
Memory-Driven Computing

Dr. Kimberly Keeton

Distinguished Technologist
kimberly.keeton@hpe.com

MSST 2017

mailto:kimberly.keeton@hpe.com

Need answers quickly and on bigger data
By 2020:

0.3 0.8 1.2 1.8
4.4

7.9

15.8

31.6

44

0

5

10

15

20

25

30

35

40

45

50

2006 2008 2010 2012 2014 2016 2018 2020

Data nearly doubles every two years (2013-20)

Data growth

D
at

a
(z

et
ta

by
te

s)

100B
infrastructure devices

8B
people

20B
connected devices

Time to result (seconds)

Va
lu

e
of

 a
na

ly
ze

d
da

ta
 ($

)

10-2 104 106102100

©Copyright 2017 Hewlett Packard Enterprise Company

System of record

A need for something new…

Electronic record of event
Ex: banking
Mediated by people
Structured data
Accurate, traceable

©Copyright 2017 Hewlett Packard Enterprise Company

System of record System of engagement

A need for something new…

Electronic record of event Interactive apps for humans
Ex: banking Ex: social media
Mediated by people Interactive
Structured data Unstructured data
Accurate, traceable Complete accuracy not required

©Copyright 2017 Hewlett Packard Enterprise Company

System of record System of engagement System of action

A need for something new…

Electronic record of event Interactive apps for humans Machines making decisions
Ex: banking Ex: social media Ex: smart and self-driving cars
Mediated by people Interactive Real time, low latency
Structured data Unstructured data Structured and unstructured data
Accurate, traceable Complete accuracy not required Accurate and traceable

©Copyright 2017 Hewlett Packard Enterprise Company

The New Normal: traditional compute not keeping up

Transistors (thousands)

Single-thread Performance (SpecINT)

Frequency (MHz)

Typical Power (Watts)

Number of Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Microprocessors
107

106

105

104

103

102

101

100

Future microprocessor improvements limited by sunset of Moore’s Law

©Copyright 2017 Hewlett Packard Enterprise Company

The New Normal: memory isn’t keeping up

+14.2%/year
2x / 5.2 years

+24.5%/year
2x / 3.2 years

J. McCalpin, “Memory Bandwidth and System Balance in HPC Systems,” Invited talk at SC16, 2016.
http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

Processors are becoming increasingly imbalanced with respect to data motion

Ba
la

nc
e

R
at

io
 (F

LO
PS

 /
m

em
or

y
ac

ce
ss

)

Date of Introduction

©Copyright 2017 Hewlett Packard Enterprise Company

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

From Processor-Centric Computing…

SoC
SoC

SoC

So
C

Memory

M
em

ory

Memory

M
em

or
y Memory

+
Fabric

SoC

SoC

SoC

So
C

…to Memory-Driven Computing

©Copyright 2017 Hewlett Packard Enterprise Company

Core Memory-Driven Computing components

Fast, persistent
memory Fast memory fabric Task-specific

processing New software

©Copyright 2017 Hewlett Packard Enterprise Company

Outline

– Overview: Memory-Driven Computing
– Technology trends enabling Memory-Driven Computing
– How Memory-Driven Computing benefits applications
– How do we get to Memory-Driven Computing

– Data management and programming models

– Memory-Driven Computing challenges for the MSST community
– Summary

©Copyright 2017 Hewlett Packard Enterprise Company

Technology trends enabling
Memory-Driven Computing

Memory + storage hierarchy technologies
LATENCY

SRAM
(caches)

DDR
DRAM

SSDs

DISKs

HBM
DRAM

NVM

ms

MBs 10-100GBs 1-10TBs 10-100TBs

1-10ns

50-100ns

1-10µs

50ns

+ Massive b/w

1TBs

200ns-1µs

Storage class memory

CAPACITY

Two new
entries!

©Copyright 2017 Hewlett Packard Enterprise Company

Non-Volatile Memory (NVM)

– Persistently stores data
– Access latencies comparable to DRAM
– Byte addressable (load/store) rather than block addressable (read/write)
– More energy efficient and denser than DRAM

Resistive RAM
(Memristor)

3D Flash

Phase-Change Memory

Spin-Transfer Torque
MRAM

ns μs

Latency

Haris Volos, et al. "Aerie: Flexible File-System
Interfaces to Storage-Class Memory," Proc.
EuroSys 2014.

