
Pengfei Zuo and Yu Hua

A Write-friendly Hashing Scheme for
Non-volatile Memory Systems

Huazhong University of Science and Technology, China

Non-volatile Memory

SRAM DRAM PCM RRAM STT-RAM
Non-volatile N N Y Y Y

Read (ns) 1 10 20~70 10 2~20
Write (ns) 1 10 150~220 50 5~35

Standby Power High High Low Low Low
Scalability (nm) 20 20 5 11 32

Endurance (10^N) > 15 > 15 7~8 8~10 12~15

NVMs are expected to replace DRAM and SRAM

NVMs vs. DRAM & SRAM
No-volatile, high scalability, and low standby power
X Limited endurance and asymmetric properties

2/20

Rethinking Data Structures on NVMs

How could in-memory and in-cache data structures
be modified to efficiently adapt to NVMs?

 Previous work mainly focuses on tree-based structures
 CDDS-tree (FAST 2011)
 NV-tree (FAST 2015)
 wB+-tree (VLDB 2015)
 FP-tree (SIGMOD 2016)
 Write Optical Radix Tree (FAST 2017)

 Hash tables are also widely used in main memory
and caches
 Main memory database
 In-memory key-value store, e.g., Memcached, Redis
 In-cache index (ICS 2014, MICRO 2015)

3/20

Existing Hashing Schemes on NVMs

a b c

d

e

g f

h

70 1 2 3 4 5 6

f

a d e b c
70 1 2 3 4 5 6

70 1 2 3 4 5 6
a b

70 1 2 3 4 5 6

x
h1(x) h2(x)

Evict

(a) Chained Hashing (b) Linear Probing

(c) 2-choice Hashing (d) Cuckoo Hashing

x
h1(x) h2(x)

Insertion
Deletion

 Extra Writes
Deletion

 Extra Writes

Insertion
 Extra Writes

Low Space
Utilization:
~35%

 Our Design Goals
 Minimize NVM writes while ensuring high performance 4/20

Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method without extra NVM writes

Deliver high performance on space utilization and request latency

5/20

Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency

Level 4

Level 3

Level 2

Level 1

Level 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressable cells by hash functions

Un-addressable, shared standby cells
6/20

Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency

Level 4

Level 3

Level 2

Level 1

Level 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem: One path can only deal with at most L hash collisions

Insertion and deletion without extra modifications and data movements

7/20

Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency

Level 4

Level 3

Level 2

Level 1

Level 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xh1(x) h2(x)

Using two different hash functions to compute two paths  high space utilization8/20

Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency

Level 4

Level 3

Level 2

Level 1

Level 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xh1(x) h2(x)

Problem: Each query may probe many nodes in a high tree 9/20

Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency

Level 4

Level 3

Level 2

Level 1

Level 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Observation: The bottom levels provide a few standby positions while
increasing the length of the read path.

Path Shortening: Removing multiple levels in the bottom.
10/20

Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency

Level 4

Level 3

Level 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Observation: The bottom levels provide a few standby positions while
increasing the length of the read path.

Path Shortening: Removing multiple levels in the bottom.

Evaluation: Reserving a small part of levels can also achieve a high
space tilization.

11/20

Physical Storage Structure of Path Hashing

Level 4

Level 3

Level 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Level 4 Level 3 Level 2

An array:

12/20

Physical Storage Structure of Path Hashing

Level 4

Level 3

Level 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Level 4 Level 3 Level 2

An array:
A[4] A[16+4/2] A[16+8+4/2/2]

No pointers
 The nodes in a path can be accessed in parallel for

insertion, query and deletion
13/20

Experimental Configurations

Gem5: a full system simulator
NVMain: a main memory simulator for NVMs

Datasets: Random Number, Document Word, Fingerprint
14/20

NVM Writes
7.3

0

1

2

3

4

0.6 0.8

N
o.

 o
f W

rit
te

n
Li

ne
s

Load Factor

Chained Linear 2-choice
Cuckoo Path

14.2

0

2

4

6

8

10

0.6 0.8

N
o.

 o
f W

rit
te

n
Li

ne
s

Load Factor

Chained Linear 2-choice
Cuckoo Path

RandomNum

DocWord

No extra writes

No extra writes

15/20

Space Utilization

0%

20%

40%

60%

80%

100%

RandomNum DocWord Fingerprint

Sp
ac

e
U

til
iza

tio
n

Ra
tio

Chained 2-choice Cuckoo Path

 Path hashing achieves up to 95% space utilization ratio

16/20

Reserved Levels vs. Space Utilization

30%
40%
50%
60%
70%
80%
90%

100%

3 5 7 9 11 13 15 17 19 21 23 25

Sp
ac

e
U

til
iza

tio
n

Ra
tio

The Number of Reserved Levels

RandomNum (L = 22)
DocWord (L = 23)
Fingerprint (L = 24)

 Reserving a small part of levels can also achieve a high
space utilization ratio

17/20

Request Latency

3.5

0.5

1

1.5

2

2.5

0.6 0.8
De

le
tio

n
La

te
nc

y
(u

s)
Load Factor

Chained Linear
P-2-choice P-Cuckoo
Path

15.3

1

2

3

4

5

6

0.6 0.8

In
se

rt
io

n
La

te
nc

y
(u

s)

Load Factor

Chained Linear 2-choice
Cuckoo Path

0.2

0.4

0.6

0.8

1

0.6 0.8

Q
ue

ry
 L

at
en

cy
 (u

s)

Load Factor

Chained Linear P-2-choice
P-Cuckoo Path P-Path

18/20

Conclusion

 Existing main hashing schemes usually cause many
extra writes to NVMs

We propose a write-friendly hashing scheme, path
hashing, without extra writes while having high
performance
 Position sharing
 Double-path hashing
 Path shortening

 Experimental results on gem5 with NVMain
 No extra writes
 Up to 95% space utilization ratio
 Low request latency

19/20

Thanks! Q&A

Open-source Code: https://github.com/Pfzuo/Path-Hashing
E-mail: pfzuo@hust.edu.cn

Homepage: http://pfzuo.github.io/about/

20/20

https://github.com/Pfzuo/Path-Hashing
mailto:Pfzuo@hust.edu.cn
https://pfzuo.github.io/about/

	Slide Number 1
	Non-volatile Memory
	Rethinking Data Structures on NVMs
	Existing Hashing Schemes on NVMs
	Our Scheme: Path Hashing
	Our Scheme: Path Hashing
	Our Scheme: Path Hashing
	Our Scheme: Path Hashing
	Our Scheme: Path Hashing
	Our Scheme: Path Hashing
	Our Scheme: Path Hashing
	Physical Storage Structure of Path Hashing
	Physical Storage Structure of Path Hashing
	Experimental Configurations
	NVM Writes
	Space Utilization
	Reserved Levels vs. Space Utilization
	Request Latency
	Conclusion
	Slide Number 20

