…

j*w

PPN16
PPN4

PPN16

PPN4

(a) the status before data migration

(b) the status after data migration

Fig. 7. An example of data migration incurred by allocation

to the free physical page. We use Fig. 7 to illustrate this. In Fig.
7, the left side is the allocated dynamic bucket list and the right
side is the free dynamic bucket list. At the time of allocation in
Fig. 7(a), all free physical pages are in the old group and the
physical page PPN16 is selected to be allocated initially. We
select a cold logical page A, which is currently mapped to the
physical page PPN4, and move its content in PPN4 to PPN16.
As shown in Fig. 7(b), the young physical page PPN4 is now a
free page and becomes the hotbed of the newly allocated logical
page.

Next, we summarize the page allocation procedure in
Algorithm 2. When a request for a free page arrives, a page p in
the youngest bucket of free dynamic bucket list is selected. If p
belongs to either the young or the middle-age group, it is
allocated directly (line 1-3). If p belongs to the old group, a page
q is selected: (i) page q locates in the buckets of the allocated
dynamic bucket list and belongs to young or middle-age group;
(ii) the logical page mapped to page q is a cold page, i.e, there
is no access record of q in the A-eLRU list. In order to allocate
q to respond the page allocation request, first p is allocated to
store the data of q; then the LPN of q is updated to link to p (line
4-6). Finally, q is released and reallocated (line 7-8).

Algorithm 2: Page Allocation

Output: a free page

1:
2:
3:
4:
5:

6:
7:
8:

Select page p from the youngest bucket of the free bucket list;
if (p.writecount－AW<TH) then

allocate p and return p;
else /*page p belongs to old group*/

select cold page q from the youngest bucket of the
allocated dynamic bucket list;

/*q is in the young or middle-age group*/
update the mapping from q to p and copy q to p;
release q and add q into the free dynamic bucket list;
allocate q and return q;

Previous PCM-based wear leveling policies, such as

segment swapping [17], random swapping [9], and adaptive
multiple data swapping and shifting scheme [12], often rely on
various parameters like operation timing and the number of
swapping pages. The accuracy of the estimation of these
parameters has sensitive impact on the performance of wear
leveling. In contrast to previous approaches, our page allocation
does not rely on these parameters to do swapping or migration
operations. In particular, we perform in-place updates on young
pages and out-of-place updates on old pages.

D. Overhead Analysis
In this section, we summarize the storage overhead for

managing 4 GB PCM. The information stored in the metadata
area includes age information of all pages and the reverse
mapping table from PPN to LPN (To reduce space overhead, we
set the basic managing unit as a page). Since our system allows
byte-level reading or writing, if the system updates several
bytes, we increase the wear count of the pages which these
updated bytes belong to. For a 4 GB PCM storage, the page size
is set to 4 KB, so there are 220 pages. We use 4 bytes to store the
age information per page since the write limitation is 106-108,
the space used to store age information is 4 MB. Meanwhile, 4
bytes are also enough to maintain the reverse mapping
information per page, so another 4 MB is needed. Finally, the
total space overhead to store metadata for a 4 GB PCM storage
is 8 MB.

IV. PERFORMANCE EVALUATION
In this section, we present the evaluation results of our PCM

management scheme described in Section III. We first describe
the experimental settings on the workloads, metrics, and
baseline algorithms. Then, we present comparative results with
baseline algorithms with respect to various metrics.

A. Experimental Setup
We have implemented a PCM simulator, which incorporates

all the components described in the architecture of Fig. 1.

We compare our proposal with three state-of-the-art
approaches that have been proposed in the literature:

(1) random swapping [9], which swaps the page to be
written with a randomly selected page for every 512 write
operations to PCM.

(2) the bucket-based WL algorithm [8], which uses 500
buckets to maintain allocated and free pages separately; the
write count difference of pages in the same buckets is 10.

(3) PTL [7], in which all pages are updated out-of-place. The
original approaches of the three competitors did not use a
buffer. To be fair, we implement a buffer for these methods and
use the classic LRU as the cache replacement strategy. The page
size of both buffer and PCM is set to 4 KB. The other parameter
settings are described in Table I.