©Copyright 2017 Hewlett Packard Enterprise Company

Interconnect advances

– Photonic interconnects
– Ex: Vertical Cavity Surface Emitting Lasers (VCSELs)
– 4 λ Coarse Wavelength Division Multiplexing (CWDM)
– 100Gbps/fiber; 1.2Tbps with 12 fibers
– Low power ~ < 5pJ/bit (target)
– Low cost << $1/Gbps

– High-radix switches enable low-diameter network
topologies
– Pooled NVM will appear at near-uniform low latency

Source: J. H. Ahn, et al., “HyperX: topology, routing, and
packaging of efficient large-scale networks,” Proc. SC, 2009.

VCSEL
optics

HyperX
topology

©Copyright 2017 Hewlett Packard Enterprise Company

Gen-Z: open systems interconnect standard
http://www.genzconsortium.org
– Open standard for memory-semantic interconnect

– Members: 30+ companies covering SoC, memory,
I/O, networking, mechanical, system software, etc.

– Motivation
– Emergence of low-latency storage class memory
– Demand for large capacity, rack-scale resource pools

and multi-node architectures

– Memory semantics
– All communication as memory operations (load/store,

put/get, atomics)

– High performance
– Tens to hundreds GB/s bandwidth
– Sub-microsecond load-to-use memory latency

– Draft spec available for public download I/O

Accelerators

FPGA GPU

CPUs

SoC SoC GPUFPGA

MemoryMemoryMemory Memory

Pooled Memory Network Storage

Direct Attach, Switched, or Fabric Topology

©Copyright 2017 Hewlett Packard Enterprise Company

http://www.genzconsortium.org/

Heterogeneous compute

– Dark silicon effects
– Microprocessor designs are limited by power, not area
– Solution: combination of function blocks that are selectively activated

– Task-specific accelerators augment CPU compute
– Examples: GPUs, FPGAs, ASICs
– Enables higher energy efficiency

HPE Edgeline
ProLiant m710x

©Copyright 2017 Hewlett Packard Enterprise Company

http://download.intel.com/newsroom/kits/core/4thgen/gallery/images/Iris_Pro_Partner.zip
http://download.intel.com/newsroom/kits/core/4thgen/gallery/images/Iris_Pro_Partner.zip

Putting it all together: Memory-Driven Computing

– Converging memory and storage
– Byte-addressable NVM replaces hard drives and SSDs

– Resource disaggregation leads to high capacity shared memory pool
– Fabric-attached memory pool is accessible by all compute resources
– Low diameter networks provide near-uniform low latency

– Distributed heterogeneous compute resources

– Local volatile memory provides lower latency, high performance tier

– Software
– Memory-speed persistence
– Direct, unmediated access to all fabric-attached NVM across the memory

fabric
– Non-coherent accesses between compute nodes

Local DRAM

Local DRAM

Local DRAM

Local DRAM

SoC

SoC

SoC

SoC

NVM

NVM

NVM

NVM

Fabric-
Attached

Memory Pool

C
om

m
un

ic
at

io
ns

 a
nd

 m
em

or
y

fa
br

ic

N
et

w
or

k

©Copyright 2017 Hewlett Packard Enterprise Company

Memory-Driven Computing in context

Shared nothing

Local DRAM

Local DRAM

Local NVM

Local NVM

Local DRAM

Local DRAM

Local NVM

Local NVM

N
et

w
or

k

SoC

SoC

SoC

SoC

Shared everything

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

N
et

w
or

k

Physical
Server

C
oh

er
en

t
In

te
rc

on
ne

ct

Physical
Server

Physical
Server

©Copyright 2017 Hewlett Packard Enterprise Company

Memory-Driven Computing in context

Shared nothing

Local DRAM

Local DRAM

Local NVM

Local NVM

Local DRAM

Local DRAM

Local NVM

Local NVM

N
et

w
or

k

SoC

SoC

SoC

SoC

Shared everything

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

N
et

w
or

k

Physical
Server

C
oh

er
en

t
In

te
rc

on
ne

ct

Physical
Server

Physical
Server

Local DRAM

Local DRAM

Local DRAM

Local DRAM

SoC

SoC

SoC

SoC

Shared something

NVM

NVM

NVM

NVM

Fabric-
Attached

Memory Pool

C
om

m
un

ic
at

io
ns

 a
nd

 m
em

or
y

fa
br

ic

N
et

w
or

k

©Copyright 2017 Hewlett Packard Enterprise Company

How Memory-Driven Computing
benefits applications

Memory-Driven Computing benefits applications

Memory is shared Memory is large

Memory is persistent

Communicate
thru memory

Unpartitioned
datasets

In-memory
indexes

Pre-compute,
memoize
analyses

No storage overheads

Fast
checkpointing

No recalculations

©Copyright 2017 Hewlett Packard Enterprise Company

Large in-memory processing for Spark
Spark with Superdome X

Our approach:

