
A Page-Based Storage Framework for Phase Change Memory 
Peiquan Jin1, 2, Zhangling Wu1, 2, Xiaoliang Wang1, 2, Xingjun Hao1, 2, Lihua Yue1, 2 

1School of Computer Science and Technology, University of Science and Technology of China 
No.96, Jinzhai Road, Hefei, 230027, China 

2Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences 
No.96, Jinzhai Road, Hefei, 230027, China 

jpq@ustc.edu.cn 
 
Abstract—Phase change memory (PCM) has emerged as a 

promising candidate for next-generation memories, owing to its 
low power consumption, non-volatility, and high storage-density. 
However, PCM has limited write endurance, i.e., it can only 
undergo a limited number of write operations, leading to a short 
lifecycle. Thus, it is an important issue to find out an efficient way 
to use PCM in memory hierarchy, so that we can take advantage 
of the merits of PCM and prolong its lifecycle. Although PCM can 
support byte accesses, currently it has to work on top of page-
based HDDs or SSDs. Therefore, a feasible way is to use PCM as a 
page buffer in memory hierarchy. Based on this assumption, in 
this paper we propose an efficient page-based storage scheme for 
PCM. We propose to use both DRAM and PCM as page buffers, 
forming a hybrid page buffer for DBMSs. Particularly, we 
develop three new techniques for PCM storage management. 
First, we propose a dual-bucket list to organize PCM spaces. 
Second, we use a small DRAM cache managed by an age-based 
policy to cache writes to PCM pages. Third, we propose a new 
page allocation algorithm that considers both page migration and 
page swapping to reduce the writes to PCM. We conduct extensive 
experiments on a simulated PCM-based storage system over both 
synthetic and realistic traces. The results suggest the effectiveness 
of our proposal. 
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I. INTRODUCTION 
Phase change memory (PCM) as a new kind of storage 

media has received much attention from both academia and 
industries [1]. PCM is byte-addressable and has low access 
latency. In addition, PCM is non-volatile. Particularly, it has 
faster read/write speeds than flash memory and magnetic disks. 
These features make PCM much promising in achieving higher 
I/O performance in future storage systems [2]. However, PCM 
suffers from limited write endurance, i.e., it can only undergo a 
limited number of write operations. This endurance issue is 
critical to the practicability and even the viability of PCM to be 
used in future storage systems. 

The byte-addressability and non-volatility features of PCM 
make it be suitable for both main memory and secondary 
storage. However, since the read/write latency of PCM is still 
higher than that of DRAM, PCM is not suitable to replace 
DRAM as process memory space. In other words, it is more 
suitable to be used as a page buffer for files or databases. This 
yields a hybrid page buffer including PCM and DRAM. Of 
course, there are also other choices of using PCM in the 
memory hierarchy, but these are beyond the scope of this paper. 

This paper focuses on the storage management schemes for 
PCM used as a page buffer. We also assume that DRAM is still 

available, i.e., PCM and DRAM can both be used as page 
buffers.  

There are some challenges for organizing and managing 
PCM as a page buffer, because we need to consider the 
endurance of PCM. First, existing techniques to prolong the 
write endurance of flash memory, such as Hot-DL [3], cannot 
be simply applied in PCM-based storage systems. This is 
because of the distinct features between these two media. Flash 
memory offers page-level read/write operations and block-level 
erase operations, but it has to use the erase-before-write policy 
when updating data, known as the out-of-place updating [4]. In 
contrast, PCM supports in-place updating due to its byte-
addressability and bit-alterability. Second, PCM has the 
nanosecond-level access latency and can be used as an 
alternative of main memory. Thus, its space management policy 
needs to be re-designed, because most of existing studies on 
flash memory regard flash memory as secondary storage. Third, 
to improve the I/O performance, traditional HDDs and SSDs 
often use a small buffer to cache data. Various cache 
replacement strategies have been proposed to enhance the cache 
hit ratio by utilizing the inherent properties of workloads, such 
as access frequency and locality [5, 6]. However, in PCM-based 
storage systems, we have to consider other measures, e.g., how 
to avoid frequent data between PCM and DRAM. 

In this paper, we propose an efficient page-based storage 
scheme for PCM-based hybrid memory. We develop a 
systematic framework that consists of three components, 
namely space management, cache management, and page 
allocation. We devise new structures as well as new algorithms 
for these components and experimentally demonstrate the 
feasibility and efficiency of our designs. Briefly, we make the 
following contributions in this paper: 

(1) We propose a new structure, called Dual Dynamic 
Bucket Lists, to organize the spaces of the hybrid memory 
including DRAM and PCM. The dual lists maintain for each 
page the write count and age information, which are further 
used to improve the performance of buffer management and 
page allocation. 

(2) We use a small DRAM buffer for PCM to improve the 
endurance of PCM. Particularly, we propose an Age-based Lazy 
Caching (ALC) policy for the management of the buffer. The 
key idea of ALC is to use an age-based LRU list to buffer old 
pages and replace cold and young pages. Compared with the 
traditional LRU algorithm, the ALC policy can reduce a great 
number of writes to PCM and prolong the lifecycle of PCM. 



(3) We propose a new page allocation algorithm for PCM. It 
incorporates page migration and page swapping to reduce PCM 
writes and to control the write amplification of PCM. 

(4) We implement a simulated PCM-based storage system 
and compare our proposal with three state-of-the-art methods 
including PTL [7], the bucket-based WL algorithm [8], and the 
random swapping algorithm [9]. Extensive experiments over 
both synthetic and real traces show that our proposal 
outperforms the compared methods in terms of various metrics. 

The rest of the paper is organized as follows. In Section II, 
we give a short background and the related work on PCM. In 
Section III, we discuss the details of our method. In Section IV, 
we present the experimental results. Finally, we conclude the 
paper in Section V. 

II. RELATED WORK 
In this section, we first describe the necessary background 

on PCM and then present the related work in the literature.  

PCM is a kind of non-volatile semiconductor memories and 
is a promising candidate for the storage and the main memory. 
The basic unit of PCM, called a PCM cell, uses the phase 
change material to store a bit by switching between an 
amorphous state and a crystalline state with electrical pulses. 
Writing a PCM cell includes two operations: SET, which 
requires wild pulse and low current to crystallize the phase 
change material, and RESET, which is controlled by high-
power pulse to make the material amorphous. Reading a PCM 
cell is done by sensing the resistivity of phase change material, 
which requires very low power. As such, PCM, being non-
volatile and bit-addressable, also bears the advantages of having 
low idle power and low read latency. However, the long SET 
operation increases the write latency, and the PCM cell can only 
sustain a limited number of writes, between 106 and 108 times in 
general [10]. Therefore, frequently writing to PCM will not only 
deteriorate the I/O performance but also shorten the lifetime of 
PCM.   

In view of the potential write latency of PCM, a hybrid 
PCM+DRAM memory system is proposed in the literature, 
where DRAM is used to store frequently accessed date or write-
intensive data. For example, a small amount of DRAM is used 
in front of PCM to cache PCM data in [11; 12]; in [13; 14], 
PCM is used as an alternative main memory. In such hybrid 
memory systems, effective data partition methods and efficient 
page replacement/migration strategies are desirable. A wide 
range of buffer management policies have been proposed on top 
of different storage media and different kinds of architectures. 
For example, BPLRU [5] and CCF-LRU [15], variants of the 
classical LRU policy [16], are proposed for flash-based storages 
such as SSD, which nowadays are being increasingly deployed 
in the enterprise storage systems. On the other hand, lazy-write 
organization [11] and CLOCK-DWF [14] are proposed for 
PCM-based hybrid memory. The buffer management policies 
therein enforce a mandatory buffering of all requests, 
considering the sharp read/write latency gap between the buffer 
and the secondary storage. In this paper, we take into account 
the negative consequence that a request for a cold page could 
evict a frequently accessed page. 

Another line of research focuses on dealing with the limited 
write endurance issue of PCM. Basically, the proposed 
approaches in the literature fall in two categories: the write-
count reduction and the wear leveling. The hybrid 
PCM+DRAM approach mentioned above belongs to the former. 
Nevertheless, it cannot prolong the life-span of PCM when the 
writes to PCM are seriously localized. As such, the wear 
leveling approach is proposed as an alternative. Based on 
dynamic or static wear leveling, various policies such as DAC 
[17], PWL [18], and Hot-DL [3] have been proposed for flash 
memories. However, the wear leveling methods for flash 
memories cannot be directly applied in PCM-based systems, 
due to the distinguished features of PCM like byte-
addressability and in-place updating. 

Next, we focus on wear leveling methods for PCM. One line 
is the deterministic age-based swapping [12; 19; 20], where a 
page whose age exceeds the threshold could be swapped out. 
The age of a PCM page reflects the write count of the page. An 
adaptive multiple data swapping and shifting scheme is 
proposed for PCM in [12]. The write patterns are tracked and 
used to determine whether page-level swapping and line-level 
shifting should be performed. This scheme implements wear 
leveling in multiple granularity and performs well in general, 
but it brings heavy storage overhead for maintaining the write 
counts of PCM. Zhou et al. [19] proposed two methods, row 
shifting and segment swapping, to achieve wear leveling of 
PCM. Compared with [12], these two methods spend less 
storage to maintain metadata; yet, they introduce high cost of 
searching for candidate segments to be swapped when the 
capacity of PCM is large. In addition, they swap pages at a fix 
interval, which may expose wearing out PCM pages under the 
attacks of malicious processes. The general age-based wear 
leveling methods suffer from the space overhead, especially 
when they are used at a fine granularity. To this end, random-
based wear leveling methods are proposed to reduce the space 
overhead, where a randomized algorithm is used to swap data to 
a randomly selected place [9; 20]. For such random-based 
swapping methods, the selection of an accurate randomized 
algorithm and the determination of the swapping interval are of 
significant importance, since these two factors greatly influence 
the time performance and the effect of wear leveling.  

Recently, it is pointed out that both age-based swapping and 
random-based swapping algorithms could incur the problem of 
write amplification. DSA, a table-based wear leveling 
technique, is proposed to tackle the write amplification problem 
in [21]. Rather than swapping the physical spaces of hot and 
cold data, DSA maintains chunk-level write counts for recently 
used segments, and reallocates a new physical chunk if the write 
count of a chunk exceeds certain threshold. In [7], a PRAM 
translation layer (PTL), which serves to dynamically translate 
logical addresses to physical addresses, is proposed to avoid 
write amplification; however, in this approach, the age 
difference between read-only pages and frequently updated 
pages will become bigger. 

III. PAGE-BASED STORAGE MANAGEMENT FOR PHASE 
CHANGE MEMORY 

Figure 1 shows the overall architecture of the PCM-based 
hybrid memory. The entire space consists of two parts, namely 



the PCM space and the DRAM buffer. In this paper, we use the 
hybrid memory as the data page buffer for DBMSs; therefore 
both the DRAM buffer and PCM spaces are organized as page 
lists.  

Particularly, the DRAM buffer is used to cache requests to 
PCM pages. If a page request is hit on the DRAM buffer, we 
simply process the request in the DRAM. If the requested page 
is in PCM, we will use a buffer management policy to 
determine whether to read the page from PCM into DRAM.  

