

Delivering science and technology to protect our nation and promote world stability

MarFS

Tiered Parity: When Flat Doesn't Fit

May 2017

Overview

• Types of drive failure

- Random drive failure
- Correlated drive failure
 - Spacially versus non-spacially correlated
- Systemic drive failure
- "Flat" RAID / Erasure
 - When does it make sense?
 - What happens as we scale up?

• Tiered Erasure

- How to perform efficiently?
- Our solution in MarFS

Drive failures -

• Random drive failure:

- Generally due to age, defects, trauma
- Handful of drives at a time, generally not correlated with any particular event
- Traditional schema handle this quite well, especially well in the case of distributed rebuild
- In modern systems, not a huge driver for system design unless rebuilds are slow or failure domain is very large

Drive failures -

• Correlated drive failure:

- A batch of failures that have a common root
- Correlated in space
 - Server failure, local corruption, fire, electrical event, etc
 - All contained within a small special area
 - This can be mitigated with clever placement algorithms
- Correlated in time -
 - Drive failure due to an electrical event (power loss) or physical trauma (jolt of some sort)
 - Failures all over the system, no real locality
 - This is *not* solved by clever placement algorithms can be avoided with very strong erasure, replication, multi-site storage...but this is expensive in both storage and compute

Drive failures -

Systemic drive failure

- Firmware problems, bad batch of drives, bugs in storage stack...
- The only way to avoid these if they happen quickly is through very costly measures that aren't available in many environments
 - Replication across sites with different hardware
 - Hardware variety such that any one source doesn't break protection scheme
 - Copy everything to offline storage and have a good way to get all of it back quickly
- Basically, unless you have unlimited resources, give up. ©

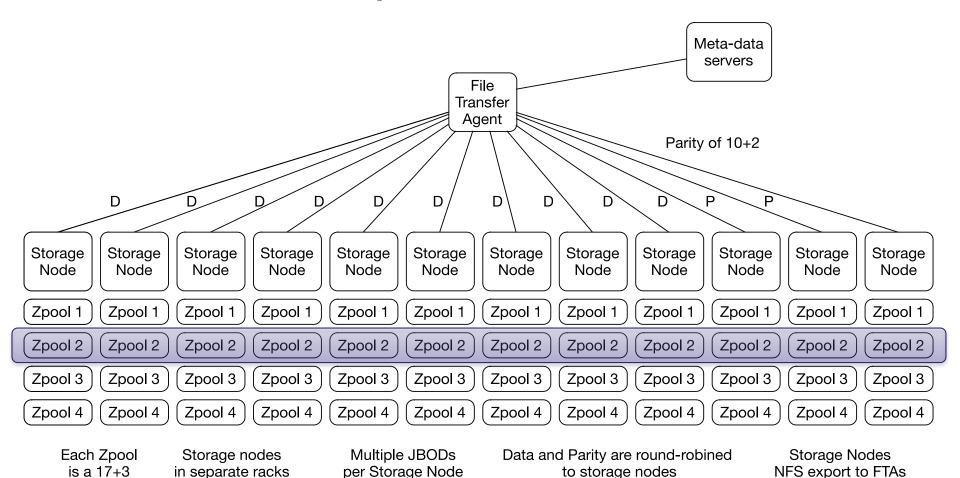
"Flat" protection schema

Typical RAID sets (+2/+3 protection)

- Great for small scale, but if striping over many sets, failure is almost guaranteed
- If not striping over many sets, no performance or capacity

• Distributed erasure

- Each object or block is encoded to some K+M, then placed within the system
- No related chunks on any drive, no related chunks on the same server if desired
- Hashed layout of K+M over the set of drives -> as the system scales, M+1 failures essentially guarantee some data loss
- Restricted placement can help (smaller failure domains)


Tiered Erasure

- Why?
 - As +M increases, computation cost increases as well
 - Very large values of M offer great protection but require large data blocks and expensive/slow computation beyond what current CPUs are capable of
- What?
 - "Multi-Component Repositories" in MarFS speak
 - Top level:
 - Intel ISA-L for AVX-optimized K+M at the top level (10+2 in our deployment)
 - Storage clients operate on 1 GB, chunk it into 10x 100 MB data blocks+ 2x 100 MB parity blocks
 - Bottom level:
 - ZFS RAIDZ3 at the bottom level (17+3) using AVX
 - 100 MB chunks are large enough for efficient storage bandwidth

Tiered Erasure

- Benefits:
 - Tightly controlled failure domains (very configurable)
 - Rebuilds kept local except for catastrophic failure at bottom level
 - Vastly improved protection against the "shotgun effect" of scattered drive failure after an event
- Tradeoffs:
 - Not very applicable to small-block write or random write (latency + RMW)
 - If a data loss event does happen, it affects more of the data instead of a small subset
 - Potentially higher storage overhead due to multiple layers
 - In our case, ~30% overhead on 240 drives, equal to 170+70 overhead flat

Tiered Erasure Example

May 2017 | 10

Los Alamos National Laboratory

Questions?