– In-memory data shuffle

– Off-heap memory management
– Reduce garbage collection overhead
– Exploit large NVM pool for data caching of

per-iteration data sets

– Use case: predictive analytics using GraphX

– Superdome X: 240 cores, 12 TB DRAM
Dataset 2: synthetic
1.7 billion nodes
11.4 billion edges

Spark for The Machine: 300 sec
Spark: does not complete

Dataset 1: web graph
101 million nodes
1.7 billion edges

Spark for
The Machine

Spark

201 sec

13 sec

15X
faster

https://github.com/HewlettPackard/sparkle
https://github:com/HewlettPackard/sandpiper

©Copyright 2017 Hewlett Packard Enterprise Company

https://github.com/HewlettPackard/sparkle
https://github:com/HewlettPackard/sandpiper

1000000

100000

10000

1000

100

10

1

Response time in ms
(log scale)

Problem size in millions of images

80 160 320 640 800

Extreme similarity search
Buying speed with large persistent memory

– Search for similar items in high-dimensional space
– Ex: image search, e-commerce fraud mitigation

– Linear scan over feature vectors too slow for
interactive queries

– Memory-Driven Computing: locality-sensitive hashing
– Partition data, build per-partition index, search indexes in

parallel, aggregate results
– Index size depends on desired accuracy: typically large

– Comparison points
– Disk-based platform using Hadoop
– In-memory: linear search on feature vectors in DRAM
– Simulated MDC: locality-sensitive hashing indexes in

emulated fabric-attached NVM

– MDC outperforms alternatives by orders of magnitude

In-memory

Simulated MDC
(Per-partition NVRAM usage)

Disk-based

0.2
TB

0.5
TB

1.3
TB

3.5
TB

6
TB

8800 x

20 x

K. Viswanathan, M. Kim, J. Li, M. Gonzalez, “A memory-driven computing approach to high-
dimensional similarity search,” Hewlett Packard Labs Technical Report HPE-2016-45, May 2016.
Open source coming soon at https://www.labs.hpe.com/the-machine/the-machine-distribution ©Copyright 2017 Hewlett Packard Enterprise Company

https://www.labs.hpe.com/the-machine/the-machine-distribution

Large-scale graph inference

– Large-scale graph inference
– Compute probabilities across whole graph

based on a small known set of vertices
– Popular algorithms like belief propagation,

Gibbs sampling, label propagation
– Ex: malware detection, online advertising

– Challenges
– Expensive: random data accesses, locking,

CPU operations
– Network-based synchronization overheads for

distributed graph processing

? State

? State
M evil.comHost1

Host2

hpe.comHost3

any.com

Benign State

Malicious State

? State

? State

Infer the unknown
vertex state:
Malicious or not ?

Repeat

Until Converge
©Copyright 2017 Hewlett Packard Enterprise Company

Large-scale graph inference

– Memory-Driven Computing approach
– Maximize sequential memory operations
– Lock-free vertex updates avoid lock overheads
– Asynchronous coordination through fabric-attached

memory minimizes synchronization overheads of
vertex states

– Comparison on Superdome X
– 240 cores, 12TB DRAM
– Fabric-attached memory surrogate

– Memory-Driven Computing achieves orders of
magnitude improvements

In
fe

re
nc

e
tim

e
(1

00
 it

er
at

io
ns

) (
se

c) 7700

60
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

200M vertices

GraphLab LSGI

F. Chen, M. Gonzalez, et al., “Billion node graph inference: iterative
processing on The Machine,” Hewlett Packard Labs Technical Report
HPE-2016-101, December 2016.

128 x

©Copyright 2017 Hewlett Packard Enterprise Company

Memory-Driven Monte Carlo (MC) simulations

Step 1: Create a parametric model y = f(x1,…,xk)
Step 2: Generate a set of random inputs
Step 3: Evaluate the model and store the results
Step 4: Repeat steps 2 and 3 many times
Step 5: Analyze the results

Traditional Memory-Driven
Replace steps 2 and 3 with look-ups, transformations
• Pre-compute representative simulations and store

in memory
• Use transformations of stored simulations instead

of computing new simulations from scratch

Model Results
Generate/
Evaluate/

Store

Many times

Model ResultsLook-ups/
Transform

©Copyright 2017 Hewlett Packard Enterprise Company

Experimental comparison: Memory-Driven MC vs. traditional MC
Speed of option pricing and risk management

Option pricing
S&P 500 call option

Value-at-Risk
Portfolio of 10000 products with
500 correlated underlying assets
Time horizon: 14 days

1

10

100

1000

10000

100000

1000000

10000000

Option Pricing Value-at-Risk

Valuation time (milliseconds)

Traditional MC Memory-Driven MC

~10 200x
~8 600x

©Copyright 2017 Hewlett Packard Enterprise Company

Performance possible with Memory-Driven programming

In-memory analytics

15x
faster

Completely rethinkModify existing
frameworks

Similarity search

20x
faster

Financial models

8,000x
faster

Large-scale
graph inference

100x
faster

New algorithms

©Copyright 2017 Hewlett Packard Enterprise Company

How might Memory-Driven Computing benefit HPC applications?

