Hibachi: A Cooperative Hybrid Cache with NVRAM and DRAM for Storage Arrays

Ziqi Fan, Fenggang Wu, Dongchul Park¹, Jim Diehl, Doug Voigt², and David H.C. Du *University of Minnesota*, ¹*Intel*, ²*HP Enterprise*

May 18, 2017


Hardware evolution leads to software and system innovation!

The hardware evolution of non-volatile memory (NVRAM)

3D Xpoint (By Intel and Micron)

STT-MRAM (*By Everspin*)

✓ Non-volatile

...

- ✓ Low power consumption
- ✓ Fast (close to DRAM)
- ✓ Byte addressable

How to innovate our software and system to exploit NVRAM technologies?

Many Possible Ways

Caching Systems

Application Upgrade

OS Optimization

Design NVRAM-based caching systems to improve storage performance

Research Contributions

Extend solid state drive lifespan

- → H-ARC (in MSST 2014 [1]) ………………………………

Increase hard disk drive I/O throughput

 \rightarrow I/O-Cache (in MASCOTS 2015 [2]) ……………………………

3

4

Improve disk array performance

Parallel File System

Center for Research in Intelligent Storage

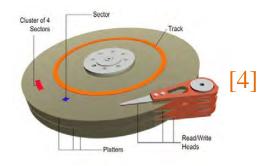
Increase **PFS** checkpointing speed

5

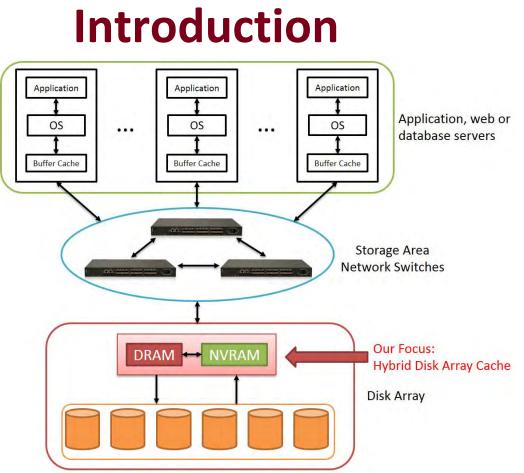
A Cooperative Hybrid Cache with NVRAM and DRAM for Disk Arrays

Outline

- Motivation
- Related Work
- Design Challenges
- Our Approach
- Evaluation
- Conclusion


Introduction

- Despite the rise of SSDs, disk arrays are still the backbone storage, especially for large data centers
- HDDs are much cheaper in capacity/\$ and do not wear out easily



- However, as rotational devices
 - HDDs sequential throughput: ~100MB/s
 - HDDs random throughput : < 1MB/s</p>

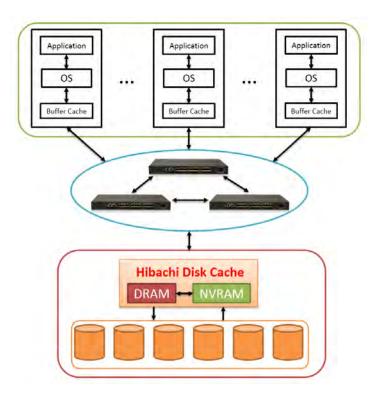
- To improve disk performance, we use NVRAM and DRAM as caching devices
 - Disk cache is much larger than page cache and DRAM is more cost-effective than NVRAM
 - DRAM has lower latency than some types of NVRAM

Center for Research in Intelligent Storage

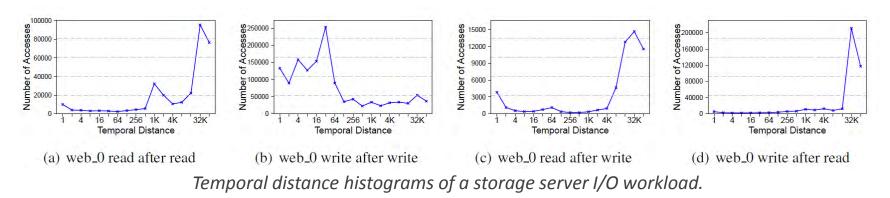
Crux: How to design a hybrid disk cache to fully utilize scarce NVRAM and DRAM resources?

UNIVERSITY OF MINNESOTA Driven to Discover™

Related Work

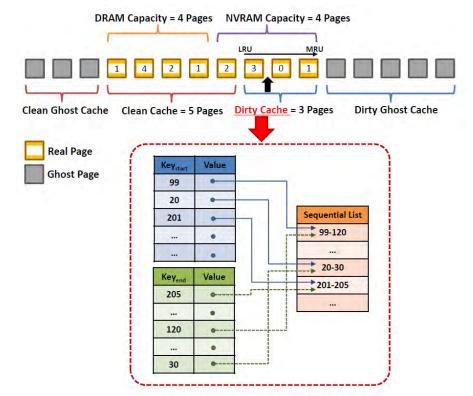

- Cache policies designed for main memory (first-level cache)
 - Not directly applicable to disk cache
 - LRU, ARC[5], H-ARC [1]
- Multilevel buffer cache (including both first-level and secondlevel caches)
 - Concentrate on improving read performance
 - Not considering NVRAM
 - MQ [6], Karma [7]
- Disk cache with DRAM and NVRAM
 - DRAM as read cache and NVRAM as write buffer \rightarrow lack cooperation

