
A Light-weight Compaction Tree to Reduce I/O
Amplification toward Efficient Key-Value Stores

T i n g Y a o 1 , J i g u a n g W a n 1 , P i n g H u a n g 2 , X u b i n H e 2 , Q i n g x i n G u i 1 , F e i W u 1 ,

a n d C h a n g s h e n g X i e 1

1W u h a n N a t i o n a l L a b o r a t o r y f o r O p t o e l e c t r o n i c s

H u a z h o n g U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y

2T e m p l e U n i v e r s i t y

Outline
➢Background

➢LWC-tree (Light-Weight Compaction tree)

➢LWC-store on SMR drives

➢Experiment Result

➢Summary

Background
Key-value stores are widespread in
modern data centers.
Better service quality

Responsive user experience

The log-structured merge tree (LSM-
tree) is widely deployed.
RocksDB, Cassandra, Hbase, PNUTs, and

LevelDB

High throughput write

Fast read performance

Log
L0

L1

Ln

Memory

Disk

2

14

Write (key, value)

compaction

3

L2

………

…

Immutable MemTableMemTableSSTable

Background · LSM-tree

read

ba c

a-c

①

②

sort

③write
L0

L1

Ln

L2

L0

L1

Ln

………

L2

…

Memory

Disk

ba c

a-c

The overall read and write data size for a compaction:
8 tables 13x

Above 10x

 This serious I/O amplifications of compactions
motivate our design !

➢Background

➢LWC-tree (Light-Weight Compaction tree)

➢LWC-store on SMR drives

➢Experiment Result

➢Summary

LWC-tree
Aim

Alleviate the I/O amplification

Achieve high write throughput

No sacrifice to read performance

How

Keep the basic component of LSM-tree

Keep tables sorted

Keep the multilevel structure

➢Light-weight compaction – reduce I/O amplification

➢Metadata aggregation – reduce random read in a compaction

➢New table structure, DTable – improve lookup efficient within a table

➢Workload balance – keep the balance of LWC-tree

LWC-tree · Light-weight compaction

Aim

 Reduce I/O amplification

How

append the data and only merge
the metadata

➢Read the victim table

➢Sort and divide the data, merge the
metadata

➢Overwrite and append the segment

Reduce 10 x amplification
theoretically (AF=10) (In LSM-tree, the overall data

size for a conventional compaction: 8 tables.)

L1

L2
ba

L0

L1

Ln

………

c

a-c

Memory

Disk

① read

a-c
sort

a’ b’ c’

③Overwrite and append

a b c

The overall read and write data size for a light-weight
compaction: 2 tables.

LWC-tree · Metadata Aggregation

Aim
Reduce random read in a compaction

Efficiently obtain the metadata form
overlapped Dtables

How
Cluster the metadata of overlapped

DTables to its corresponding victim Dtable
after each compaction

Li+1
ba

Li

c

a-ca-c

b

 b’

c

 c’

a

 a’

A light-weight compaction

LWC-tree · Metadata Aggregation

Aim
Reduce random read in a compaction

Efficiently obtain the metadata form
overlapped Dtables

How
Cluster the metadata of overlapped

DTables to its corresponding victim Dtable
after each compaction

Li+1
ba

Li

c

a-ca-c

b

 b’

c

 c’

a

 a’

Metadata aggregation
after light-weight compaction

LWC-Tree · DTable
Aim
Support Light-weight compaction

Keep the lookup efficiency within a
DTable

How
Store the metadata of its

corresponding overlapped Dtables

Manage the data and block index in
segment

Origin data

Segment 2
(append data)

Segment 1
(append data)

Metadata

Dtable
Overlapped Dtables

Metadata Data_block i

Data_block i+1

……

Filter blocks

footer

Index block

Meta_index block

Overlapped Meta_index block

Origin index
Segment 1

Index
Segment 2

Index
Index block

Magic data

Index block in segment

LWC-Tree · Workload Balance

Aim
Keep the balance of LWC-tree

Improve the operation
efficiency

How
Deliver the key range of the

overly-full table to its siblings
after light-weight compaction

Advantage
no data movement and no

extra overhead

D
at

a
vo

lu
m

e

DTable number in Level Li

1 2 3 4 5 6 7 n

…

 Data block

8

ba

Li

Li+1
c

d
a-c

…
d ba c

c-d
a-b

d

Light-weight compaction

Range adjustment

… …

…

1 2 1 2

➢Background

➢LWC-tree (Light-Weight Compaction tree)

➢LWC-store on SMR drives

➢Experiment Result

➢Summary

LevelDB on SMR Drives
SMR(Shingled Magnetic Recording)

Overlapped tracks

Band & Guard Regions

Random write constrain

LevelDB on SMR

 Multiplicative I/O amplification

Figure from Fast 2015 “Skylight – A Window on Shingled Disk Operation”

LevelDB on SMR Drives
SMR(Shingled Magnetic Recording)

Overlapped tracks

Band & Guard Regions

Random write constrain

LevelDB on SMR

 Multiplicative I/O amplification 9.73
10.07 9.83 9.72 9.86

25.22 39.89
52.85

62.14

76.59

0

20

40

60

80

100

20 30 40 50 60

A
m

p
lif

ic
at

io
n

 R
A

ti
o

band size (MB)

WA
MWA

Band size 40 MB

WA(Write amplification of LevelDB) 9.83x

AWA (Auxiliary write amplification of SMR) 5.39x

MWA (Multiplicative write amplification of LevelDB on SMR) 52.58x

 This auxiliary I/O amplifications of SMR motivate our implementation!

LWC-store on SMR drive

Aim
 Eliminate the auxiliary I/O

amplification of SMR

 Improve the overall performance

How
 A DTable is mapped to a band in

SMR drive

 Segment appends to the band and
overlaps the out-of-date metadata

 Equal division: Divide the DTable
overflows a band into several sub-
tables in the same level

➢Background

➢LWC-tree (Light-Weight Compaction tree)

➢LWC-store on SMR drives

➢Experiment Result

➢Summary

Configuration

1. LevelDB on HDDs (LDB-hdd)

2. LevelDB on SMR drives (LDB-smr)

3. SMRDB*
• An SMR drive optimized key-value store
• reduce the LSM-tree levels to only two levels (i.e., L0 and L1)

• the key range of the tables at the same level overlapped

• match the SSTable size with the band size

4. LWC-store on SMR drives (LWC-smr)

Experiment Perimeter
Test Machine 16 Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz processors

SMR Drive Seagate ST5000AS0011

CMR HDD Seagate ST1000DM003

SSD Intel P3700

Experiment · Load (100GB data)

Random load
Large amount of compactions

LWC-store 9.80x better than LDB-SMR

LWC-store 4.67x better than LDB-HDD

LWC-store 5.76x better than SMRDB

Sequential load
No compaction

Similar Sequential load performance

12.20

42.90
45.00 45.50

0.00

10.00

20.00

30.00

40.00

50.00

LDB-SMR LDB-HDD SMRDB LWC-SMR
Se

q
.lo

ad
th

ro
u

gh
p

u
t

(M
B

/s
)

Sequential put

1.00
2.10 1.70

9.80

0.00

2.00

4.00

6.00

8.00

10.00

12.00

LDB-SMR LDB-HDD SMRDB LWC-SMR

R
n

d
.lo

ad
 t

h
ro

u
gh

p
u

t
(M

B
/s

) Random put

4.67x

Experiment · read (100K entries)

30.58

28.91 28.88
28.65

27.50

28.00

28.50

29.00

29.50

30.00

30.50

31.00

LDB-SMR LDB-HDD SMRDB LWC-SMR

R
n

d
.r

ea
d

 la
te

n
cy

 (
m

s)

Random get

15.50
12.60

20.50

26.90

0.00

5.00

10.00

15.00

20.00

25.00

30.00

LDB-SMR LDB-HDD SMRDB LWC-SMR

Se
q

.r
ea

d
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

Sequential get

Look-up 100K KV entries against a 100GB random load database

Experiment · compaction (randomly load 40GB data)

Compaction performance in
microscope
 LevelDB: number of compactions is

large

 SMRDB: data size of each
compaction is large

 LWC-tree: small number of
compactions and small data size

Overall compaction time
 LWC-smr gets the highest efficiency

Experiment · compaction (randomly load 40GB data)

35640

19227

49298

5128

0

10000

20000

30000

40000

50000

LDB-SMR LDB-HDD SMRDB LWC-SMR

O
ve

ra
ll

co
m

p
 t

im
e

(s
)

Overall compaction time

Compaction performance in
microscope
 LevelDB: number of compactions is

large

 SMRDB: data size of each
compaction is large

 LWC-tree: small number of
compactions and small data size

Overall compaction time
 LWC-smr gets the highest efficiency

Experiment · Write amplification
Competitors
• LWC-SMR

• LDB-SMR

Write amplification (WA)
• Write amplification of KV-store

Auxiliary write amplification (ARA)
• Auxiliary write amplification of SMR

multiplicative write amplification (MWA)
• Multiplicative write amplification of KV stores

on SMR

2.28 1.68 1.68 1.63 1.63 25.22

39.89

52.85
62.14

76.59

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

20MB 30MB 40MB 50MB 60MBM
u

lt
ip

lic
at

iv
e

w
ri

te
 a

m
p

lif
ic

at
io

n

Band Size

LWC-SMR.MWA LDB-SMR.MWA
2

.2
4

1
.5

6

1
.4

7

1
.3

9

1
.3

9

9
.7

3

1
0

.0
7

9
.8

3

9
.7

2

9
.8

6

1
.0

2

1
.0

8

1
.1

4

1
.1

7

1
.1

7

2
.5

9

3
.9

6

5
.3

8

6
.3

9

7
.7

7

0.00

2.00

4.00

6.00

8.00

10.00

12.00

20MB 30MB 40MB 50MB 60MB

W
ri

te
 a

m
p

lif
ic

at
io

n

Band Size

LWC-SMR.WA LDB-SMR.WA LWC-SMR.AWA LDB-SMR.AWA

38.12x

Experiment · LWC-store on HDD and SSD

➢Background

➢LWC-tree (Light-Weight Compaction tree)

➢LWC-store on SMR drives

➢Experiment Result

➢Summary

Summary

LWC-tree: A variant of LSM-tree

Light-weight compaction – Significantly reduce the I/O amplification of compaction

LWC-store on SMR drive

Data management in SMR drive – eliminate the auxiliary I/O amplification from SMR
drive

Experiment result

high compaction efficiency

high write efficiency

Fast read performance same as LSM-tree

Wide applicability

Thank you!
QUESTIONS?

Email: tingyao@hust.edu.cn