Memory is shared Memory is large

Memory is persistent

In-memory
collectives

Single copy of
read-only data

Uncertainty
quantification

Simultaneously
explore multiple

alternatives

Fast checkpointing

Fast visualization,
verification

No explicit data loading

Memoized
analyses

In-situ analytics
& compute
steering

©Copyright 2017 Hewlett Packard Enterprise Company

How do we get to
Memory-Driven

Computing?

The Machine program: Memory Fabric Testbed
Compute

SOC Fabric BridgeFabric Attached Memory
(FAM)

Memory Fabric
Media Controller Local Memory

©Copyright 2017 Hewlett Packard Enterprise Company

SOC

Bridge

“Private” memory

Fabric-attached
memory

SOC

Bridge

“Private” memory

Fabric-attached
memory

How fabric-attached memory works

2-4
TB

2-4
TB

Allows a compute node
to access any part of the
fabric-attached memory
pool

©Copyright 2017 Hewlett Packard Enterprise Company

SOC

Bridge

“Private” memory

SOC

Bridge

“Private” memory

How fabric-attached memory works

2-4
TB

2-4
TB

Allows a compute node
to access any part of the
fabric-attached memory
pool

Fabric-attached
memory

Fabric-attached
memory

©Copyright 2017 Hewlett Packard Enterprise Company

SOC

Bridge

“Private” memory

SOC

Bridge

“Private” memory

How fabric-attached memory works

2-4
TB

2-4
TB

Allows a compute node
to access any part of the
fabric-attached memory
pool

Fabric-attached
memory

Fabric-attached
memory

©Copyright 2017 Hewlett Packard Enterprise Company

Opportunities to rethink the whole software stack

Hardware

Operating System

Applications

Management
Services

Data Management & Programming Frameworks

©Copyright 2017 Hewlett Packard Enterprise Company

Linux for The Machine

Hardware

Applications

Data Management & Programming Frameworks

Node Operating System

Persistent
Memory Library

(pmem.io)

Librarian File System (LFS)

Fabric attached memory (FAM)
atomics library

Linux
(L4TM)

Management
Services

Librarian

Open sourced components

• L4TM: Linux modifications to
support fabric-attached
persistent memory

• FAM atomics primitives to handle
sharing across nodes

• Pmem.io modifications to
support non-coherent access

• LFS exposes fabric-attached
memory as mmap’d shared FS

• Librarian for cross-node fabric
memory allocation

https://github.com/FabricAttachedMemory
©Copyright 2017 Hewlett Packard Enterprise Company

https://github.com/FabricAttachedMemory

SpaceJMP: Programming with Multiple Virtual Address Spaces
• Virtual address space as first-class citizen
• Process can have multiple virtual address spaces

• Efficient safe programming and sharing for huge memories
• Data sharing and communication between processes
• Versioning and checkpointing
• Co-design between OS, programming languages, compilers, and runtimes
• Prototype implementations in BSD, Linux, and Barrelfish

I. El Hajj, et al. “SpaceJMP: Programming with Multiple Virtual Address Spaces,” Proc. Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2016.

©Copyright 2017 Hewlett Packard Enterprise Company

Data management and programming frameworks

Hardware

Operating System

Applications

Management
Services

Data Management & Programming Frameworks
Fast optimistic

engine
Fault-tolerant
programming

Managed data
structures

Open sourced components

©Copyright 2017 Hewlett Packard Enterprise Company

Traditional databases

–Example: A database (write) transaction

• Traditional databases struggle
with big & fast data

• 90% of a database transaction
is overhead

• Memory-semantics non-volatile
memory: up to 10x improvement

Other

Buffer manager

Latching

Locking

Logging

Btree 8.1%

21.0%

18.7%

10.2%

29.6%

12.3%

S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker, “OLTP Through the
Looking Glass, and What We Found There,” Proc. SIGMOD, 2008.

