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Background
Key-value stores are widespread in 
modern data centers.
Better service quality 

Responsive user experience

The log-structured merge tree (LSM-
tree) is widely deployed.
RocksDB, Cassandra, Hbase, PNUTs, and 

LevelDB

High throughput write

Fast read performance
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Background · LSM-tree
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The overall read and write data size for a compaction: 
8 tables 13x

Above 10x

 This serious I/O amplifications of compactions 
motivate our design !
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LWC-tree
Aim

Alleviate the I/O amplification

Achieve high write throughput

No sacrifice to read performance 

How

Keep the basic component of LSM-tree

Keep tables sorted 

Keep the multilevel structure

➢Light-weight compaction – reduce I/O amplification

➢Metadata aggregation – reduce random read in a compaction

➢New table structure, DTable – improve lookup efficient within a table

➢Workload balance – keep the balance of LWC-tree



LWC-tree · Light-weight compaction

Aim

 Reduce I/O amplification

How

append the data  and only merge 
the metadata

➢Read the victim table

➢Sort and divide the data, merge the 
metadata

➢Overwrite and append the segment

Reduce 10 x amplification 
theoretically (AF=10) (In LSM-tree, the overall data 

size for a conventional compaction: 8 tables.)

L1

L2
ba

L0

L1

Ln

………

c

a-c

Memory

Disk

① read

a-c
sort

a’ b’  c’

③Overwrite and append

a b c

The overall read and write data size for a light-weight 
compaction: 2 tables.  



LWC-tree · Metadata Aggregation

Aim 
Reduce random read in a compaction

Efficiently obtain the metadata form 
overlapped Dtables

How
Cluster the metadata of overlapped 

DTables to its corresponding victim Dtable
after each compaction
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LWC-tree · Metadata Aggregation

Aim 
Reduce random read in a compaction

Efficiently obtain the metadata form 
overlapped Dtables

How
Cluster the metadata of overlapped 

DTables to its corresponding victim Dtable
after each compaction
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Metadata aggregation 
after light-weight compaction



LWC-Tree · DTable
Aim
Support Light-weight compaction

Keep the lookup efficiency within a 
DTable

How
Store the metadata of its 

corresponding overlapped Dtables

Manage the data and block index in 
segment

Origin data

Segment 2
(append data)

Segment 1
(append data)

Metadata

Dtable
Overlapped Dtables 

Metadata Data_block i

Data_block i+1

……

Filter blocks

footer

Index block

Meta_index block

Overlapped  Meta_index block

Origin index
Segment 1

Index
Segment 2

Index
Index block

Magic data

Index block in segment



LWC-Tree · Workload Balance

Aim
Keep the balance of LWC-tree

Improve the operation 
efficiency

How
Deliver the key range of the 

overly-full table to its siblings 
after light-weight compaction

Advantage
no data movement and no 

extra overhead 
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LevelDB on SMR Drives
SMR(Shingled Magnetic Recording)

Overlapped tracks

Band & Guard Regions

Random write constrain

LevelDB on SMR

 Multiplicative I/O amplification

Figure from Fast 2015 “Skylight – A Window on Shingled Disk Operation”



LevelDB on SMR Drives
SMR(Shingled Magnetic Recording)

Overlapped tracks

Band & Guard Regions

Random write constrain

LevelDB on SMR

 Multiplicative I/O amplification 9.73
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Band size 40 MB

WA(Write amplification of LevelDB) 9.83x

AWA (Auxiliary write amplification of SMR) 5.39x 

MWA (Multiplicative write amplification of LevelDB on SMR ) 52.58x

 This auxiliary I/O amplifications of SMR motivate our implementation!



LWC-store on SMR drive

Aim 
 Eliminate the auxiliary I/O 

amplification of SMR 

 Improve the overall performance

How
 A DTable is mapped to a band in 

SMR drive

 Segment appends to the band and 
overlaps the out-of-date metadata

 Equal division: Divide the DTable
overflows a band into several sub-
tables in the same level
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Configuration

1. LevelDB on HDDs (LDB-hdd)

2. LevelDB on SMR drives (LDB-smr) 

3. SMRDB*
• An SMR drive optimized key-value store
• reduce the LSM-tree levels to only two levels (i.e., L0 and L1)

• the key range of the tables at the same level overlapped

• match the SSTable size with the band size

4. LWC-store on SMR drives (LWC-smr)

Experiment Perimeter
Test Machine 16 Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz processors

SMR Drive Seagate ST5000AS0011

CMR HDD Seagate ST1000DM003

SSD Intel P3700



Experiment · Load (100GB data)

Random load 
Large amount of compactions

LWC-store 9.80x better than LDB-SMR

LWC-store 4.67x better than LDB-HDD

LWC-store 5.76x better than SMRDB

Sequential load
No compaction

Similar Sequential load performance  
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Experiment · read (100K entries)
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Look-up 100K KV entries against a 100GB random load database 



Experiment · compaction (randomly load 40GB data)

Compaction performance in 
microscope
 LevelDB: number of compactions is 

large

 SMRDB: data size of each 
compaction is large

 LWC-tree: small number of 
compactions and small data size 

Overall compaction time
 LWC-smr gets the highest efficiency 



Experiment · compaction (randomly load 40GB data)
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Compaction performance in 
microscope
 LevelDB: number of compactions is 

large

 SMRDB: data size of each 
compaction is large

 LWC-tree: small number of 
compactions and small data size 

Overall compaction time
 LWC-smr gets the highest efficiency 



Experiment · Write amplification
Competitors 
• LWC-SMR

• LDB-SMR

Write amplification (WA)
• Write amplification of KV-store

Auxiliary write amplification (ARA)
• Auxiliary write amplification of SMR

multiplicative write amplification (MWA)
• Multiplicative write amplification of KV stores 

on SMR
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Experiment · LWC-store on HDD and SSD
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Summary

LWC-tree: A variant of LSM-tree

Light-weight compaction – Significantly reduce the I/O amplification of compaction

LWC-store on SMR drive

Data management in SMR drive – eliminate the auxiliary I/O amplification from SMR
drive

Experiment result

high compaction efficiency

high write efficiency

Fast read performance same as LSM-tree

Wide applicability



Thank you!
QUESTIONS?

Email: tingyao@hust.edu.cn