Figure 2 shows the detailed structure of our space 
management scheme for PCM. Let's now focus on the PCM 
space, which includes the data area and the meta-data area. The 
data area is the actual physical space available for data storage, 
while the meta-data area is responsible for maintaining two 
kinds of meta-data information of pages in the data area. The 
first kind of meta-data is the page age, which is determined by 
the write count of the page and is increased by one whenever 
the page is updated. The second kind of meta-data is a mapping 
table from the physical page number (PPN) to the logical page 
number (LPN). This mapping table is dynamically reconstructed 
when the device is initialized. The LPN-PPN mapping changes 
frequently. If we store the LPN-PPN mapping on PCM, it will 
be difficult to predict and reduce the wear counts of PCM cells. 
As a consequence, the mapping table area will be worn out if no 
wear leveling method with a finer granularity is applied. On the 
contrary, storing the PPN-LPN mapping on PCM will not incur  
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Fig. 1. Overall architecture of PCM-based hybrid memory 

 
Fig. 2. Structure of the space management of PCM 
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the wearing problem, because the write count of PCM cells 
storing the PPN-LPN mapping is always less than the wear 
count of the pages in the corresponding data area. In conclusion, 
the PPN-LPN mapping is suitable to be maintained in PCM, 
while the LPN-PPN mapping is suitable to be stored in DRAM. 

Pages in the data area are divided into three categories based 
on their write counts: young group, middle-age group, and old 
group. The division of the three groups serves to facilitate the 
page allocation of PCM space and the buffer utilization.  

In the following, we describe the above mentioned 
mechanisms in detail. First, to efficiently classify pages into 
three categories, we propose a new structure, called dual 
dynamic bucket lists, in Section III.A. Next, in Section III.B, we 
present the age-based lazy caching (ALC) policy, which serves 
to decide whether a non-buffered page is qualified to occupy the 
buffer space, and the page replacement policy, which is used to 
evict one buffered page in order to make room for the page that 
is newly allowed to be buffered. If the page to be purged from 
the buffer is dirty, it needs to be written back to the PCM. In this 
case, the system shall decide the placement of the page, i.e., 
being updated in-place or out-of-place, which depends on the 
category this page belongs to. And we present such page 
management algorithm in Section III.C.  

A. PCM Space Management 
The dual dynamic bucket list is used to organize all the 

pages in the data area of PCM. More specifically, we use two 
dynamic bucket lists to organize free pages (called free dynamic 
bucket list) and allocated pages (called allocated dynamic 
bucket list) respectively. The two lists share the same structure – 
a list of buckets – but with different lengths, as shown in Fig. 3. 
Each node in the list is a bucket; and each bucket is associated 
with a number indicating the age of pages in the bucket. Let w 
be a parameter of basic write count. When a page p is updated 
by n times ((𝑖 − 1) × 𝑤 ≤ 𝑛 < 𝑖 × 𝑤 ), then its age a(p) is set 
to be i. That is, 𝑎(𝑝) = ⌈𝑛/𝑤⌉. All pages with the same age 
shall be put in the same bucket. We do not differentiate the 
order of pages within the same bucket. With the increasing of 
page write count, a page shall be moved to up-level buckets. In 
the beginning, there is only one bucket node in the free dynamic 
bucket list, encompassing all the available pages in PCM; 
correspondingly, the allocated dynamic bucket list is initially 
empty with no real data being stored in PCM. 

The purpose of wear leveling is to prevent old pages from 
being worn out. As such, it is necessary to identify the oldness 
of pages in the data area. As mentioned above, we divide pages 
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in the lists into three groups: young group, middle-age group, 
and old group. Each group contains a set of pages and is 
circumscribed by the dotted boxes in Fig. 3. To partition pages 
into groups, we introduce a metric, the average write count 
(AW), which is calculated by (3.1) and reflects the average write 
count of all pages in PCM. The value of this metric is 
achievable, since the write counts of pages are being tracked in 
the dynamic bucket list. 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑟𝑖𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 =
𝑡𝑜𝑡𝑎𝑙 𝑤𝑟𝑖𝑡𝑒 𝑐𝑜𝑢𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑔𝑒𝑠
                   (3.1) 

Let TH be a threshold of write count. A page is categorized 
into one of the three groups based on the following rules: i) if its 
write count is less than (AW-TH), it is put into the young group; 
ii) if its write count is greater than (AW+TH), it is put into the 
old group; iii) otherwise, it is put into the middle-age group. It is 
worth noting that the group to which a page belongs may 
change with the variation of AW value. 

To achieve wear leveling, we can simply choose pages from 
the youngest bucket in the free dynamic bucket list, whenever 
any page allocation request arrives. However, this simple 
greedy policy may lead to poor effectiveness in scenarios where 
the free dynamic bucket list only contains old pages. Allocating 
old pages bring more writes to these pages, thereby 
deteriorating the write endurance of PCM. To alleviate this 
situation, we propose a new effective approach for page 
management in Section III.C. 

B. DRAM Buffer Management 
In our proposed PCM-based storage system, a small buffer 

is used to cache pages in PCM, which helps to reduce the write 
count of PCM, delay the updating of old pages, and improve the 
overall write performance of PCM.  

Buffer management has been a common technique in 
computer systems to boost I/O performance, such as the 
traditional buffer used in HDDs and flash-based SSDs. 
However, the traditional buffer management strategies cannot 
be simply applied to PCM-based storage systems. This arises 
from the inherent differences between these two kinds of 
systems. In traditional DRAM buffer based storage system, the 
access latency between the DRAM buffer and the secondary 
storage is huge; and undoubtedly, using a DRAM buffer can 
evidently improve the I/O performance of the system. 
Nevertheless, in PCM-based storage systems, the difference of 
access latency in buffer and PCM is small. As a consequence, in 
PCM-based storage systems it is unnecessary to buffer all the 
requested pages from the perspective of reducing access 
latency; this is in stark contrast to the “buffering all” policy in 
traditional DRAM buffer. In fact, buffer in PCM-based storage 
systems undertakes the role of balancing the “wear-out” of PCM 
pages to a greater extent, rather than reducing the access 
latency. Therefore, the buffer management in PCM-based 
storage systems has a different design goal from that in 
traditional DRAM buffers. 