©Copyright 2017 Hewlett Packard Enterprise Company

Fast optimistic engine for data unification services

–Open-source, from-scratch database engine designed to
– Take advantage of large multi-core machines
– Manipulate data both in DRAM and NVM

–Fully ACID, serializable database kernel
– Can be embedded in applications as a library
– Simplified in-memory applications

–Designed to eliminate scalability bottlenecks
– Lightweight optimistic concurrency control
– Decentralized logs are SoC-friendly
– Design maximizes NVM bandwidth and endurance

H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. SIGMOD, 2015.

©Copyright 2017 Hewlett Packard Enterprise Company

Fast optimistic engine performance

– Scalable up to tens of SoCs
– Tested scale: Superdome X: 12 TB DRAM, 240 cores

– Efficiently handles datasets larger than DRAM

– Orders of magnitude faster when compared to
state-of-the-art in-memory engines

– Open source code, documentation and papers at
https://github.com/HewlettPackard/foedus

©Copyright 2017 Hewlett Packard Enterprise Company

H. Kimura, A. Simitsis, K. Wilkinson, “Janus: Transactional processing of navigational and
analytical graph queries on many-core servers,” Proc. CIDR, 2017.

H. Kimura, “FOEDUS: OLTP engine for a thousand cores and
NVRAM,” Proc. SIGMOD, 2015.

https://github.com/HewlettPackard/foedus

Do we need separate data representations?

In-storage durability
+ Separate object and persistent formats

– Programmability and performance issues
– Translation code error-prone and insecure

In-memory durability
+ In-memory objects are durable throughout
+ Byte-addressability simplifies programmability
+ Low ld/st latencies offer high performance

– Persistent does not mean consistent!

Serialize

Deserialize

In-memory
objects File or

database

CPU

Caches

DRAM NVM

©Copyright 2017 Hewlett Packard Enterprise Company

NVM-aware application programming
Why can’t I just write my program, and have all my data be persistent?

What if I crash here?

Consider a simple banking program (just two accounts):
double accounts[2];

I want to transfer money between accounts. Naïve implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;
accounts[to] += amount;

}

©Copyright 2017 Hewlett Packard Enterprise Company

NVM-aware application programming
Why can’t I just write my program, and have all my data be persistent?

What if I crash here?

Consider a simple banking program (just two accounts):
double accounts[2];

I want to transfer money between accounts. Naïve implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;
accounts[to] += amount;

}

©Copyright 2017 Hewlett Packard Enterprise Company

NVM-aware application programming
Why can’t I just write my program, and have all my data be persistent?

What if I crash here?

Processor caches are still volatile
Crashes cause corruption, which prevents us from merely restarting the computation

Consider a simple banking program (just two accounts):
double accounts[2];

I want to transfer money between accounts. Naïve implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;
accounts[to] += amount;

}

©Copyright 2017 Hewlett Packard Enterprise Company

Manual solution

• Need code that plays back
undo log on restart

• Getting this to work with
threads and locks is very hard

• Really want to optimize it
• Very unlikely application

programmers will get it right

persistent double accounts[2];
transfer(int from, int to, double amount) {
<save old value of accounts[from] in undo log>;
<flush log entry to NVM>

accounts[from] -= amount;
<save old value of accounts[to] in undo log>;
<flush log entry to NVM>

accounts[to] += amount;
<flush all other persistent stores to NVRAM>
<clear and flush log>
}

©Copyright 2017 Hewlett Packard Enterprise Company

Fault-tolerant programming model for non-volatile memory
Atlas

– Programmer distinguishes persistent and transient data

– Persistent data lives in a “persistent region”
– E.g., in pseudo-file-system in NVM
– Directly mapped into process address space (no DRAM

buffers)
– Accessed via CPU loads and stores

– Programmer writes ordinary multithreaded code
– Automatic durability support at a fine granularity, complete with

recovery code
– Supports consistency of durable data derived from

concurrency constructs

– Open source code available at
https://github.com/HewlettPackard/Atlas

Persistent
Region API

Consistency
API

Atlas
library

User Program

Instrumented
User Program

Persistent Data

Compile

Execute

Recover

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory
Consistency,” Proc. Object-Oriented Programming, Systems, Languages & Applications (OOPSLA), 2014.