Design Challenges


- How to analyze and utilize I/O traces after first-level cache to design disk cache as second-level cache?
- How to utilize DRAM to maximize read performance?
 - Low access latency (high cache hit rate)
- How to utilize NVRAM to maximize write performance?
 - High I/O throughput
- How to exploit the synergy of both NVRAM and DRAM?
 - Help each other out according to workload properties

I/O Workload Characterization of Traces after First-level Cache

- Existing work only characterizes read requests [10]
- On top of existing work, we characterize both read and write requests

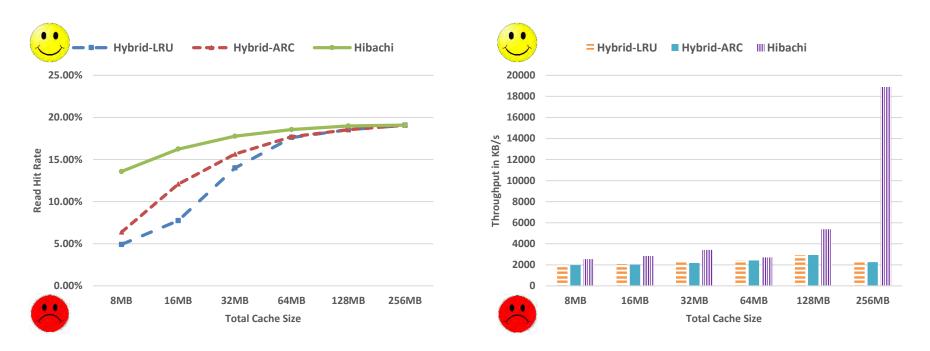


- ✓ For read requests, stack distance is large -> recency is bad
- For write requests, stack distance is relatively short -> recency can be useful for cache design
- ✓ Frequency is useful for both read and write

Hibachi – Cooperative Hybrid Disk Cache

- Our Hibachi's four secret ingredients to make it "taste better"
 - − Right Prediction → Improve cache hit ratio
 - Right Reaction \rightarrow Minimize write traffic and increase read performance
 - Right Adjustment \rightarrow Adaptive to workload
 - Right Transformation \rightarrow Improve I/O throughput

S Center for Research in Intelligent Storage


Evaluation Setup

- Use Sim-ideal [9] to measure read performance
- Use software RAID with six disk drives to measure write performance
- Comparison algorithms:
 - Hybrid-LRU: DRAM is a clean cache for clean pages, and NVRAM is a write buffer for dirty pages. Both caches use the LRU policy.
 - Hybrid-ARC: An ARC-like algorithm to dynamically split NVRAM to cache both clean pages and dirty pages, while DRAM is a clean cache for clean pages.

Evaluation Results

- Hibachi outperforms Hybrid-LRU and Hybrid-ARC in
 - Read hit ratio
 - Write hit ratio
 - I/O throughput

Conclusion

- NVRAM as caching is a challenging and rewarding research topic
- We design Hibachi a hybrid NVRAM and DRAM cache for disk arrays
 - Characterize storage-level workload to get design guidance
 - Our four features make Hibachi standing out
- Hibachi outperforms existing work in both read and write

References (1/2)

- [1] Z. Fan, D. H. C. Du and D. Voigt, "H-ARC: A non-volatile memory based cache policy for solid state drives," 2014 30th Symposium on Mass Storage Systems and Technologies (MSST), Santa Clara, CA, 2014, pp. 1-11.
- [2] Z. Fan, A. Haghdoost, D. H. C. Du and D. Voigt, "I/O-Cache: A Non-volatile Memory Based Buffer Cache Policy to Improve Storage Performance," 2015 IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Atlanta, GA, 2015, pp. 102-111.
- [3] Z. Fan, F. Wu, D. Park, J. Diehl, D. Voigt and D. H. C. Du, "Hibachi: A Cooperative Hybrid Cache with NVRAM and DRAM for Storage Arrays," 2017 33rd Symposium on Mass Storage Systems and Technologies (MSST), Santa Clara, CA, 2017, pp. 1-11.
- [4] Figure from https://technet.microsoft.com/enus/enus/library/dd758814(v=sql.100).aspx
- [5] N. Megiddo and D. S. Modha, "Outperforming LRU with an adaptive replacement cache algorithm," in Computer, vol. 37, no. 4, pp. 58-65, April 2004.

References (2/2)

- [6] Y. Zhou, Z. Chen, and K. Li, "Second-level buffer cache management," IEEE Trans. Parallel Distrib. Syst., vol. 15, pp. 505–519, June 2004.
- [7] G. Yadgar, M. Factor, and A. Schuster, "Karma: Know-it-all replacement for a multilevel cache," in Proceedings of the 5th USENIX Conference on File and Storage Technologies, FAST '07, (Berkeley, CA, USA), pp. 25–25, USENIX Association, 2007.
- [8] M. Woods, "Optimizing storage performance and cost with intelligent caching," tech. rep., NetApp, August 2010.
- [9] Sim-ideal. <u>git@github.com:arh/sim-ideal.git</u>
- [10] Y. Zhou, Z. Chen, and K. Li, "Second-level buffer cache management," IEEE Trans. Parallel Distrib. Syst., vol. 15, pp. 505–519, June 2004.

Questions?

Ziqi Fan fanxx234@umn.edu

