
Near-Data Processing for Differentiable Machine
Learning Models

Hyeokjun Choe1, Seil Lee1, Hyunha Nam1, Seongsik Park1,
Seijoon Kim1, Eui-Young Chung2 and Sungroh Yoon1,3∗

1Electrical and Computer Engineering, Seoul National University

2Electrical and Electronic Engineering, Yonsei University

3Neurology and Neurological Sciences, Stanford University

∗Correspondence: sryoon@snu.ac.kr

Homepage: http://dsl.snu.ac.kr

May 19th, 2017

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 1 / 33

Outline

1 Introduction

2 Background

3 Proposed Methodology

4 Experimental Results

5 Discussion and Conclusion

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 2 / 33

Outline

1 Introduction

2 Background

3 Proposed Methodology

4 Experimental Results

5 Discussion and Conclusion

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 3 / 33

Machine Learning’s Success

Big data

Powerful parallel processors

⇒ Sophisticated models

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 4 / 33

Issues on Conventional Memory Hierachy

Data movement in memory hierarchy

Computational efficiency ⇓
Power consumption ⇑

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 5 / 33

Near-data Processing (NDP)

Memory or storage with intelligence (i.e., computing power)

Process the data stored in memory or storage

Reduce the data movements, CPU offloading

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 6 / 33

ISP-ML

ISP-ML: a full-fledged ISP-supporting SSD platform

Easy to implement machine learning algorithm in C/C++

For validation, three SGD algorithms were implemented and
experimented with ISP-ML

CPU

Main Memory

OS

SSD controller

Channel
Controller

Host I/F

Embedded
Processor(CPU)

Cache
Controller

DRAM

SRAM

Channel
Controller

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

SSD

ISP HW

ISP HW

ISP HW

ISP SW

SSD controller

Channel
Controller

Host I/F

ARM Processor

DRAM

Cache
Controller

SRAM

Channel
Controller

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

ISP HW

ISP HW

ISP HW

ISP SW

SSD

User
Application

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 7 / 33

Outline

1 Introduction

2 Background

3 Proposed Methodology

4 Experimental Results

5 Discussion and Conclusion

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 8 / 33

Machine Learning as an Optimization Problem

Machine learning categories

Supervised learning, unsupervised learning, reinforcement learning

The main purpose of supervised machine learning

Find the optimal θ that minimizes F (D;θ)

F (D,θ) = L(D,θ) + r(θ) (1)

Input
layer

Output
layer

D : input data

θ : model parameters

L : loss function

r : regularization term

F : objective function

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 9 / 33

Gradient Descent

θt+1 = θt − η∇F (D,θt) (2)

= θt − η
∑
i

∇F (Di,θt) (3)

η : learning rate

t : iteration index

i : data sample index

1st-order iterative optimization algorithm

Use all samples per iteration

Stochastic gradient descent (SGD)

Use only one sample per iteration.

Minibatch stochastic gradient descent

Between gradient descent and SGD
Use multiple samples per iteration

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 10 / 33

Hyeokjun
Typewriter
https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html

Parallel and Distributed SGD

Synchornous SGD

Parameter server aggregates ∇θslave synchronously.

Downpour SGD

Workers communicate with parameter server asynchronously.

Elastic Average SGD (EASGD)

Each worker has own parameters
Workers transfer (θslave − θmaster), not ∇θslave

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 11 / 33

Fundamentals of Solid-State Drives (SSDs)

SSD Controller
Embedded processor for FTL

HDD emulation
Wear Leveling, Garbage collection, etc.

Cache controller
Channel controller

DRAM

Cache and Buffer
512MB - 2GB

NAND flash arrays

Simultaneously accessible

Host interface logic

SATA, PCIe

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 12 / 33

Previous Work on Near-Data Processing:PIM

Perform computation inside the main memory

3D stacked memory (e.g. HMC) is used for PIM recently

Implement processing unit in Logic Layer

Applications: sorting, string matching, CNN, matrix
multiplication etc.

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 13 / 33

Previous Work on Near-Data Processing:ISP

Perform computation inside the storage

ISP with embedded processor

Pros: easy to implement, flexible
Cons: no parallelism

ISP with dedicated hardware logic

Pros: channel parallelism, hardware acceleration
Cons: hard to implement and change

Applications: DB query (scan, join), linear regression, k-means,
string match etc.