©Copyright 2017 Hewlett Packard Enterprise Company

https://github.com/HewlettPackard/Atlas

Fault-tolerant programming model for non-volatile memory
NVthreads

– Approach: multi-process execution + redo logs + intercept lock operations

– Drop-in replacement for the pthreads library

T. Hsu, H. Brugner, I. Roy, K. Keeton, P. Eugster, “NVthreads: Practical Persistence for
Multi-threaded Applications,” Proc. EuroSys, 2017.
Open source code at https://github.com/HewlettPackard/nvthreads

– Use synchronization points to infer consistent
regions ([Atlas, OOPSLA14])
– Does not require applications to use transactions

– Execute multithreaded program as multi-process
program ([Dthreads, SOSP11])
– Process memory buffers uncommitted writes

– Track data modifications at page granularity
– Amortizes logging overhead vs fine-grained tracking

©Copyright 2017 Hewlett Packard Enterprise Company

https://github.com/HewlettPackard/nvthreads

Managed Data Structures (MDS)
Simplify programming on persistent in-memory data

– Ease of Programming
– Programmer manages only application-level data

structures
– MDS data structures are automatically persisted in NVM

– APIs in multiple programming languages: Java, C++
– Programmer access through references to data
– Direct reads and writes

– Ease of Data Sharing
– Just pass a reference

– Each program treats the data as if it was local to the program

– High-level concurrency controls
– Ensure consistent data in the face of data sharing by multiple

threads/processes

Managed Space

Process 1 Process 2

Java, C++
simultaneously

App-level data
structures: Record,
Array, Map, Set,
Graph, List, Queue,
. . .

©Copyright 2017 Hewlett Packard Enterprise Company

Isolation contexts support safe data sharing

Non-blocking transactions Zero-copy snapshots

Parent view

Live child view

Snapshot child view

Consumer update transactions

Business Intelligence analytics

Conflict resolution

©Copyright 2017 Hewlett Packard Enterprise Company

Fewer software layers
Traditional Database System Managed Data Structures

Application

Database client

Database server

Filesystem

Object → Relation

Application

MDS Runtime

Open source code at https://github.com/HewlettPackard/mds
©Copyright 2017 Hewlett Packard Enterprise Company

https://github.com/HewlettPackard/mds

The Machine Distribution
Software stack for Memory-Driven Computing

Machine (Prototype) hardware

The Machine Distribution

Node Operating System

Persistent
Memory Library

(pmem.io)

Librarian File System (LFS)

Fabric attached memory
atomics library

Linux
(L4TM)

Example Applications

Management
Services

Librarian

Data Management & Programming Frameworks
Fast optimistic

engineSPARKLE

Emulation/Simulation Tools
Performance

emulation for NVM
Fabric attached

memory emulation

X86 emulation hardware Open sourced components

Fault-tolerant
programming

Managed data
structures

Programming and
analytics tools
Operating system support
Emulation/simulation tools

Memory
managers

https://github.com/HewlettPackard/mdc-toolkit
https://www.labs.hpe.com/the-machine/the-machine-distribution

©Copyright 2017 Hewlett Packard Enterprise Company

https://github.com/HewlettPackard/mdc-toolkit
https://www.labs.hpe.com/the-machine/the-machine-distribution

Memory-Driven Computing
challenges for the MSST community

What does software expect from fabric-attached NVM?

–If fabric-attached NVM is the new storage…
it must safely remember persistent data.

–Persistent data should be stored:
– Reliably, in the face of failures
– Securely, in the face of exploits
– In a cost-effective manner
– Using a data access API that’s most natural for the device characteristics

©Copyright 2017 Hewlett Packard Enterprise Company

Storing data reliably, securely and cost-effectively
The problem

– Potential concerns about using fabric-attached NVM to safely store persistent data:
– NVM failures may result in loss of persistent data
– Persistently data may be stolen

– Time to revisit traditional storage services
– Ex: replication, erasure codes, encryption, compression, deduplication, wear leveling, snapshots

– New challenges:
– Need to operate at memory speeds, not storage speeds
– Traditional solutions (e.g., encryption, compression) complicate direct access
– Space-efficient redundancy for NVM

©Copyright 2017 Hewlett Packard Enterprise Company

Storing data reliably, securely and cost-effectively
Potential solutions

– Software implementations can trade performance for reliability, security and cost-effectiveness
– But will diminish benefits from faster technologies

– Memory-side hardware acceleration
– Memory speeds may demand acceleration (e.g., DMA-style data movement, memset, encryption, compression)
– What memory-side acceleration functions strike good balance between application performance and generality?
– Where should memory-side acceleration execute (e.g., compute node, fabric controller, media controller, media)?

– Wear leveling for fabric-attached non-volatile memory
– Fabric-attached NVM is natural place to store shared coordination state.
– Repeated NVM writes may exacerbate device wear issues
– What’s the right balance between (hardware-assisted) memory-side wear leveling and software techniques?

– Fabric-attached non-volatile memory diagnostics
– What is the equivalent of Self-Monitoring, Analysis and Reporting Technology (SMART) for NVM?

