
HPDedup: A Hybrid Prioritized Data Deduplication
Mechanism for Primary Storage in the Cloud

Huijun Wu1,4, Chen Wang2, Yinjin Fu3, Sherif Sakr1, Liming Zhu1,2 and Kai Lu4

The University of New South Wales1

Data61, CSIRO2

PLA University of Science and Technology3

National University of Defence Technology4

Outline
 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

2
18/05/2017

Background

 Primary Storage Deduplication
 Save the storage capacity
 Improve the I/O efficiency

 The state-of-the-art
 Post-processing deduplication

– Perform during off-peak time
 Inline deduplication

– Perform on the write path

318/05/2017

Data blocks
Fingerprint Lookup

Only write unique blocks

Post-processing Deduplication

 The commodity product uses post-processing deduplication [TOS’16]
 Windows Server 2012 [ATC’12]

 Challenges remain for real-world systems
 Off-peak periods may not be enough
 More storage capacity is required
 Duplicate writes shorten the lifespan of storage devices (e.g., SSD)
 Does not help improving the I/O performance, but wastes I/O bandwidth

 Inline deduplication can help
418/05/2017

Inline Deduplication

 Fingerprint look-up is the bottleneck
 On-disk fingerprint table introduces high latency
 Fingerprint table is large and hard to fit in memory
 Cache efficiency is critical

 The state-of-the-art solutions and challenges
 Exploit the temporal locality of workloads [FAST’12][IPDPS’14]

– But temporal locality may not exist [TPDS’17]
 For cloud scenario,

– locality for workloads of different VMs may be quite different
 Workloads may interfere with each other and reduce the cache efficiency

518/05/2017

Outline
 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

6
18/05/2017

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

718/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

1

1

1

of Deduplicated Blocks: 0

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

818/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

1

5

2

of Deduplicated Blocks: 1

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

918/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

4

11

5

of Deduplicated Blocks: 2

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

1018/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

5

12

3

of Deduplicated Blocks: 4

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

1118/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

6

3

6

of Deduplicated Blocks: 5

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.
– 18 duplicate blocks in total, only 6 are identified.

1218/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

8

16

10

of Deduplicated Blocks: 6

Fingerprint Cache

Motivation
 Temporal locality may be weak for workloads

 Histogram for the distribution of distance between duplicate blocks

FIU-mail Cloud-FTP
1318/05/2017

Motivation
 Workloads with different temporal locality interfere with each other

 Using real-world I/O trace. (LRU)

1418/05/2017

of duplicate blocks: FIU-mail > 4*Cloud-FTP
Occupied cache size: FIU-mail < 0.8*Cloud-FTP

Cache resource allocation is unreasonable!

Outline

 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

15
18/05/2017

Hybrid Prioritized Deduplication

 Hybrid inline & post-processing deduplication
 Either post-processing or inline deduplication works well
 Solution: Combine inline and post-processing deduplication together
 Identifying more duplicates by inline caching
 Using post-processing to achieve exact deduplication

 Challenges: Interference compromises the temporal locality of workload,
thus reducing the efficiency of fingerprint caching

 We differentiate workloads (data streams) to improve it

1618/05/2017

Hybrid Prioritized Deduplication

 Prioritize the cache allocation for inline deduplication
 Data stream that contributes more deduplication ratio should get more

cache resources
 For inline phase, deduplication ratio comes from better temporal locality

 How to evaluate temporal locality ?
 Changes dynamically with time
 Accurate estimation is critical to achieve good cache allocation
 Use # of duplicate blocks in N consecutive data blocks (estimation interval)

as an indicator for temporal locality

1718/05/2017

System architecture

1818/05/2017

Estimate the temporal locality for streams and
allocate cache according to this.

On-disk fingerprint table for post-processing
deduplication.

Evaluate the temporal locality

 Simple idea: Count distinct data block fingerprints for streams
 Introduce high memory overhead
 May be comparable to the cache capacity

Estimate rather than count
 Get the number of distinct fingerprints by small portion of samples
 Essentially same as a classical problem ‘How many distinct elements exist in

a set ?’ Origin – Estimate # of species of animal population from samples
[Fisher, JSTOR’1940]

 Sublinear estimator – Unseen Estimation Algorithm [NIPS’13]

1918/05/2017

Estimate the temporal locality

 Using unseen algorithm to estimate LDSS.