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 14 / 33

Outline

1 Introduction

2 Background

3 Proposed Methodology

4 Experimental Results

5 Discussion and Conclusion

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 15 / 33

ISP-ML: ISP Platform for Machine Learning on SSDs

ISP-supporting SSD simulator
Implemented in SystemC on the Synopsys Platform Architect

Software/Hardware co-simulation
Easily executes various machine learning algorithms in C/C++

Transaction level simulator

For reasonable simulation speed

ISP components

ISP SW, ISP HW

CPU

Main Memory

OS

SSD controller

Channel
Controller

Host I/F

Embedded
Processor(CPU)

Cache
Controller

DRAM

SRAM

Channel
Controller

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

SSD

ISP HW

ISP HW

ISP HW

ISP SW

SSD controller

Channel
Controller

Host I/F

ARM Processor

DRAM

Cache
Controller

SRAM

Channel
Controller

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

ISP HW

ISP HW

ISP HW

ISP SW

SSD

User
Application

Host I/F

Cache
Controller

NAND Flash

Channel
Controller

clk/rst

Embedded
Processor

SRAM

DRAM

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 16 / 33

ISP-ML: ISP Platform for Machine Learning on SSDs

We implemented two types of ISP hardware components.

Channel controller: perform primitive operations on the stored data.
Cache controller: collect the results from each of the channel
controller.

Master-slave architecture

They communicate with each other.

CPU

Main Memory

OS

SSD controller

Channel
Controller

Host I/F

Embedded
Processor(CPU)

Cache
Controller

DRAM

SRAM

Channel
Controller

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

SSD

ISP HW

ISP HW

ISP HW

ISP SW

SSD controller

Channel
Controller

Host I/F

ARM Processor

DRAM

Cache
Controller

SRAM

Channel
Controller

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

ISP HW

ISP HW

ISP HW

ISP SW

SSD

User
Application

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 17 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Parallel SGD Implementation on ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 18 / 33

Methodology for IHP-ISP Performance Comparison

Ideal Ways to Fairly Compare ISP and IHP
1 Implementing ISP-ML in a real semiconductor chip

High chip manufacturing costs

2 Simulating IHP in the ISP-ML framework.

High simulation time to simulate IHP

3 Implementing both ISP and IHP using FPGAs.

Require another significant development efforts.

⇒ Hard to fairly compare the performances of ISP and IHP
⇒ We propose a practical comparison methodology

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 19 / 33

Methodology for IHP-ISP Performance Comparison

Host

Storage ISP-ML
(baseline)

IO Trace

ISP-ML
(ISP implemented)

ISP Cmd

(b)(a)
SimulatorReal System

Measure observed
IHP execution

time(Ttotal)

Measure baseline
simulation time with

IO trace(TIOsim)

Measure data IO
time(TIO)

Extract IO trace while
executing application

In
Host

In
SSD
(Sim)

Observed IHP execution time = Ttotal = TnonIO + TIO.

Expected IHP simulation time = TnonIO + TIOsim
= Ttotal - TIO + TIOsim.

TIO : Data IO latency time of the storage

TnonIO : Non-data IO time

TIOsim : Data IO time of the baseline SSD in ISP-ML

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 20 / 33

Outline

1 Introduction

2 Background

3 Proposed Methodology

4 Experimental Results

5 Discussion and Conclusion

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 21 / 33

Setup and Implementation

Host specifications

CPU 8-core Intel(R) Core i7-3770K (3.50GHz)
Main memory DDR3 32GB RAM
Storage Samsung SSD 840 Pro
OS Ubuntu 14.04 LTS

ISP-ML specifications

Embedded processor ARM 926EJ-S (400MHz)
FTL DFTL
Page size 8KB
tprog / tread / tblockerase 300us / 75us / 5ms
FPU 0.5 instruction/cycle(pipelined)
Dataset x10 amplified MNIST(handwritten digits)

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 22 / 33

Performance Comparison:ISP-Based Optimization

EASGD showed best performance in this experiment.

x2.96 against synchornous SGD on average.
x1.41 against Downpour SGD on average.

For 4,8 Ch, synchronous SGD was slower than Downpour SGD

For 16 Ch, synchronous SGD was faster than Downpour SGD

0.82

0.86

0.90

0.94

Time(sec)

(a) 4-Channel

Te
st

 a
cc

ur
ac

y

0 2 4 6 8 10 12

0.82

0.86

0.90

0.94

Time(sec)

(c) 16-Channel

Te
st

 a
cc

ur
ac

y

0 2 4 6 8 10 12

0.82

0.86

0.90

0.94

Time(sec)

(b) 8-Channel

Te
st

 a
cc

ur
ac

y

0 2 4 6 8 10 12

Synchronous SGD
Downpour SGD
EASGD

Synchronous SGD
Downpour SGD
EASGD

Synchronous SGD
Downpour SGD
EASGD

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 23 / 33

Performance Comparison:IHP versus ISP

Compared IHP in memory shortage situation with ISP

In large-scale machine learning, the computing systems used may
suffer from memory shortages.
Assumption: The host had already loaded all the data to main
memory for IHP.