We use both synthetic and real traces in the following
experiments. We use DiskSim [23] to generate two groups of
traces, i.e., T1982 and T1955, by setting different read/write
ratio and varying the locality. The ZIPF trace is generated using
the algorithm in the literature [24]. The other group of traces,
OLTP, is collected from PostgreSQL by recording the system
accesses to the disk. Table II gives further details on these four
traces. The memory footprint represents the number of distinct
pages that are referenced by a trace. For the first four synthetic
traces, manipulating the factor of locality is allowed, which
influences the potential effectiveness of buffering. The locality
of 80%/20% means that 20% of “hot” pages absorb 80% of
requests.

TABLE I PARAMETERS IN THE EXPERIMENTS

Parameters
Value

Synthetic traces Real traces
PCM size 12000 pages 52000 pages

Buffer size 1000 pages
w 10

TH 30

TABLE II SYNTHETIC AND REAL TRACES USED IN THE EXPERIMENTS

Trace
Memory
Footprint
(#pages)

Read/Write
Ratio Locality Total

Requests

T1982 10,000 10% / 90% 80% / 20% 300,000
T1955 10,000 10% / 90% Uniform 300,000
ZIPF 47,023 51% / 49% 80% / 20% 500,000

OLTP 51,880 77% / 23% Unknown 607,390

B. Results
Impact of parameters TH and w. The parameter w

determines the speed at which the age of a page is increased
based on the write count. The parameter TH circumscribes the
boundaries of categorizing pages into three groups: old, middle-
age, and young. Our proposed PCM management scheme relies
on the page age and page group to make caching decisions (in
Section III.B) and implement page allocation for wear-leveling
(in Section III.C). As such, we first study the impact of the
parameter TH and w on the performance of our PCM
management scheme.

Fig. 8. Impact of TH and w on maximum write counts of PCM

We run our proposed method over each trace with varying
values of TH and w. We observe the maximum write count
experienced by any PCM page, which reflects the lifetime of
PCM. The smaller the value of the maximum writes count, the
better the performance of a method. Fig. 8 shows the results
over four traces. We can see that the maximum write count
increases with w and TH in most cases, especially when TH is
over 30. This is because, with a large value of TH and w, a page
will not be categorized into the old group until a large number
of writes have occurred. This undermines the endeavor of ALC
to prioritize buffering old pages to mitigate the worn out of
these old pages, thereby yielding a large value of the maximum
write count. On the other hand, if the value of TH and w are too
small, then a page would be prematurely classified as an old
page, which in turn might unnecessarily trigger an extra page
swapping when an old dirty page is written back after being
evicted from the buffer. To summarize, there is a trade-off in
setting the value of the parameter TH and the parameter w.
Based on the results observed here over four traces, we set TH
to 30 and w to 10 in the following experiments.

Fig. 9. Comparison of maximum write counts

Maximum write count on PCM. The goal of PCM
management scheme is to balance the wearing degree of PCM
pages. We evaluate the maximum write count of pages fed by
each trace. As mentioned above, a larger value of the maximum
write count indicates a worse performance achieved by a wear-
leveling method. In this part, we compare our method with the
three alternatives.

Figure 9 shows the maximum write counts of the four
methods over various traces. Our proposed method outperforms
the other three methods over all the four traces, indicating the
effectiveness of our buffer management and PCM page
allocation algorithm. Reducing maximum write count implies
that our proposal has longer PCM lifetime than other methods.

We also note that the random swap algorithm yields the
worst result, because it does not consider the age of physical
pages when selecting a page for swapping. In addition, PTL has
similar maximum write count with our approach when
measured on trace T1955. This is because that the requests in
T1955 are evenly distributed over pages.

Distribution of write requests. Next, we observe the
distribution of write counts experienced by all PCM pages. In
this part, all the four methods receive the same number of total
requests over each trace. Since similar results are observed over
the four traces, we only report results over the trace T1982 in
the following.

Figure 10 shows the records of write count of each physical
page for the four methods. Note that the range of y-axis values
is different across different sub-figures. We make three
observations. First, our method achieves the smallest gap
between the maximum page write count and the minimum page
write count, being less than 100. From Fig. 10 (b) and (c), we
can also see that the gap value of PTL is smaller than that of the
bucket-based WL. In addition, the random swapping method
leads to the largest deviation of page write counts. As shown in
Fig. 10 (d), a handful of pages receive 0 write count, while some

pages experience a startling 25000 write operations. Large
deviation of write counts deviates from the primary goal of page
management in PCM. The poor performance of random
swapping derives from the random selection policy of page
swapping, taking into no account the ages of PCM pages. As
such, old pages may not be selected to be swapped and some
empty pages may even not be allocated for page swapping.
Second, the write counts of individual pages are evenly
distributed in our method, which well meets the rudimentary
goal of page wear leveling. Compared with random swapping
and the bucket-based WL, PTL achieves better results in terms
of balanced page write counts, due to its out-of-place updating.
As shown in Fig. 10 (c), the majority of pages are worn evenly
from 7700 to 8200, although some pages undergo a huge
number of write operations. Third, with a closer look at Fig. 10

