
HPDedup: A Hybrid Prioritized Data Deduplication
Mechanism for Primary Storage in the Cloud

Huijun Wu1,4, Chen Wang2, Yinjin Fu3, Sherif Sakr1, Liming Zhu1,2 and Kai Lu4

The University of New South Wales1

Data61, CSIRO2

PLA University of Science and Technology3

National University of Defence Technology4

Outline
 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

2
18/05/2017

Background

 Primary Storage Deduplication
 Save the storage capacity
 Improve the I/O efficiency

 The state-of-the-art
 Post-processing deduplication

– Perform during off-peak time
 Inline deduplication

– Perform on the write path

318/05/2017

Data blocks
Fingerprint Lookup

Only write unique blocks

Post-processing Deduplication

 The commodity product uses post-processing deduplication [TOS’16]
 Windows Server 2012 [ATC’12]

 Challenges remain for real-world systems
 Off-peak periods may not be enough
 More storage capacity is required
 Duplicate writes shorten the lifespan of storage devices (e.g., SSD)
 Does not help improving the I/O performance, but wastes I/O bandwidth

 Inline deduplication can help
418/05/2017

Inline Deduplication

 Fingerprint look-up is the bottleneck
 On-disk fingerprint table introduces high latency
 Fingerprint table is large and hard to fit in memory
 Cache efficiency is critical

 The state-of-the-art solutions and challenges
 Exploit the temporal locality of workloads [FAST’12][IPDPS’14]

– But temporal locality may not exist [TPDS’17]
 For cloud scenario,

– locality for workloads of different VMs may be quite different
 Workloads may interfere with each other and reduce the cache efficiency

518/05/2017

Outline
 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

6
18/05/2017

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

718/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

1

1

1

of Deduplicated Blocks: 0

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

818/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

1

5

2

of Deduplicated Blocks: 1

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

918/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

4

11

5

of Deduplicated Blocks: 2

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

1018/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

5

12

3

of Deduplicated Blocks: 4

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.

1118/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

6

3

6

of Deduplicated Blocks: 5

Fingerprint Cache

Motivation
 Workloads with different temporal locality interfere with each other

 A toy example.
– 18 duplicate blocks in total, only 6 are identified.

1218/05/2017

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

1 2 3 4 5 6 7 8 9 10 11 1 12 13 3 4 14 15 16 17

1 2 3 1 2 3 1 1 4 5 6 6 6 7 8 9 10 7

1 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9

8

16

10

of Deduplicated Blocks: 6

Fingerprint Cache

Motivation
 Temporal locality may be weak for workloads

 Histogram for the distribution of distance between duplicate blocks

FIU-mail Cloud-FTP
1318/05/2017

Motivation
 Workloads with different temporal locality interfere with each other

 Using real-world I/O trace. (LRU)

1418/05/2017

of duplicate blocks: FIU-mail > 4*Cloud-FTP
Occupied cache size: FIU-mail < 0.8*Cloud-FTP

Cache resource allocation is unreasonable!

Outline

 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

15
18/05/2017

Hybrid Prioritized Deduplication

 Hybrid inline & post-processing deduplication
 Either post-processing or inline deduplication works well
 Solution: Combine inline and post-processing deduplication together
 Identifying more duplicates by inline caching
 Using post-processing to achieve exact deduplication

 Challenges: Interference compromises the temporal locality of workload,
thus reducing the efficiency of fingerprint caching

 We differentiate workloads (data streams) to improve it

1618/05/2017

Hybrid Prioritized Deduplication

 Prioritize the cache allocation for inline deduplication
 Data stream that contributes more deduplication ratio should get more

cache resources
 For inline phase, deduplication ratio comes from better temporal locality

 How to evaluate temporal locality ?
 Changes dynamically with time
 Accurate estimation is critical to achieve good cache allocation
 Use # of duplicate blocks in N consecutive data blocks (estimation interval)

as an indicator for temporal locality

1718/05/2017

System architecture

1818/05/2017

Estimate the temporal locality for streams and
allocate cache according to this.

On-disk fingerprint table for post-processing
deduplication.

Evaluate the temporal locality

 Simple idea: Count distinct data block fingerprints for streams
 Introduce high memory overhead
 May be comparable to the cache capacity

Estimate rather than count
 Get the number of distinct fingerprints by small portion of samples
 Essentially same as a classical problem ‘How many distinct elements exist in

a set ?’ Origin – Estimate # of species of animal population from samples
[Fisher, JSTOR’1940]

 Sublinear estimator – Unseen Estimation Algorithm [NIPS’13]

1918/05/2017

Estimate the temporal locality

 Using unseen algorithm to estimate LDSS.