2018/05/2017

Estimation Interval I

Time

f1 f2 f3 f4 … f15 f16 f17 f18

Fingerprint Sample Buffer

Reservoir Sampling

Unseen Estimation
Algorithm

LDSS for Interval I

Key points to deploy the estimation

 Unseen algorithm requires uniform sampling
 Each fingerprint should be sampled with the same probability
 We use Reservoir Sampling [TOMS’04]

 Choose a proper estimation interval
 More unique data blocks -> Larger interval
 A good approximation

– Historical inline deduplication ratio
 Adaptive method

2118/05/2017

Differentiate the spatial locality

 Existing deduplication solutions exploit the spatial locality to reduce disk
fragmentation
 perform deduplication on block sequences longer than a fixed threshold.

 Workloads have different sensitivity to the increase of threshold
 Differentiating the workloads achieves better deduplication ratio with less

fragmentation

2218/05/2017

Insensitive to the
threshold change

Sensitive to the
threshold change

Outline

 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

23
18/05/2017

Evaluation Setup
 Evaluated Systems

 compare with inline (iDedup), post-processing and hybrid (DIODE)
deduplication schemas

 Workloads
 FIU trace (FIU-home, FIU-web and FIU-mail)
 Cloud-FTP (trace we collect from a FTP server by using NBD)

 Mixing workloads as multiple VMs
 Different ratios between good locality (FIU, L) and bad locality (Cloud-FTP,

NL) workloads
 Workload A (L:NL = 3:1), workload B (L:NL = 1:1), workload C (L:NL = 1:3)

2418/05/2017

Evaluation
 Inline deduplication ratio

 Cache size (20MB – 320MB)

 HPDedup improves the inline deduplication ratio (8.04% - 37.75%)
2518/05/2017

Evaluation
 Data written to disks (Comparing with post-processing deduplication)

 HPDedup reduce the data written to disks by 12.78% - 45.08%

2618/05/2017

Evaluation
 Average # of hits for each cached fingerprint

 DIODE [MASCOTS’16] skips files in inline deduplication based on file
extensions

 HPDedup classifies data at finer-grained (stream temporal locality level) so
that the efficiency of inline deduplication can be further improved

2718/05/2017

Evaluation – LDSS Estimation Accuracy

2818/05/2017

Real Normalized LDSS Cache Occupation (without Locality Estimation)

Cache Occupation (with Locality Estimation)

Locality estimation allocates cache resources
according to the temporal locality of streams
and improves the inline deduplication ratio by
12.53%.

Evaluation

2918/05/2017

 Deduplication threshold
 DIODE [MASCOTS’16] does not differentiate workloads.

 HPDedup introduces less fragmentation while achieving higher dedup ratio

Overhead Analysis
 Computational Overhead

 Mainly includes (1) generating the fingerprint histogram and (2) linear
programming of estimation algorithm

 (1) 7ms for 1M fingerprints
 (2) 27ms regardless of the estimation interval size
 More intuitive feeling – ms level overhead for GBs of data writing
 Can be computed asynchronously

 Memory Overhead
 Up to 2.81% of cache capacity for the three workloads

3018/05/2017

Outline
 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

31
18/05/2017

Conclusion
 New hybrid, prioritized data deduplication

 Fusing inline and post-processing deduplication
 Differentiate the temporal and spatial locality of data streams coming from

VMs and applications

 More efficient compared with the state of the art
 Improve the inline deduplication ratio by up to 37.75%
 Reduce the disk capacity requirement by up to 45.08%
 Low computational and memory overhead

3218/05/2017

HPDedup: A Hybrid Prioritized Data Deduplication
Mechanism for Primary Storage in the Cloud

Huijun Wu
The University of New South Wales, Australia

Email: huijunw@cse.unsw.edu.au

3318/05/2017

	HPDedup: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud
	Outline
	Background
	Post-processing Deduplication
	Inline Deduplication
	Outline
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Outline
	Hybrid Prioritized Deduplication
	Hybrid Prioritized Deduplication
	System architecture
	Evaluate the temporal locality
	Estimate the temporal locality
	Key points to deploy the estimation
	Differentiate the spatial locality
	Outline
	Evaluation Setup
	Evaluation
	Evaluation
	Evaluation
	Evaluation – LDSS Estimation Accuracy
	Evaluation
	Overhead Analysis
	Outline
	Conclusion
	HPDedup: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud

