
Yujuan Tan, Jian Wen, Zhichao Yan, Hong Jiang,
Witawas Srisa-an, Baiping Wang, Hao Luo

FGDEFRAG: A Fine-Grained Defragmentation
Approach to Improve Restore Performance

Outline

2

Experimental Evaluation

FGDEFRAG Design

Conclusion

Background and Motivation

Data Deduplication
widely used in backup systems

High compression ratio 10x~100x
3

Data Fragmentation
The removal of redundant chunks makes the logically
adjacent data chunks be scattered in different places
on disks, transforming the retrieval operations from
sequential to random.

We call a chunk such as chunk C as fragmented data of file A’

4

This fragmentation problem results in excessive disk seeks and
leads to poor restore performance

Chunk
B

Chunk
C

Chunk
D

Chunk
E

Chunk
C

Chunk
F

File A File A’

Chunk
B

Chunk
D

Chunk
E

Chunk
F

stored by
File A

stored by
File A’

Chunk
C

File A and File A’stored on disks

Existing Defragmentation Approaches

All the chunks are stored in fixed-size containers of five
chunks each on disks.

5

HAR, CAP, CBR for backup workloads.
iDedupe for primary storage systems

Data object 1

U V B C H I J W X Y Z O
Data object 2

A B C D E F G H I J K L M N O
P Q R S T U V W X Y

Container 1 Container 2 Container 3

Container 4 Container 5 Container 6

(a) Data object 1 and data object 2 stored on disks without any defragmentation algorithm

Z

Q

A B C D E F G H I J K L M
N O Q Q R S T

20 chunks

13 chunksshare 7 chunks

Existing Defragmentation Approaches(1)
 HAR: published in USENIX ATC 2015

Sparse Container:
The percentage of the referenced chunks < 50%

Fragmental Containers： Container 1, 3 and 4
Fragmental Chunks: B, C, O and Q

6

Data object 1

U V B C H I J W X Y Z O
Data object 2

(b) Data object 1 and data object 2 stored on disks by HAR algorithm

Q

A B C D E F G H I J K L M N O
P Q R S T U V B C W

Container 1 Container 2 Container 3

Container 4 Container 5 Container 6
X Y Z O Q

A B C D E F G H I J K L M
N O Q Q R S T

20 chunks

13 chunksshare 7 chunks

Existing Defragmentation Approaches(2)
 CAP: published in USENIX FAST 2013

Select top N referenced containers---according to the number of
referenced valid chunks in each container---as non fragmental
containers
If N=2, fragmental containers: Container 3 and 4

fragmental Chunks: O and Q
7

Data object 1

U V B C H I J W X Y Z O
Data object 2

(c) Data object 1 and data object 2 stored on disks by CAP algorithm

Q

A B C D E F G H I J K L M N O
P Q R S T U V W X Y

Container 1 Container 2 Container 3

Container 4 Container 5 Container 6
Z O Q

A B C D E F G H I J K L M
N O Q Q R S T

20 chunks

13 chunksshare 7 chunks

Existing Defragmentation Approaches

 A common, fundamental assumption
1. Each read operation involves a large fixed number of

contiguous chunks
2. The disk seek time is sufficiently amortized for each

read operation, and the read performance is determined by
the percentage of referenced chunks per read

 Problem:
1. The identification of fragmented data is restricted

within a fixed-size read window
2. Causing many false positive detections

8

False Positive Detection

9

(a)

(b)

1.5MB

1MB 1MB

Container A Container B

Container
Metadata section
Referenced chunks
Non-Referenced chunks

(a) A group of referenced chunks stored sufficiently close to one
another fails to meet the preset percentage threshold .

(b) A group of referenced chunks that meets the threshold but are
split into two neighboring read windows

False Positive Detection

Percentages of data chunks falsely identified by CAP(average
65.3%, maximum 77%), CBR (average 28.7%, maximum 40%),

and HAR(average 3.7%, maximum 64%).

10

Outline

11

Experimental Evaluation

FGDEFRAG Design

Conclusion

Background and Motivation

FGDEFRAG Design

 Uses variable-sized and adaptively located data
regions.

 The data regions are based on address affinity,
instead of the fixed-size regions.

 Uses the adaptively located data regions to
identify and remove fragmented data.

 Uses the adaptively located data regions to
atomically read data during data restores.

12

FGDEFRAG Architecture

13

Three key functional modules:
Data Grouping, Fragment Identification, Group Store

Data Grouping

14

A
1001

(a) The original sequence of the redundant chunks in the segment
C

1003
I

1054
D

1006
B

1002
F

1009
G

1010
H

1052
K

1056
O

1015
Q

1017
P

1016
R

1018
E

1007
L

1057
M

1059
N

1061

J
1055

A
1001

(b) The sorted list of the redundant chunks in the segment
B

1002
C

1003
D

1006
E

1007
F

1009
G

1010
H

1052
I

1054
J

1055
K

1056
L

1057
N

1061
O

1081
P

1082
Q

1083
R

1084

M
1059

A
1001

B
1002

C
1003

D
1006

E
1007

F
1009

G
1010

H
1052

I
1054

J
1055

K
1056

L
1057

M
1059

N
1061

O
1081

P
1082

Q
1083

R
1084

(c) The logical groups in the segment
Logical group 1

Logical group 2

Logical group 3

Chunk
address

Grouping Gap: the amount of non-referenced data between two
referenced chunks takes the disk a time equal to or greater than
its disk seek time to transfer

Fragment Identification

15

 B the disk bandwidth, t the disk seek time, N a non-zero positive
integer, x the total size of the referenced chunks, and y the total size
of the non-referenced chunks in the group

 The left side of this inequality expression represents the valid read
bandwidth of reading all the referenced data

 The right side of the inequality expression represents the bandwidth
threshold, a given fraction of the full disk bandwidth B.

A group is considered a fragmental group and its referenced
chunks regarded as fragmental chunks if the valid read bandwidth
is smaller than the bandwidth threshold.

Outline

16

Experimental Evaluation

FGDEFRAG Design

Conclusion

Background and Motivation

Performance Evaluation

 Baseline defragmentation approaches
HAR(+OPT), CAP(+Assembly Area), CBR

(+LFK) , Non-Defragmentation approaches(+LRU
or +OPT), FGDEFRAG(+LRU or +OPT)

 Performance metrics
Deduplication ratio：the amount of data removed

divided by the total amount of data in the backup stream
Restore performance

17

18

Workload Characteristics

 Workload：The public archive datasets
MAC snapshots：Mac OS X Snow Leopard server
Fslhome dataset：students’ home directories from a

shared network file system

Deduplication Ratio

19

FGDEFRAG rewrites 70% and 29.4% less data than CAP
and CBR for the MAC snapshots dataset, 70.6% and 36%
less data than CAP and CBR for the Fslhome dataset.

HAR identifies the fragmental chunks a whole backup
stream globally. It misses identifying some local fragmental
chunks, and thus rewrites less redundant chunks to disks

Restore Performance

20

FGDEFRAGE outperforms CAP, CBR and HAR by 60%,
20% and 176% when the cache size is 512MB; 63%, 19%
and 116% when the cache size is 1GB, and 62%, 19.6% and
23% when the cache size is 2GB.

Restore Performance

21

 FGDEFRAG outperforms CAP, CBR and HAR by 27%,
38% and 262% with a 512MB cache; 30%, 37% and 217%
with a 1GB cache; 35%, 38% and 159% with a 2GB
cache; and 43%, 39%,and 76% with a 4GB cache.

Sensitive study

22

The deduplication ratio
increases with N, while
the restore performance
decreases significantly
as N increases.

To properly trade off
between deduplication
ratio and restore
performance, we need to
select appropriate values
of N for different datasets.

Outline

23

Experimental Evaluation

FGDEFRAG Design

Conclusion

Background and Motivation

Conclusion
 Analyzing the existing defragmentation approaches

 Proposing FGDEFRAG, a new defragmentation
approach that uses variable-sized and adaptively located
groups to identify and remove fragmentation.

 Our experimental results show that FGDEFRAG
outperforms CAP, CBR and HAR in restore performance
by 27% to 63%, 19% to 39%, 23% to 262%.

 FGDEFRAG also outperforms CAP and CBR but slightly
underperforms HAR, because HAR identifies the
fragmental chunks globally but at the expense of missed
detection of some local fragmental chunks。

24

	Slide Number 1
	Slide Number 2
	Data Deduplication
	Data Fragmentation
	Existing Defragmentation Approaches
	Existing Defragmentation Approaches(1)
	Existing Defragmentation Approaches(2)
	Existing Defragmentation Approaches
	False Positive Detection
	False Positive Detection
	Slide Number 11
	FGDEFRAG Design
	FGDEFRAG Architecture
	Data Grouping
	Fragment Identification
	Slide Number 16
	Performance Evaluation
	Slide Number 18
	Deduplication Ratio
	Restore Performance
	Restore Performance
	Sensitive study
	Slide Number 23
	Conclusion