2018/05/2017

Estimation Interval I

Time

f1 f2 f3 f4 … f15 f16 f17 f18

Fingerprint Sample Buffer

Reservoir Sampling

Unseen Estimation
Algorithm

LDSS for Interval I

Key points to deploy the estimation

 Unseen algorithm requires uniform sampling
 Each fingerprint should be sampled with the same probability
 We use Reservoir Sampling [TOMS’04]

 Choose a proper estimation interval
 More unique data blocks -> Larger interval
 A good approximation

– Historical inline deduplication ratio
 Adaptive method

2118/05/2017

Differentiate the spatial locality

 Existing deduplication solutions exploit the spatial locality to reduce disk
fragmentation
 perform deduplication on block sequences longer than a fixed threshold.

 Workloads have different sensitivity to the increase of threshold
 Differentiating the workloads achieves better deduplication ratio with less

fragmentation

2218/05/2017

Insensitive to the
threshold change

Sensitive to the
threshold change

Outline

 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

23
18/05/2017

Evaluation Setup
 Evaluated Systems

 compare with inline (iDedup), post-processing and hybrid (DIODE)
deduplication schemas

 Workloads
 FIU trace (FIU-home, FIU-web and FIU-mail)
 Cloud-FTP (trace we collect from a FTP server by using NBD)

 Mixing workloads as multiple VMs
 Different ratios between good locality (FIU, L) and bad locality (Cloud-FTP,

NL) workloads
 Workload A (L:NL = 3:1), workload B (L:NL = 1:1), workload C (L:NL = 1:3)

2418/05/2017

Evaluation
 Inline deduplication ratio

 Cache size (20MB – 320MB)

 HPDedup improves the inline deduplication ratio (8.04% - 37.75%)
2518/05/2017

Evaluation
 Data written to disks (Comparing with post-processing deduplication)

 HPDedup reduce the data written to disks by 12.78% - 45.08%

2618/05/2017

Evaluation
 Average # of hits for each cached fingerprint

 DIODE [MASCOTS’16] skips files in inline deduplication based on file
extensions

 HPDedup classifies data at finer-grained (stream temporal locality level) so
that the efficiency of inline deduplication can be further improved

2718/05/2017

Evaluation – LDSS Estimation Accuracy

2818/05/2017

Real Normalized LDSS Cache Occupation (without Locality Estimation)

Cache Occupation (with Locality Estimation)

Locality estimation allocates cache resources
according to the temporal locality of streams
and improves the inline deduplication ratio by
12.53%.

Evaluation

2918/05/2017

 Deduplication threshold
 DIODE [MASCOTS’16] does not differentiate workloads.

 HPDedup introduces less fragmentation while achieving higher dedup ratio

Overhead Analysis
 Computational Overhead

 Mainly includes (1) generating the fingerprint histogram and (2) linear
programming of estimation algorithm

 (1) 7ms for 1M fingerprints
 (2) 27ms regardless of the estimation interval size
 More intuitive feeling – ms level overhead for GBs of data writing
 Can be computed asynchronously

 Memory Overhead
 Up to 2.81% of cache capacity for the three workloads

3018/05/2017

Outline
 Background

 Motivations

 Hybrid Prioritized Deduplication

 Experiment Results

 Conclusion

31
18/05/2017

Conclusion
 New hybrid, prioritized data deduplication

 Fusing inline and post-processing deduplication
 Differentiate the temporal and spatial locality of data streams coming from

VMs and applications

 More efficient compared with the state of the art
 Improve the inline deduplication ratio by up to 37.75%
 Reduce the disk capacity requirement by up to 45.08%
 Low computational and memory overhead

3218/05/2017

HPDedup: A Hybrid Prioritized Data Deduplication
Mechanism for Primary Storage in the Cloud

Huijun Wu
The University of New South Wales, Australia

Email: huijunw@cse.unsw.edu.au

3318/05/2017

	HPDedup: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud
	Outline
	Background
	Post-processing Deduplication
	Inline Deduplication
	Outline
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Outline
	Hybrid Prioritized Deduplication
	Hybrid Prioritized Deduplication
	System architecture
	Evaluate the temporal locality
	Estimate the temporal locality
	Key points to deploy the estimation
	Differentiate the spatial locality
	Outline
	Evaluation Setup
	Evaluation
	Evaluation
	Evaluation
	Evaluation – LDSS Estimation Accuracy
	Evaluation
	Overhead Analysis
	Outline
	Conclusion
	HPDedup: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud

