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Non-volatile Memory

SRAM DRAM PCM RRAM STT-RAM
Non-volatile N N Y Y Y

Read (ns) 1 10 20~70 10 2~20
Write (ns) 1 10 150~220 50 5~35

Standby Power High High Low Low Low
Scalability (nm) 20 20 5 11 32

Endurance (10^N) > 15 > 15 7~8 8~10 12~15

NVMs are expected to replace DRAM and SRAM

NVMs vs. DRAM & SRAM
No-volatile, high scalability, and low standby power
X Limited endurance and asymmetric properties
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Rethinking Data Structures on NVMs

How could in-memory and in-cache data structures 
be modified to efficiently adapt to NVMs?

 Previous work mainly focuses on tree-based structures
 CDDS-tree (FAST 2011)
 NV-tree (FAST 2015)
 wB+-tree (VLDB 2015)
 FP-tree (SIGMOD 2016)
 Write Optical Radix Tree (FAST 2017)

 Hash tables are also widely used in main memory 
and caches
 Main memory database
 In-memory key-value store, e.g., Memcached, Redis
 In-cache index (ICS 2014, MICRO 2015)
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Existing Hashing Schemes on NVMs
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 Our Design Goals
 Minimize NVM writes while ensuring high performance 4/20



Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method  without extra NVM writes

Deliver high performance on space utilization and request latency
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Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency
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Addressable cells by hash functions

Un-addressable, shared standby cells
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Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency
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Problem:  One path can only deal with at most L hash collisions

Insertion and deletion without extra modifications and data movements
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Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency
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Using two different hash functions to compute two paths  high space utilization8/20



Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency
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Problem:  Each query may probe many nodes in a high tree 9/20



Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency
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Observation: The bottom levels provide a few standby positions while
increasing the length of the read path.

Path Shortening: Removing multiple levels in the bottom.
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Our Scheme: Path Hashing

 Position Sharing  Double-path Hashing  Path Shortening

A novel hash-collision resolution method resulting in no extra NVM writes

Deliver high performance on space utilization and request latency

Level 4

Level 3

Level 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Observation: The bottom levels provide a few standby positions while
increasing the length of the read path.

Path Shortening: Removing multiple levels in the bottom.

Evaluation: Reserving a small part of levels can also achieve a high
space tilization.
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Physical Storage Structure of Path Hashing
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Physical Storage Structure of Path Hashing

Level 4

Level 3

Level 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Level 4 Level 3 Level 2

An array:
A[4] A[16+4/2] A[16+8+4/2/2]

No pointers
 The nodes in a path can be accessed in parallel for 

insertion, query and deletion
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Experimental Configurations

Gem5: a full system simulator
NVMain: a main memory simulator for NVMs

Datasets: Random Number, Document Word, Fingerprint
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NVM Writes
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Space Utilization
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 Path hashing achieves up to 95% space utilization ratio
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Reserved Levels vs. Space Utilization
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 Reserving a small part of levels can also achieve a high 
space utilization ratio
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Request Latency
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Conclusion

 Existing main hashing schemes usually cause many 
extra writes to NVMs

We propose a write-friendly hashing scheme, path 
hashing, without extra writes while having high 
performance 
 Position sharing
 Double-path hashing
 Path shortening

 Experimental results on gem5 with NVMain
 No extra writes
 Up to 95% space utilization ratio 
 Low request latency
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Thanks! Q&A

Open-source Code: https://github.com/Pfzuo/Path-Hashing
E-mail: pfzuo@hust.edu.cn

Homepage: http://pfzuo.github.io/about/
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