(a), we can see that there is a line formed by a large number of
points gathering around the y-axis value 7247. In fact, this line
reflects the boundary between the “old group” and the “middle-
age group”. In trace T1982, the average age is 7247; the page
whose write count is greater than 𝑎𝑣𝑒 + 𝑇𝐻 (i.e.,
7247+30=7277) belongs to the old group.

First failure time of a PCM cell. The maximum write
count is a metric evaluated when a fixed trace is fully served by
a method. In contrast, the first failure time represents how many
write requests from a trace can be served by a method before the
first failure of any PCM cell takes place. Both these two are
important metrics used in the literature. In this part, we compare
our method with the other three alternatives in terms of the total
write operations finished at the time of first PCM cell failure.

Fig. 10. Distribution of write count in PCM after applying T1982

The parameter settings of this group of experiments are
described as follows. First, we set the write limitation of a PCM
page to be 104. Although it has been reported that a PCM cell in
general can tolerate 106~108 writes [10], we set this value for
the sake of controlling the scale of experiments. But we do vary
the values of write limitation to mitigate such impact. Second,
we set the capacity of PCM to be 12000 pages. In the ideal case,
12000 pages can withstand 12000*10000 writes.

We report the total write count of the four methods over two
traces, T1955 and T1982, before the first PCM page failure in
Table III. As we can see, our method achieves the largest
number of writes. In particular, it reaches about 99.5% and
96.9% of the ideal write count over T1955 and T1982
respectively. In contrast, over T1982, PTL, the bucket-based
WL, and random swapping only achieve 80%, 72%, and 22% of
the ideal write count, respectively.

TABLE III LIFETIME UNDER SYNTHETIC TRACES

Policies
Write count of wearing out PCM

T1955 T1982
Our proposal 119,511,349 116,328,780

PTL 117,628,266 95,740,849
Bucket-based WL 94,416,434 86,691,668

Random swap 62,941,008 26,001,132

We also study the sensitivity of the parameter, i.e., the write
limitation of a PCM page, by varying its value from 10000 to
50000. Figure 11 shows the overall write counts of each method
over different page write limitations. Our method yields less
writes to PCM than the other three methods consistently over
different values of write limitation. This also implies that out
method can be applied to various kinds of PCM media that may
possess different property in terms of page write limitation.

Impact of buffer management. In previous experiments,
we study the performance of our PCM management scheme as a
whole. In this part, we discuss the impact of buffer management
on the overall performance.

The primary purpose of buffer in the hybrid PCM system is
to mitigate the worn-out of old PCM pages. Therefore, it is
neither the highest priority nor ultimate goal for the buffer
management in PCM to blindly seeking the maximum cache hit

Fig. 11. Life time of PCM when varying the write limitation

rate. However, improving the utilization of buffer space does
make sense. We compare our buffer management scheme,
“ALC+AeLRU”, with the traditional “ubiquitous caching +
LRU” (where every page will be cached in the buffer and LRU
serves as the cache replacement algorithm). We vary the buffer
size from 500 pages to 3500 pages.

