
FRD: A Filtering based Buffer Cache Algorithm that
Considers both Frequency and Reuse Distance

Sejin Park* and Chanik Park**

2017. 05. 18

*SK telecom Corporate R&D Center | Network IT Convergence R&D Center,
New Computing Lab

**POSTECH Department of Computer Science and Engineering,
System Software Lab

33rd International Conference on Massive Storage Systems and Technology (MSST 2017)
Santa Clara, CA, May 15 — 19, 2017

Table of Contents

• Motivation
• Workload Analysis and Observations
• Design
• Evaluation
• Summary

2

Motivation

• Buffer cache management algorithm is one of the oldest topic in computer science area
• Existing buffer cache algorithm concentrates on how to maintain meaningful blocks?

– LRU, LFU, OPT, …
– LIRS (ACM SIGMETRICS 2002, S. Jiang. et. al.)

• Two LRU Stacks (LIRS, HIRS)
– Reuse distance ordering

– ARC (USENIX FAST 03, Megiddo. et. al.)
• Two LRU Stacks (Recency-T1, Frequency-T2)

– Adaptive resizing

• In this study, we concentrate on how to exclude the cache-unfriendly blocks
– We analyzed real-world workload and found characteristics of cache-unfriendly blocks

3

Example: LRU

• Depending on their eviction policy, blocks that can make cache pollution could be
maintained in cache space

• LRU believes that recently used blocks will make more cache hit
– If the recently used blocks are infrequently accessed and rarely used, it causes cache

pollution!

4

I I I I I I I F F F F

MRU LRU

I

F

Infrequently accessed block (cache-unfriendIy block)

Frequently accessed block

EvictionNew block Insertion

Example: ARC

• Recency buffer T1 and Frequency buffer T2 in ARC works as LRU cache
• If a block is reused, it moves into T2 even if it is infrequently accessed block

– This can cause cache pollution for T2

5

I I I I I F

MRU LRU

I

F

Infrequently accessed block (cache-unfriendIy block)

Frequently accessed block

Eviction

New block
Insertion

LRU MRU

Eviction

T1 T2History buffer History buffer

Reused block
Insertion (moved from T1 or T2)

Workload Description

• Real-world workloads downloaded from SNIA.

Name Type Description

OLTP Application Online transaction processing

Web12 Web server A typical retail shop

Web07 Web server A typical retail shop

prxy_0 Data center Firewall/web proxy

wdev_0 Data center Test web server

hm_0 Data center Hardware monitoring

proj_0 Data center Project directories

proj_3 Data center Project directories

src1_2 Data center Source control

6

Workload Analysis
• Reuse Distance Distribution

- Reuse Distance: # of unique blocks between the same blocks request

7

#
 o

f
A
cc

es
se

s

#
 o

f
A
cc

es
se

s

C
D

F
(P

er
ce

nt
ag

e)

C
D

F
(P

er
ce

nt
ag

e)

Reuse distance Reuse distance Reuse distance Reuse distance

Reuse distance Reuse distance Reuse distance Reuse distance Reuse distance

(a) OLTP (b) Web12 (c) Web07 (d) prxy_0 (e) wdev_0

(f) hm_0 (g) proj_0 (h) proj_3 (i) src1_2

Workload Analysis

• CDF of Number of accessed count for each block

8

C
D

F
(P

er
ce

nt
ag

e)

C
D

F
(P

er
ce

nt
ag

e)

X axis: Number of accessed count for each block

X axis: Number of accessed count for each block

(a) OLTP (b) Web12 (c) Web07 (d) prxy_0 (e) wdev_0

(f) hm_0 (g) proj_0 (h) proj_3 (i) src1_2

Workload Analysis

• Observation #1: Most blocks (about 50 – 90%) are infrequently accessed in the real-world
workload.

9

C
D

F
(P

er
ce

nt
ag

e)

C
D

F
(P

er
ce

nt
ag

e)

80%

3

74%

3

88%

3

55%

3

80%

3

34%

3

70%

3

54%

3

74%

3

X axis: Number of accessed count for each block

X axis: Number of accessed count for each block

(a) OLTP (b) Web12 (c) Web07 (d) prxy_0 (e) wdev_0

(f) hm_0 (g) proj_0 (h) proj_3 (i) src1_2

Workload Analysis

• CDF of reuse distance distribution for the infrequently accessed blocks (represented by
percentage of cache size)

10

X axis: Reuse distance (represented with percentage of given cache size)

X axis: Reuse distance (represented with percentage of given cache size)

(a) OLTP (b) Web12 (c) Web07 (d) prxy_0 (e) wdev_0

(f) hm_0 (g) proj_0 (h) proj_3 (i) src1_2

C
D

F
(P

er
ce

nt
ag

e)

C
D

F
(P

er
ce

nt
ag

e)

Workload Analysis

11

• Observation #2: Reuse distance for the infrequently accessed blocks is extremely long
or extremely short
– In terms of cache size: under 10% and over 100% of cache size are dominant

90% 90% 94% 96% 88%

98%98%98%98%

X axis: Reuse distance (represented with percentage of given cache size)

X axis: Reuse distance (represented with percentage of given cache size)

(a) OLTP (b) Web12 (c) Web07 (d) prxy_0 (e) wdev_0

(f) hm_0 (g) proj_0 (h) proj_3 (i) src1_2

C
D

F
(P

er
ce

nt
ag

e)

C
D

F
(P

er
ce

nt
ag

e)

• Observation #1: Most blocks are infrequently accessed in the real-world workload
– These blocks are cache-unfriendly blocks that cause cache pollution

• Observation #2: Reuse distance for the infrequently accessed blocks is extremely
long or extremely short
– The cache-unfriendly blocks have distinct characteristics

• Therefore,
– “Frequency” and “Reuse distance” are the key metrics to filter out the cache-unfriendly

blocks

Observations

12

• Block Classification

• Design Goal
– Maintains Class 1 and 2 blocks in cache
– Maintains Class 3 blocks but preventing it from polluting cache
– Filters out Class 4 blocks from cache

Design

Class
Accessing
Frequency

Reuse
Distance

Cache-Hit
Target

Cache Pollution
(Filtering target)

Class 1 (FS) Frequent Short V -

Class 2 (FL) Frequent Long V -

Class 3 (IS) Infrequent Short V V

Class 4 (IL) Infrequent Long - V

13

FRD Algorithm
- A Filtering based Buffer Cache Algorithm that Considers both Frequency and Reuse Distance

Filter Stack

Reuse distance Stack
3.
History Block
Insertion

1. New
Entry insertion

2.
Resident Block
Insertion

5. Cache Miss

6. Cache Hit

4. Cache Hit

Eviction

Eviction

LRU

LRUMRU

MRU

Resident Block History Block

* If RD stack is not full
New entry is inserted to RD stack.

Parameter = FilterStack (%)
(Default = 10%)

14

Analysis of FRD Algorithm

Filter Stack

Reuse distance Stack

History Block
Insertion

New
Entry

Resident Block
Insertion

Cache Miss

Cache Hit

Cache Hit

Eviction

Eviction

LRU

LRUMRU

MRU

Resident Block History Block

Class 1
(FS)

Class 2
(FL)

Class 3
(IS)

Class 4
(IL)

Class
1,2,3,4

Class 3
(IS)

Class 2
(FL)

Class 2
(FL)

Class 1
(FS)

Class 2
(FL)

Class 4
(IL)

Class 3
(IS)

Class
1,3,4

Parameter = FilterStack (%)
(Default = 10%)

* If RD stack is not full
New entry is inserted to RD stack.

15

Evaluation

• Environment
– Simulation based evaluation
– Compared with OPT, LRU, ARC, LIRS

16

Hitratio Result

17

H
it
ra

ti
o

Cache size (MB) Cache size (MB) Cache size (MB)

FRD is highest

LIRS is highest

ARC is highest ARC is unstable

LIRS is unstable
• Case of LIRS’ unstable hitratio result

<Legend>

18

H
it
ra

ti
o

Cache size (MB) Cache size (MB) Cache size (MB)

Hitratio Result FRD is highest

LIRS is highest

ARC is highest ARC is unstable

LIRS is unstable

<Legend>

• Case of ARC’s unstable hitratio result

19

H
it
ra

ti
o

Cache size (MB) Cache size (MB) Cache size (MB)

Hitratio Result FRD is highest

LIRS is highest

ARC is highest ARC is unstable

LIRS is unstable

<Legend>

Evaluation

• Overall Average Result (1.0 is OPT’s hitratio)

Workload LRU ARC LIRS FRD

OLTP 0.674 0.746 0.691 0.753

Web12 0.829 0.852 0.827 0.857

Web07 0.800 0.839 0.812 0.847

prxy_0 0.844 0.870 0.870 0.898

wdev_0 0.647 0.723 0.728 0.745

hm_0 0.598 0.700 0.723 0.724

proj_0 0.612 0.722 0.740 0.780

proj_3 0.172 0.241 0.516 0.478

src1_2 0.620 0.697 0.799 0.813

20

Parameter Sensitivity (Size of the Filter stack)

• Variation of filter stack size from 1% to 25% of cache size.
• 10% shows the best performance on average but the difference is negligible.

21

Summary

• FRD: A Filtering based Buffer Cache Algorithm that Considers both Frequency and
Reuse Distance

– A new buffer cache algorithm that filters out cache-unfriendly blocks

– Careful analysis on real-world workload gives characteristics of cache-unfriendly blocks

– The experimental result shows that it outperforms state-of-the-art cache algorithms like ARC
or LIRS.

22

Backup slides

23

Hitratio Analysis

24

• Filter stack performance

25

ARC (Initial: T1= T2= B1 = B2 = 0, p = 0)
T1+ T2+ B1+ B2 <= 2C

T1

T2

B1

B2

New Entry
Replace(p)

LIRS (HIRstack + LIRstack = c, 1:99)

HIRstack

LIRStack

New Entry

Keep Non-Resident till RMAX

Metadata
(Non-resident)

HIT MISS NEW ENTRY Eviction FlowMetadata(History)

N
o
n-R

esid
ent

R
esid

ent

R
esid

ent

Revisiting LIRS and ARC

p = min{c, p+ max{|B2|/|B1|,1} }
Replace(p)

p = max{0, p - max{|B1|/|B2|,1} }
Replace(p)

p

R
esid

ent

R
esid

ent

H
isto

ry

H
isto

ry

Subroutine Replace(p)
if (|T1| ≥ 1) and ((x ∈ B2 and |T1| = p) or (|T1| > p)) then move the LRU page of
T1 to the top of B1 and remove it from the cache.
else move the LRU page in T2 to the top of B2 and remove it from the cache.

Design comparison with ARC and LIRS

26

ARC LIRS FRD

LRU stack Two Two Two

Adaptive Resizing O X X

Eviction Point
Two
(Two LRU stacks are
isolated)

One
(Two LRU stacks are
not isolated)

Two
(Two LRU stacks are
isolated)

History size Cache size x 2 Max resident block Max resident block