©Copyright 2017 Hewlett Packard Enterprise Company

Memory + storage hierarchy technologies
LATENCY

SRAM
(caches)

DDR
DRAM

SSDs

DISKs

On-
package
DRAM

NVM

ms

MBs 10-100GBs 1-10TBs 10-100TBs

1-10ns

50-100ns

1-10µs

50ns

1TBs

200ns-1µs

Storage class memory

CAPACITY

Load/store memory won’t be the most cost-
effective “forever” storage for cold data

©Copyright 2017 Hewlett Packard Enterprise Company

Memory + storage hierarchy – a usage view (residence)
LATENCY

SRAM
(caches)

DDR
DRAM

SSDs

DISKs

On-
package
DRAM

NVM

ms

MBs 10-100GBs 1-10TBs 10-100TBs

1-10ns

50-100ns

1-10µs

50ns

1TBs

200ns-1µs

CAPACITY

DURABLE
(weeks months)

SCRATCH/
EPHEMERAL
(seconds)

PERSISTENT
to failures
(hours days)

ARCHIVE
(years)

©Copyright 2017 Hewlett Packard Enterprise Company

Memory + storage hierarchy – a usage view (ownership)
LATENCY

SRAM
(caches)

DDR
DRAM

SSDs

DISKs

On-
package
DRAM

NVM

ms

MBs 10-100GBs 1-10TBs 10-100TBs

1-10ns

50-100ns

1-10µs

50ns

1TBs

200ns-1µs

CAPACITY

DURABLE
(weeks months)

SCRATCH/
EPHEMERAL
(seconds)

PERSISTENT
to failures
(hours days)

ARCHIVE
(years)

NODE
LOCAL

SHARED

How to manage multi-tiered hierarchy,
to ensure data is in “right” tier?

©Copyright 2017 Hewlett Packard Enterprise Company

The appropriate API for the technology
LATENCY

SRAM
(caches)

DDR
DRAM

SSDs

DISKs

On-
package
DRAM

NVM

ms

MBs 10-100GBs 1-10TBs 10-100TBs

1-10ns

50-100ns

1-10µs

50ns

1TBs

200ns-1µs

Storage class memory

CAPACITY

Memory (load/store cachelines, atomics) API
Note: needs to include entire data path (i.e., load-to-use)

I/O (read/write, get/put blocks) API
Need to amortize access times over larger data blocks

©Copyright 2017 Hewlett Packard Enterprise Company

The appropriate API for the technology
– Adapt access control

– As access granularity gets smaller, access control enforcement needs to adjust
– Potential solutions: ISA-based capabilities provide fine-grained access control and protection

– Support new failure models
– I/O-aware applications are written to tolerate storage failures
– Traditional memory-aware applications assume loads and stores will succeed
– Memory-driven computing brings new memory error models

– Ex: fabric errors may lead to load/store failures, which may be visible only after the originating instruction

– Need to provide reasonable reporting and handling of memory errors, so software can tolerate unreliable memory
– Need ability to update data in persistent memory from one consistent state to another (e.g., checkpoints, snapshots)

– Assure that “wider” memory APIs don’t lead to inadvertent data corruption or loss
– “Narrow” storage APIs require explicit action for persistence, but “wider” memory APIs allow stores to persist data
– Need to ensure wider memory-based APIs for persistence don’t increase errors and data corruption

©Copyright 2017 Hewlett Packard Enterprise Company

Research publication highlights...
– R. Achermann, C. Dalton, P. Faraboschi, M. Hoffman, D. Milojicic, G. Ndu, A. Richardson, T. Roscoe, A. Shaw, R. Watson. “Separating Translation from Protection in Address Spaces with Dynamic

Remapping,” Proc. 16th Workshop on Hot Topics in Operating Systems (HotOS XVI), 2017.
– T. Hsu, H. Brugner, I. Roy, K. Keeton, P. Eugster. “NVthreads: Practical Persistence for Multi-threaded Applications,” Proc. ACM EuroSys, 2017.
– S. Nalli, S. Haria, M. Swift, M. Hill, H. Volos, K. Keeton. ”An Analysis of Persistent Memory Use with WHISPER,” Proc. ACM Conf. on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2017.
– H. Kimura, A. Simitsis, K. Wilkinson, “Janus: Transactional processing of navigational and analytical graph queries on many-core servers,” Proc. CIDR, 2017.
– F. Chen, M. Gonzalez, K. Viswanathan, H. Laffitte, J. Rivera, A. Mitchell, S. Singhal. “Billion node graph inference: iterative processing on The Machine,” Hewlett Packard Labs Technical Report HPE-