Figure 12 shows the cache hit ratio of the two management
schemes over four traces. We make two observations. First, in
general a larger buffer size yields a higher cache hit ratio.
However, the achieved cache hit ratio does not necessarily keep
increasing as the buffer size increases. This is because the hit
ratio is highly related to the locality of workload. For example,
in T1982, 20% hot pages account for 80% requests. When the
buffer size reaches 2000 pages (20% of the universe size), we
see the hit ratio increases slowly, as shown in Fig. 12 (b). In Fig.
12 (a), since the distribution of page accesses in T1955 is
uniformly distributed, the hit ratio increases linearly with the
increasing of buffer size. Second, our buffer management
scheme performs better than the classic method consistently
over all traces and with different buffer sizes. Even with a small
buffer size, our method brings moderate cache hit ratio, as
shown in Fig. 12 (a) and (b). This arises from the fact that ALC
avoids caching a cold page – according to the access records of
pages maintained in the A-eLRU list – unless it belongs to the
old group. The ALC caching policy is in stark contrast to the
“ubiquitous caching”, which might lead to the unwanted
situation where a cold young page evicts a buffered hot page.
Next, we study the impact of buffer management. In our
method, some fraction of write requests are served directly in
the buffer and we denote their number as “Proposed-BW”. We
denote “Proposed-PW” as the number of write operations to the
PCM triggered by the following two parts: i) the fraction of
write requests that are directly accessed in PCM, by-passing the
buffer; ii) the dirty pages that need to be written back to PCM
when evicted from the buffer. Note that, here we did not count
the portion of extra writes to PCM due to page swapping.
Similarly, with the classic “ubiquitous caching+LRU”, “LRU-
PW” represents the number of writes to PCM due to The write-
back of dirty pages from buffer; “LRU-BW” represents the
number of requests served in the buffer, which turns out to be
the total number of requests in the workload. For brevity, we
report the normalized value of “Proposed-PW”, “Proposed-
BW”, and “LRU-BW” to “LRU-BW”.

Figure 13 shows the results over four traces. We make two
observations. First, when a larger buffer size is used, the
normalized value of “Proposed-BW” increases, while the
normalized value of “Proposed-PW” decreases. Second,
“Proposed-PW” is consistently smaller than “LRU-PW” over all
traces and with different buffer sizes. A smaller value implies
that less writes are fed to PCM. It shows that our ALC caching
policy performs better than the classic approach. In addition, in
Fig. 13 (a), the gap between “Proposed-PW” and “LRU-PW”
seems to be small; nevertheless, “Proposed-PW” is still smaller.
This is because the trace T1955 does not present good workload
locality, which is inherently not good for caching.

In summary, our ALC caching policy carefully avoids
caching cold pages. This yields a high hit ratio and prevents
writing hot pages to PCM frequently, which helps prolong the
lifetime of PCM.

Fig. 12. Hit ratios under various buffer sizes

Fig. 13. Normalized writes under various buffer sizes

V. CONCLUSIONS
In this paper, we propose a new wear-leveling page

management scheme for the hybrid PCM-based storage
subsystem. It includes two parts: the ALC caching policy and
the PCM page allocation scheme, which work together to
balance the worn-out of PCM pages. Both the ALC caching
policy and the page allocation algorithm respect the old pages in
terms of preventing their further worn-out. To this end, a dual
dynamic list is proposed to efficiently maintain the age
information of PCM pages and partition pages into three groups
(i.e., young, middle-age, and old group). Our page management
scheme achieves the wear-leveling in two levels. In the buffer
level, the ALC caching policy prioritizes buffering old pages to
mitigate their worn-out and is inclined to cache hot pages to
reduce the number of write operations to PCM. In the targeted
PCM level, our page allocation algorithm wields the tool of
page migration and page swap to balance writes to PCM pages,

which seeks to achieve the wear-leveling while curbing the
write amplification ratio. To evaluate the performance of our
PCM page management scheme, we conduct extensive
experiments on a simulated PCM-based storage system over
both synthetic and realistic traces. The experimental results
show that our method performs significantly better than the
other three alternatives in various metrics, which puts our
method in a competitive position as the page management
scheme for the PCM-based storage subsystem.

There are a number of future works that need further
investigating. First, we will try to find the optimal configuration
of the DRAM buffer size for DRAM/PCM-based hybrid
memory. Second, in this paper we did not consider the low-
energy property of PCM. In future, we will study the impact of
storage schemes on energy consumption. Finally, the non-
volatility of PCM may introduce new potentials for building
efficient in-memory computing systems. In future, we will focus
on utilizing the non-volatility of PCM in hybrid memory

systems to improve the efficiency and consistency of in-
memory computing and data management.

ACKNOWLEDGMENT
This work is partially supported by the National Science

Foundation of China (61472376 and 61672479). Peiquan Jin is
the corresponding author of the paper.

REFERENCES
[1] Zhangling Wu, Peiquan Jin, Chengcheng Yang, Lihua Yue. 2014. APP-

LRU: A New Page Replacement Method for PCM/DRAM-Based Hybrid
Memory Systems. NPC. 84-95.

[2] Fei Xia, De-Jun Jiang, Jin Xiong, Ning-Hui Sun. 2015. A Survey of
Phase Change Memory Systems. Journal of Computer Science and
Technology. 30, 1, 121-144.

[3] Se Jin Kwon, Tae-Sun Chung. 2013. Hot-LSNs distributing wear-leveling
algorithm for flash memory. ACM Transactions on Embedded
Computing Systems. 12, 1, 62.

[4] Ke Lu, Peiquan Jin, Puyuan Yang, Shouhong Wan, Lihua Yue. 2014.
Adaptive in-page logging for flash-memory storage systems. Frontiers of
Computer Science. 8, 1, 131-144.

[5] Hyojun Kim, Seongjun Ahn. 2008. BPLRU: a buffer management
scheme for improving random writes in flash storage. FAST. 239-252.

[6] Qingsong Wei, Cheng Chen, Jun Yang. 2014. CBM: a cooperative buffer
management for SSD. MSST. 1-12

[7] Gyu Sang Choi, Byung-Won On, Kwonhue Choi, and Sungwon Yi. 2013.
PTL: PRAM translation layer. Microprocessors and Microsystems. 37, 1,
24-32.

[8] Chi-Hao Chen, Pi-Cheng Hsiu, Tei-Wei Kuo, Chia-Lin Yang, and Cheng-
Yuan Michael Wang. 2012. Age-based PCM wear leveling with nearly
zero search cost. DAC. 453-458.

[9] Alexandre Peixoto Ferreira, Miao Zhou, Santiago Bock, et al. 2010.
Increasing PCM main memory lifetime. DATE. 914-919.

[10] Hung-Sheng Chang, Yuan-Hao Chang, Pi-Cheng Hsiu, Tei-Wei Kuo, and
Hsiang-Pang Li. 2015. Marching-Based Wear-Leveling for PCM-Based
Storage Systems. ACM Transactions on Design Automation of Electronic
Systems. 20, 2, 25.

[11] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, Jude A. Rivers.
2009(b). Scalable high performance main memory system using phase-
change memory technology. ISCA. 24–33.

[12] Sung Kyu Park, Min Kyu Maeng, Ki-Woong Park, et al. 2014. Adaptive
wear-leveling algorithm for PRAM main memory with a DRAM buffer.
ACM Transactions on Embedded Computing Systems. 13, 4, 88.

[13] Dong-Jae Shin, Sung Kyu Park, Seong-Min Kim, Kyu Ho Park. 2012.
Adaptive page grouping for energy efficiency in hybrid PRAM-DRAM
main memory, RACS. 395-402.

[14] Soyoon Lee, Hyokyung Bahn, Sam H. Noh. 2011. Characterizing
memory write references for efficient management of hybrid PCM and
DRAM memory. MASCOTS. 168-175.

[15] Zhi Li, Peiquan Jin, Xuan Su, et al. 2009. CCF-LRU: a new buffer
replacement algorithm for flash memory. IEEE Transactions on
Consumer Electronics. 55, 3, 1351-1359.

[16] Edward G. Coffman Jr., Peter J. Denning. 1973. Operating Systems
Theory. Prentice-Hall. Ch.6, 241-283.

[17] Mei-Ling Chiang, and Ruei-Chuan Chang.1999. Cleaning policies in
mobile computers using flash memory. Journal of Systems and Software.
48, 3, 213-231.

[18] Fu-Hsin Chen, Ming-Chang Yang, Yuan-Hao Chang, and Tei-Wei
Kuo.2015. PWL: a progressive wear leveling to minimize data migration
overheads for nand flash devices. DATE. 1209-1212.

[19] Ping Zhou, Bo Zhao, Jun Yang, Youtao Zhang. 2009. A durable and
energy efficient main memory using phase change memory technology.
ACM SIGARCH Computer Architecture News. 37, 3, 14-23.0

[20] Moinuddin K. Qureshi, John P. Karidis, Michele Franceschini, et al.
2009(a). Enhancing lifetime and security of PCM-based main memory
with start-gap wear leveling. MICRO. 14-23.

[21] Soojun Im, Dongkun Shin. 2014. Differentiated space allocation for wear
leveling on phase-change memory-based storage device. IEEE
Transactions on Consumer Electronics. 60, 1, 45-51.

[22] Song Jiang, Xiaodong Zhang. 2002. LIRS: an efficient low inter-
reference recency set replacement policy to improve buffer cache
performance. ACM SIGMETRICS Performance Evaluation Review. 30,
1, 31-42.

[23] DiskSim, available at http://www.pdl.cmu.edu/DiskSim
[24] Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting

and Searching, Addison-Wesley, pp. 400, 1973