We propose a new buffer management scheme, which 
consists of two parts: an age-based lazy caching policy (ALC) 
and a replacement strategy. The ALC policy determines whether 
a PCM page is qualified to be cached in the buffer. The 

replacement strategy decides which victim page to be purged 
from the buffer to make room for a newly buffered page. As 
highlighted in the above, the primary usage of buffer in a PCM-
based storage system is as a vehicle to mitigate the “wear-out” 
of old pages. For this purpose, ALC gives higher priority to the 
buffering of pages with larger “age” values. In addition, ALC 
chooses to avoid buffering cold data so that hot data have 
chance to reside in the buffer for a longer time. Obviously, this 
reflects one of the “classical” goals of buffer management, i.e., 
achieving high utilization of the buffer space. For example, in 
Web caches, the caching decision policy often avoids caching 
the so-called “one-timers”, the Web pages that are accessed 
only once by users, since caching one-timers benefits nothing. 
Similarly, ALC gives preference to buffering hot data. Finally, it 
is worth pointing out that the concept of “cold” and “hot” is 
with respect to the recency of page access in the buffer, while 
the division of the “young”, “middle-age”, and “old” (in Section 
III.A) group refers to the age of PCM pages. For example, if the 
data in a young PCM page is accessed frequently in recent time, 
this page is viewed to be hot; conversely, if the data in an old 
PCM page is seldom accessed recently, this page is viewed as a 
cold page. 

Before describing the details of ALC, we first present the 
instrumental data structure for making caching decisions, an 
age-based extended LRU list (A-eLRU), as shown in Fig. 4. The 
A-eLRU list maintains the information of recently accessed 
pages, each one being a record node in the list. Each record 
includes three types of information: i) the page age, ii) a status 
flag, indicating whether the page is cached in the buffer, and iii) 
the physical page address, if the page is cached. The record 
position of a page in the A-eLRU list represents the recency of 
that page. Specifically, the end of the list tagged with “lru” 
represents the least recently accessed page; the end of the list 
tagged with “mru” represents the most recently accessed page. 
In addition, we use a square and a cycle to represent a buffered 
and non-buffered page respectively. We also use three colors to 
represent the three groups into which a page has been 
categorized. 

The procedure of handling a page request is described as 
follows. When a new request arrives, the system first decides 
the LPN of the page for the requested data. Next, it checks 
whether that page currently resides in the buffer with the aid of 
the A-eLRU list. If not, we need to decide whether this page 
should be brought to the buffer, controlled by the ALC policy. 
In case the buffer is not yet full (not a common situation), the 
requested page will be brought to the buffer so as to make full 
use of the buffer space. In most other cases, the buffer is full; 
and thus an existing buffered page needs to be purged if a 
positive caching decision is made for the newly requested page.  
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Fig. 4. Structure of the age-based extended LRU 

 



 
Algorithm 1: Age-based Lazy Caching Policy 

Input: logical page number p, operation type op /*LPN the 
requested data belongs to*/ 
Output: record(p) /*a metadata information that represents 
page p is being accessed*/ 

1: record(p)=ListSearch(p) /*check whether the access 
record of LPN exist in A-eLRU list */ 

2: 
 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 

if (record(p) exists or (op is write and p is mapped to a 
PCM page in the old group))  
if (record(p) does not exist) then 
    create record(p) and update record(p).age; 
move record(p) in  mru of the A-eLRU list; 
if (record(p).status=”non-buffered”) then 

            q=page replacement policy(); 
            read page p from PCM and write to page q;  

   record(p).status=buffered; record(p).ppa=q; 
else /*negative caching decision*/ 

create record(p) and update record(p).age;  
place record(p) in the mru end of the A-eLRU list; 
record(p).status=non-buffered; record(p).ppa=null; 
if (op==write) then record(p).age+=1; 

return record(p); 
 
Algorithm 1 describes the ALC policy, i.e., the overall 

procedure of making a caching decision. The caching decision 
of whether a page should be cached in the buffer is made based 
on the age of the corresponding physical page in PCM and the 
state of the LPN in the A-eLRU list. Suppose the LPN of the 
requested page is p. Recall that the supreme goal of introducing 
buffer is to alleviate the wear problem of PCM pages. As such, 
ALC gives old pages higher priority to be cached. Specifically, 
if the request is to write a page in the old group, ALC always 
makes a positive caching decision, no matter whether the page 
is cold or hot. In other cases, that is, the requested page being in 
either the young or middle-age group, ALC makes caching 
decisions based on the status of the A-eLRU list, which records 
the access information of pages. If the access record of p does 
not exist in the A-eLRU list (which also indicates the page p is 
currently non-buffered), it means the page p has not been 
accessed recently and thus p is viewed as a cold page. For a cold 
and non-old page, ALC makes a negative caching decision. For 
such a page, its read/write operations shall happen directly in 
PCM. The rationale behind this is that: on one hand, caching a 
cold page pays the price of evicting a warmer page, which may 
degrade the buffer utilization; on the other hand, there is no 
evident performance improvement of accessing a cold page in 
the buffer, compared with that in PCM. If the access record of p 
exists in the A-eLRU list, p is viewed as a hot page. Essentially, 
the position of a page's access record in the A-eLRU list reflects 
the recent Inter-Reference Recency (IRR) [22], which 
represents the number of other pages accessed between two 
consecutive accesses to a page. It is easy to see that the IRR 
value of a page p is smaller than that of pages behind it (towards 
the lru end) in the A-eLRU list. That is, a page p is warmer than 

those pages behind it. Thus, ALC makes a positive caching 
decision for p.  