ISP-based EASGD with 16 channels obtained the best
performance in our experiments.

0.80

0.84

0.88

0.92

0 4 8 12 16 20

IHP(2GB-memory) IHP(16GB-memory)ISP(EASGD, 4CH)
IHP(4GB-memory) IHP(32GB-memory)ISP(EASGD, 8CH)
IHP(8GB-memory)ISP(EASGD, 16CH)

Time(sec)

Te
st

 a
cc

ur
ac

y

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 24 / 33

Channel Parallelism

The speed-up tends to be proportional to the number of channels.

Because the communication overhead in ISP is negligible.

In distributed computing systems, communication bottleneck
commonly occurs.

0.82

0.86

0.90

0.94

Time(sec)

(b) Downpour SGD

Te
st

 a
cc

ur
ac

y

0 2 4 6 8 10 12

4-Channel
8-Channel
16-Channel

0.82

0.86

0.90

0.94

Time(sec)

(c) EASGD

Te
st

 a
cc

ur
ac

y

0 2 4 6 8 10 12

4-Channel
8-Channel
16-Channel

0.82

0.86

0.90

0.94

Time(sec)

(a) Synchronous SGD

Te
st

 a
cc

ur
ac

y

0 2 4 6 8 10 12

4-Channel
8-Channel
16-Channel

1

2

4

4 8 16

Synchronous SGD
Downpour SGD
EASGD

Channel

Sp
ee

d
up

(d) Speed up

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 25 / 33

Effects of Communication Period in Async. SGD

Downpour SGD

High speed for a low communication period [τ=1; 4]
Unstable for a high communication period [τ=16; 64]

EASGD

Communication period ⇑, convergence speed ⇓
In contrast to the distributed computing system
Because of the low communication overhead

0.50

0.60

0.70

0.80

0.90

0 2 4 6 8 10

(a) Downpour SGD

Time(sec)

Te
st

 a
cc

ur
ac

y

0.86

0.88

0.90

0.92

0 2 4 6 8 10

(b) EASGD

Time(sec)

Te
st

 a
cc

ur
ac

y

 τ = 1 τ = 4 τ = 16 τ = 64 τ = 1 τ = 4 τ = 16 τ = 64

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 26 / 33

Experimental Results Summary

1 EASGD shows the best performance in our ISP-ML environment.
2 ISP is more efficient than IHP while host suffers from insufficient

main memory.

ISP may be useful in large scale machine learning.

3 The speed-up by parallelizing is proportional to the number of
channels.

Because of the ultra fast on-chip communication.

4 The performance of EASGD decreases while the communication
period increases unlike conventional distributed system.

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 27 / 33

Outline

1 Introduction

2 Background

3 Proposed Methodology

4 Experimental Results

5 Discussion and Conclusion

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 28 / 33

Parallelism in ISP

ISP can provide various advantages for data processing involved in
machine learning.

E.g. ultra-fast on-chip communication

⇒ Increase energy efficiency, security, and reliability

High degree of parallelism could be achieved.

By increasing the number of channels inside an SSD.

Exploiting a hierarchy of parallelism

Distributed systems + ISP-based SSDs

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 29 / 33

Opportunities for Future Research

1 Implementing deep neural networks in ISP-ML framework

2 Implementing adaptive optimization algorithms

E.g. Adagrad and Adadelta

3 Pre-computing metadata during data writes

4 Implementing data shuffling functionality

5 Investigate the effect of NAND flash design on performance

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 30 / 33

Conclusion

Create full-fledged ISP-supporting SSD simulator supporting ML

Implement and compare multiple versions of parallel SGD

Propose fair comparison methodology between IHP and ISP

Intrigue future research opportunities in terms of exploiting the
channel parallelism

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 31 / 33

Acknowledgments

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 32 / 33

Q/A

Hyeokjun Choe et al. MSST 2017 May 19th, 2017 33 / 33

	title
	MSST 2017 final2 NDPforML
	MSST 2017 final NDPforML
	main_final
	Introduction
	Background
	Proposed Methodology

	animation_final
	@baseline
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	2-1
	2-2
	2-3
	2-4
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6

	main_final - 복사본
	Experimental Results

	main
	MSST 2017 final NDPforML - 복사본
	main_final - 복사본
	Discussion and Conclusion