When ALC makes a positive caching decision for a page p, 
it means the page p shall be stored in the buffer. Specifically, 
the access record of p will be created if necessary and then be 
placed/moved in the mru end of the A-eLRU list (line 3-5). If 
the page p has already been cached in the buffer, no buffer 
eviction is needed. Otherwise, the page replacement policy is 
responsible for evicting certain page q to make room for page p 
(line 7-8). Meanwhile, the status flag and the physical buffer 
page address of record(p) in the A-eLRU list need to be updated 
(line 9). When ALC makes a negative caching decision for a 
page p, it means the page p shall be directly accessed in PCM. 
Although p is not cached in the buffer, we still create an access 
record of p and insert it into the mru end of the A-eLRU list 
(line 11-12). The status flag in the access record will be set 
“non-buffered” (line 13). This gives the currently cold page a 
chance to be cached in the buffer if it would be accessed again 
very soon in the future. Note that, whenever it is a write request, 
the write count of the page is increased by one (line 14), which 
keeps consistent the page age information in A-eLRU list and 
PCM metadata after the write request is completed. 

Next, we describe the page replacement policy, which serves 
to free one buffer slot and is quite simple. The A-eLRU list 
maintains an invariant that the access record in the lru end 
corresponds to a buffered page. Recall that the access records in 
the A-eLRU could track non-buffered pages. To make room for 
the newly buffered page, the one represented by the access 
record of the lru end is purged from the buffer. If the evicted 
page is dirty, it needs to be written back to PCM. The write-
back operation may incur page migration or swapping in PCM 
and we defer the discussion of this in Section III.C. It should be 
noted that to maintain the invariant mentioned above, after 
removing the lru end of the A-eLRU list, a certain number of 
neighboring records, i.e., corresponding to non-buffered pages, 
need to be deleted until a record of any buffered page is met.  

Figure 5 shows how the buffer management scheme 
presented above works. Initially, we assume the buffer is full 
(i.e., the full capacity of buffer is 5 pages) and the A-eLRU list 
is depicted by Fig. 5(a). Suppose a read/write request for page E 
arrives and page E belongs to the young group. Since there is no 
access record of page E in the A-eLRU list, page E is viewed as 
a cold page and ALC makes a negative caching decision. Thus, 
page E is directly accessed in PCM; and a new access record of 
E is created on the fly and inserted into the mru end of A-eLRU, 
as shown in Fig. 5(b). Next, a read/write request for page B 
arrives. The non-buffered page B does not belong to the old 
group, but the access record of page B is found in the A-eLRU 
list, indicating page B to be hot. Based on Algorithm 1, ALC 
makes a positive caching decision and thus page B will be 
brought to the buffer. Before that, the page replacement policy 
chooses to evict page C, being referred to by the lru end of the 
A-eLRU list. To ensure the invariant of the lru end being 
buffered page, the access record of page D is removed from the 
list. Meanwhile, the access record of page B is created and 
placed in the mru end of the list. The result is shown in Fig. 
5(c). Finally, a write request for page D arrives, neither page D 
being buffered nor its access record existing in the A-eLRU list.  
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Fig. 5. An example of buffer managing scheme 

Nevertheless, page D is an old page and thus ALC gives 
preference to caching it. Accordingly, page G, whose access 
record is located in the lru end, is evicted from the buffer. After 
that, the status of the A-eLRU list is captured by Fig. 5(d). 

Note that the A-eLRU list is used to record accessing 
records of pages. In the first place, all the access records of 
pages in the buffer should appear in the list. In addition, the A-
eLUR list should be long enough in order to accurately identify 
cold or hot pages.  

C. PCM Page Management 
In this section, we propose a novel page management 

scheme for PCM on the basis of the dual dynamic bucket lists 
that track the write counts of PCM pages.  

The goal of wear leveling is to make the write count of each 
page close to the average write count, thereby lengthening the 
overall lifetime of PCM. To achieve such balance, young pages 
are expected to absorb more write requests. However, the access 
frequencies of logical pages from up-level programs are out of 
our control. But the knob we can twist is the mapping from 
logical page to physical page. Before presenting the page 
allocation algorithm, we use an example in Fig.6 to illustrate our 
basic idea. Suppose the logical page C has been evicted from 
the buffer. Page C being dirty, it needs to be written back to 
update the corresponding physical PCM page. Initially, page C 
was mapped to the physical page PPN10 that is an old page, as 
marked by (1) in Fig. 6. In this case, we can do an out-of-place 
updating. Rather than updating the content of logical page C 
still in PPN10, we select another free and young physical page 
PPN7 and update the page content there, as marked by (2) in 
Fig. 6. Then, the page mapping information in meta-data area 
will be updated accordingly to reflect such change. After that, 
the physical page PPN10 is reclaimed to be a free page. As we 
can see, with the above out-of-place updating, we avoid 
increasing the write count of the old page PPN10 by remapping 
the logical page C to a free and young physical page PPN7. 

Generally, a page allocation request originates from two 
cases: (i) that a buffered dirty logical page is written back to an 
old physical page; and (ii) that a new logical page needs to be 
allocated with a free physical page. In the above, we have 
described the first case with Fig. 6. For the second case, due to 
the temporal locality of data access, a new logical page will 
often be accessed soon. In this case, allocating a young or 
middle-age physical page for this new logical page is preferred. 
However, at the time of allocation, it is possible that the free 
dynamic bucket list contains only old pages. We prefer to move 
an allocated young page that is occupied by a cold logical page  
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Fig. 7. An example of data migration incurred by allocation 

to the free physical page. We use Fig. 7 to illustrate this. In Fig. 
7, the left side is the allocated dynamic bucket list and the right 
side is the free dynamic bucket list. At the time of allocation in 
Fig. 7(a), all free physical pages are in the old group and the 
physical page PPN16 is selected to be allocated initially. We 
select a cold logical page A, which is currently mapped to the 
physical page PPN4, and move its content in PPN4 to PPN16. 
As shown in Fig. 7(b), the young physical page PPN4 is now a 
free page and becomes the hotbed of the newly allocated logical 
page.  

Next, we summarize the page allocation procedure in 
Algorithm 2. When a request for a free page arrives, a page p in 
the youngest bucket of free dynamic bucket list is selected. If p 
belongs to either the young or the middle-age group, it is 
allocated directly (line 1-3). If p belongs to the old group, a page 
q is selected: (i) page q locates in the buckets of the allocated 
dynamic bucket list and belongs to young or middle-age group; 
(ii)  the logical page mapped to page q is a cold page, i.e, there 
is no access record of q in the A-eLRU list. In order to allocate 
q to respond the page allocation request, first p is allocated to 
store the data of q; then the LPN of q is updated to link to p (line 
4-6). Finally, q is released and reallocated (line 7-8). 

 



Algorithm 2: Page Allocation 

Output: a free page 

1: 
2: 
3: 
4: 
5: 
 
 
6: 
7: 
8: 

Select page p from the youngest bucket of the free bucket list; 
if (p.writecount－AW<TH) then  

allocate p and return p;  
else /*page p belongs to old group*/ 

select cold page q from the youngest bucket of the 
allocated dynamic bucket list; 

/*q is in the young or middle-age group*/  
update the mapping from q to p and copy q to p; 
release q and add q into the free dynamic bucket list; 
allocate q and return q; 

 
Previous PCM-based wear leveling policies, such as 

segment swapping [17], random swapping [9], and adaptive 
multiple data swapping and shifting scheme [12], often rely on 
various parameters like operation timing and the number of 
swapping pages. The accuracy of the estimation of these 
parameters has sensitive impact on the performance of wear 
leveling. In contrast to previous approaches, our page allocation 
does not rely on these parameters to do swapping or migration 
operations. In particular, we perform in-place updates on young 
pages and out-of-place updates on old pages. 

D. Overhead Analysis 
In this section, we summarize the storage overhead for 

managing 4 GB PCM. The information stored in the metadata 
area includes age information of all pages and the reverse 
mapping table from PPN to LPN (To reduce space overhead, we 
set the basic managing unit as a page). Since our system allows 
byte-level reading or writing, if the system updates several 
bytes, we increase the wear count of the pages which these 
updated bytes belong to. For a 4 GB PCM storage, the page size 
is set to 4 KB, so there are 220 pages. We use 4 bytes to store the 
age information per page since the write limitation is 106-108, 
the space used to store age information is 4 MB. Meanwhile, 4 
bytes are also enough to maintain the reverse mapping 
information per page, so another 4 MB is needed. Finally, the 
total space overhead to store metadata for a 4 GB PCM storage 
is 8 MB. 

IV. PERFORMANCE EVALUATION 
In this section, we present the evaluation results of our PCM 

management scheme described in Section III. We first describe 
the experimental settings on the workloads, metrics, and 
baseline algorithms. Then, we present comparative results with 
baseline algorithms with respect to various metrics. 

A. Experimental Setup 
We have implemented a PCM simulator, which incorporates 

all the components described in the architecture of Fig. 1.  

We compare our proposal with three state-of-the-art 
approaches that have been proposed in the literature:  

(1) random swapping [9], which swaps the page to be 
written with a randomly selected page for every 512 write 
operations to PCM.  

(2) the bucket-based WL algorithm [8], which uses 500 
buckets to maintain allocated and free pages separately; the 
write count difference of pages in the same buckets is 10.  

(3) PTL [7], in which all pages are updated out-of-place. The 
original approaches of the three competitors did not use a 
buffer. To be fair, we implement a buffer for these methods and 
use the classic LRU as the cache replacement strategy. The page 
size of both buffer and PCM is set to 4 KB. The other parameter 
settings are described in Table I.  

We use both synthetic and real traces in the following 
experiments. We use DiskSim [23] to generate two groups of 
traces, i.e., T1982 and T1955, by setting different read/write 
ratio and varying the locality. The ZIPF trace is generated using 
the algorithm in the literature [24]. The other group of traces, 
OLTP, is collected from PostgreSQL by recording the system 
accesses to the disk. Table II gives further details on these four 
traces. The memory footprint represents the number of distinct 
pages that are referenced by a trace. For the first four synthetic 
traces, manipulating the factor of locality is allowed, which 
influences the potential effectiveness of buffering. The locality 
of 80%/20% means that 20% of “hot” pages absorb 80% of 
requests.  

TABLE I    PARAMETERS IN THE EXPERIMENTS 

Parameters 
Value 

Synthetic traces Real traces 
PCM size 12000 pages 52000 pages 

Buffer size 1000 pages 
w 10 

TH 30 

TABLE II    SYNTHETIC AND REAL TRACES USED IN THE EXPERIMENTS 

 

Trace 
Memory 
Footprint 
(#pages) 

Read/Write 
Ratio Locality Total 

Requests 

T1982 10,000 10% / 90% 80% / 20% 300,000 
T1955 10,000 10% / 90% Uniform 300,000 
ZIPF 47,023 51% / 49% 80% / 20% 500,000 

OLTP 51,880 77% / 23% Unknown 607,390 

 

B. Results 
Impact of parameters TH and w. The parameter w 

determines the speed at which the age of a page is increased 
based on the write count. The parameter TH circumscribes the 
boundaries of categorizing pages into three groups: old, middle-
age, and young. Our proposed PCM management scheme relies 
on the page age and page group to make caching decisions (in 
Section III.B) and implement page allocation for wear-leveling 
(in Section III.C). As such, we first study the impact of the 
parameter TH and w on the performance of our PCM 
management scheme.  

 
 
 



 

 
Fig. 8. Impact of TH and w on maximum write counts of PCM

We run our proposed method over each trace with varying 
values of TH and w. We observe the maximum write count 
experienced by any PCM page, which reflects the lifetime of 
PCM. The smaller the value of the maximum writes count, the 
better the performance of a method. Fig. 8 shows the results 
over four traces. We can see that the maximum write count 
increases with w and TH in most cases, especially when TH is 
over 30. This is because, with a large value of TH and w, a page 
will not be categorized into the old group until a large number 
of writes have occurred. This undermines the endeavor of ALC 
to prioritize buffering old pages to mitigate the worn out of 
these old pages, thereby yielding a large value of the maximum 
write count. On the other hand, if the value of TH and w are too 
small, then a page would be prematurely classified as an old 
page, which in turn might unnecessarily trigger an extra page 
swapping when an old dirty page is written back after being 
evicted from the buffer. To summarize, there is a trade-off in 
setting the value of the parameter TH and the parameter w. 
Based on the results observed here over four traces, we set TH 
to 30 and w to 10 in the following experiments. 

 
Fig. 9. Comparison of maximum write counts 

 

Maximum write count on PCM. The goal of PCM 
management scheme is to balance the wearing degree of PCM 
pages. We evaluate the maximum write count of pages fed by 
each trace. As mentioned above, a larger value of the maximum 
write count indicates a worse performance achieved by a wear-
leveling method. In this part, we compare our method with the 
three alternatives. 

Figure 9 shows the maximum write counts of the four 
methods over various traces. Our proposed method outperforms 
the other three methods over all the four traces, indicating the 
effectiveness of our buffer management and PCM page 
allocation algorithm. Reducing maximum write count implies 
that our proposal has longer PCM lifetime than other methods. 

We also note that the random swap algorithm yields the 
worst result, because it does not consider the age of physical 
pages when selecting a page for swapping. In addition, PTL has 
similar maximum write count with our approach when 
measured on trace T1955. This is because that the requests in 
T1955 are evenly distributed over pages. 

Distribution of write requests. Next, we observe the 
distribution of write counts experienced by all PCM pages. In 
this part, all the four methods receive the same number of total 
requests over each trace. Since similar results are observed over 
the four traces, we only report results over the trace T1982 in 
the following. 

Figure 10 shows the records of write count of each physical 
page for the four methods. Note that the range of y-axis values 
is different across different sub-figures. We make three 
observations. First, our method achieves the smallest gap 
between the maximum page write count and the minimum page 
write count, being less than 100. From Fig. 10 (b) and (c), we 
can also see that the gap value of PTL is smaller than that of the 
bucket-based WL. In addition, the random swapping method 
leads to the largest deviation of page write counts. As shown in 
Fig. 10 (d), a handful of pages receive 0 write count, while some 



pages experience a startling 25000 write operations. Large 
deviation of write counts deviates from the primary goal of page 
management in PCM. The poor performance of random 
swapping derives from the random selection policy of page 
swapping, taking into no account the ages of PCM pages. As 
such, old pages may not be selected to be swapped and some 
empty pages may even not be allocated for page swapping. 
Second, the write counts of individual pages are evenly 
distributed in our method, which well meets the rudimentary 
goal of page wear leveling. Compared with random swapping 
and the bucket-based WL, PTL achieves better results in terms 
of balanced page write counts, due to its out-of-place updating. 
As shown in Fig. 10 (c), the majority of pages are worn evenly 
from 7700 to 8200, although some pages undergo a huge 
number of write operations. Third, with a closer look at Fig. 10 

(a), we can see that there is a line formed by a large number of 
points gathering around the y-axis value 7247. In fact, this line 
reflects the boundary between the “old group” and the “middle-
age group”. In trace T1982, the average age is 7247; the page 
whose write count is greater than 𝑎𝑣𝑒 + 𝑇𝐻 (i.e., 
7247+30=7277) belongs to the old group. 

First failure time of a PCM cell. The maximum write 
count is a metric evaluated when a fixed trace is fully served by 
a method. In contrast, the first failure time represents how many 
write requests from a trace can be served by a method before the 
first failure of any PCM cell takes place. Both these two are 
important metrics used in the literature. In this part, we compare 
our method with the other three alternatives in terms of the total 
write operations finished at the time of first PCM cell failure.  

 

 

 
Fig. 10. Distribution of write count in PCM after applying T1982 

 



The parameter settings of this group of experiments are 
described as follows. First, we set the write limitation of a PCM 
page to be 104. Although it has been reported that a PCM cell in 
general can tolerate 106~108 writes [10], we set this value for 
the sake of controlling the scale of experiments. But we do vary 
the values of write limitation to mitigate such impact. Second, 
we set the capacity of PCM to be 12000 pages. In the ideal case, 
12000 pages can withstand 12000*10000 writes.  

We report the total write count of the four methods over two 
traces, T1955 and T1982, before the first PCM page failure in 
Table III. As we can see, our method achieves the largest 
number of writes. In particular, it reaches about 99.5% and 
96.9% of the ideal write count over T1955 and T1982 
respectively. In contrast, over T1982, PTL, the bucket-based 
WL, and random swapping only achieve 80%, 72%, and 22% of 
the ideal write count, respectively. 

TABLE III    LIFETIME UNDER SYNTHETIC TRACES 

Policies 
Write count of wearing out PCM  

T1955 T1982 
Our proposal 119,511,349 116,328,780 

PTL 117,628,266 95,740,849 
Bucket-based WL 94,416,434 86,691,668 

Random swap 62,941,008 26,001,132 

We also study the sensitivity of the parameter, i.e., the write 
limitation of a PCM page, by varying its value from 10000 to 
50000. Figure 11 shows the overall write counts of each method 
over different page write limitations. Our method yields less 
writes to PCM than the other three methods consistently over 
different values of write limitation. This also implies that out 
method can be applied to various kinds of PCM media that may 
possess different property in terms of page write limitation.  

Impact of buffer management. In previous experiments, 
we study the performance of our PCM management scheme as a 
whole. In this part, we discuss the impact of buffer management 
on the overall performance. 

The primary purpose of buffer in the hybrid PCM system is 
to mitigate the worn-out of old PCM pages. Therefore, it is 
neither the highest priority nor ultimate goal for the buffer 
management in PCM to blindly seeking the maximum cache hit  

 
Fig. 11. Life time of PCM when varying the write limitation 

rate. However, improving the utilization of buffer space does 
make sense. We compare our buffer management scheme, 
“ALC+AeLRU”, with the traditional “ubiquitous caching + 
LRU” (where every page will be cached in the buffer and LRU 
serves as the cache replacement algorithm). We vary the buffer 
size from 500 pages to 3500 pages.  

Figure 12 shows the cache hit ratio of the two management 
schemes over four traces. We make two observations. First, in 
general a larger buffer size yields a higher cache hit ratio. 
However, the achieved cache hit ratio does not necessarily keep 
increasing as the buffer size increases. This is because the hit 
ratio is highly related to the locality of workload. For example, 
in T1982, 20% hot pages account for 80% requests. When the 
buffer size reaches 2000 pages (20% of the universe size), we 
see the hit ratio increases slowly, as shown in Fig. 12 (b). In Fig. 
12 (a), since the distribution of page accesses in T1955 is 
uniformly distributed, the hit ratio increases linearly with the 
increasing of buffer size. Second, our buffer management 
scheme performs better than the classic method consistently 
over all traces and with different buffer sizes. Even with a small 
buffer size, our method brings moderate cache hit ratio, as 
shown in Fig. 12 (a) and (b). This arises from the fact that ALC 
avoids caching a cold page – according to the access records of 
pages maintained in the A-eLRU list – unless it belongs to the 
old group. The ALC caching policy is in stark contrast to the 
“ubiquitous caching”, which might lead to the unwanted 
situation where a cold young page evicts a buffered hot page. 
Next, we study the impact of buffer management. In our 
method, some fraction of write requests are served directly in 
the buffer and we denote their number as “Proposed-BW”. We 
denote “Proposed-PW” as the number of write operations to the 
PCM triggered by the following two parts: i) the fraction of 
write requests that are directly accessed in PCM, by-passing the 
buffer; ii) the dirty pages that need to be written back to PCM 
when evicted from the buffer. Note that, here we did not count 
the portion of extra writes to PCM due to page swapping. 
Similarly, with the classic “ubiquitous caching+LRU”, “LRU- 
PW” represents the number of writes to PCM due to The write-
back of dirty pages from buffer; “LRU-BW” represents the 
number of requests served in the buffer, which turns out to be 
the total number of requests in the workload. For brevity, we 
report the normalized value of “Proposed-PW”, “Proposed-
BW”, and “LRU-BW” to “LRU-BW”.  

Figure 13 shows the results over four traces. We make two 
observations. First, when a larger buffer size is used, the 
normalized value of “Proposed-BW” increases, while the 
normalized value of “Proposed-PW” decreases. Second, 
“Proposed-PW” is consistently smaller than “LRU-PW” over all 
traces and with different buffer sizes. A smaller value implies 
that less writes are fed to PCM. It shows that our ALC caching 
policy performs better than the classic approach. In addition, in 
Fig. 13 (a), the gap between “Proposed-PW” and “LRU-PW” 
seems to be small; nevertheless, “Proposed-PW” is still smaller. 
This is because the trace T1955 does not present good workload 
locality, which is inherently not good for caching. 

In summary, our ALC caching policy carefully avoids 
caching cold pages. This yields a high hit ratio and prevents 
writing hot pages to PCM frequently, which helps prolong the 
lifetime of PCM. 



    
Fig. 12. Hit ratios under various buffer sizes 

   

 
Fig. 13. Normalized writes under various buffer sizes 

V. CONCLUSIONS 
In this paper, we propose a new wear-leveling page 

management scheme for the hybrid PCM-based storage 
subsystem. It includes two parts: the ALC caching policy and 
the PCM page allocation scheme, which work together to 
balance the worn-out of PCM pages. Both the ALC caching 
policy and the page allocation algorithm respect the old pages in 
terms of preventing their further worn-out. To this end, a dual 
dynamic list is proposed to efficiently maintain the age 
information of PCM pages and partition pages into three groups 
(i.e., young, middle-age, and old group). Our page management 
scheme achieves the wear-leveling in two levels. In the buffer 
level, the ALC caching policy prioritizes buffering old pages to 
mitigate their worn-out and is inclined to cache hot pages to 
reduce the number of write operations to PCM. In the targeted 
PCM level, our page allocation algorithm wields the tool of 
page migration and page swap to balance writes to PCM pages, 

which seeks to achieve the wear-leveling while curbing the 
write amplification ratio. To evaluate the performance of our 
PCM page management scheme, we conduct extensive 
experiments on a simulated PCM-based storage system over 
both synthetic and realistic traces. The experimental results 
show that our method performs significantly better than the 
other three alternatives in various metrics, which puts our 
method in a competitive position as the page management 
scheme for the PCM-based storage subsystem.  

There are a number of future works that need further 
investigating. First, we will try to find the optimal configuration 
of the DRAM buffer size for DRAM/PCM-based hybrid 
memory. Second, in this paper we did not consider the low-
energy property of PCM. In future, we will study the impact of 
storage schemes on energy consumption. Finally, the non-
volatility of PCM may introduce new potentials for building 
efficient in-memory computing systems. In future, we will focus 
on utilizing the non-volatility of PCM in hybrid memory 



systems to improve the efficiency and consistency of in-
memory computing and data management. 
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