2016-101, December 2016.
– P. Laplante and D. Milojicic. "Rethinking operating systems for rebooted computing," Proc. IEEE International Conference on Rebooting Computing (ICRC), 2016.
– D. Chakrabarti, H. Volos, I. Roy, and M. Swift. “How Should We Program Non-volatile Memory?”, tutorial at ACM Conf. on Programming Language Design and Implementation (PLDI), 2016.
– K. Viswanathan, M. Kim, J. Li, M. Gonzalez. “A memory-driven computing approach to high-dimensional similarity search,” Hewlett Packard Labs Technical Report HPE-2016-45, May 2016.
– N. Farooqui, I. Roy, Y. Chen, V. Talwar, and K. Schwan. “Accelerating Graph Applications on Integrated GPU Platforms via Instrumentation-Driven Optimization,” Proc. ACM Conf. on Computing

Frontiers (CF’16), May 2016.
– I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, W. Hwu, K. Schwan, T. Roscoe, R. Achermann, P. Faraboschi. “SpaceJMP: Programming with multiple virtual address spaces,” ASPLOS, 2016.
– J. Izraelevitz, T. Kelly, A. Kolli. “Failure-atomic persistent memory updates via JUSTDO logging,” Proc. ACM ASPLOS, 2016.
– D. Milojicic, T. Roscoe. “Outlook on Operating Systems,” IEEE Computer, January 2016.
– K. Bresniker, S. Singhal, and S. Williams. “Adapting to thrive in a new economy of memory abundance,” IEEE Computer, December 2015.
– H. Volos, G, Magalhaes, L, Cherkasova, J, Li. “Quartz: A lightweight performance emulator for persistent memory software,” Proc. of ACM/USENIX/IFIP Conference on Middleware, 2015.
– J. Li, C. Pu, Y. Chen, V. Talwar, and D. Milojicic. “Improving Preemptive Scheduling with Application-Transparent Checkpointing in Shared Clusters,” Proc. Middleware, 2015.
– H. Kimura. “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. ACM SIGMOD, 2015.
– P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic. “Beyond processor-centric operating systems,” Proc. HotOS XV, 2015.
– S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, and T. Roscoe, D. Milojicic. “Not your parents’ physical address space,” Proc. HotOS, 2015.
– F. Nawab, D. Chakrabarti, T. Kelly, C. Morrey III. “Procrastination beats prevention: Timely sufficient persistence for efficient crash resilience,” Proc. Conf. on Extending Database Technology (EDBT),

2015.
– S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile memory in scale-out software,” Proc. ACM Workshop on Rack-scale Computing (WRSC), 2015.
– M. Swift and H. Volos. “Programming and usage models for non-volatile memory,” Tutorial at ACM ASPLOS, 2015.
– D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging locks for non-volatile memory consistency,” Proc. ACM Conf. on Object-Oriented Programming, Systems, Languages & Applications

(OOPSLA), 2014.
– H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, M. Swift. "Aerie: Flexible file-system interfaces to storage-class memory," Proc. EuroSys, 2014.

©Copyright 2017 Hewlett Packard Enterprise Company

For open source code…
https://www.labs.hpe.com/the-machine/the-machine-distribution

− Spark for The Machine:
− https://github.com/HewlettPackard/sparkle

− https://github:com/HewlettPackard/sandpiper

− Fast optimistic engine for data unification services: https://github.com/HewlettPackard/foedus

− Fault-tolerant programming model for non-volatile memory:
– Atlas: https://github.com/HewlettPackard/Atlas
– NVthreads: https://github.com/HewlettPackard/nvthreads

− Managed Data Structures: https://github.com/HewlettPackard/mds

− Memory-Driven Computing toolkit: https://github.com/HewlettPackard/mdc-toolkit

− Linux for The Machine: https://github.com/FabricAttachedMemory

− Fabric Attached Memory Emulation: https://github.com/FabricAttachedMemory/Emulation

− Performance emulation for NVM latency and bandwidth: https://github.com/HewlettPackard/Quartz

©Copyright 2017 Hewlett Packard Enterprise Company

https://www.labs.hpe.com/the-machine/the-machine-distribution
https://github.com/HewlettPackard/sparkle
https://github:com/HewlettPackard/sandpiper
https://github.com/HewlettPackard/foedus
https://github.com/HewlettPackard/Atlas
https://github.com/HewlettPackard/nvthreads
https://github.com/HewlettPackard/mds
https://github.com/HewlettPackard/mdc-toolkit
https://github.com/FabricAttachedMemory
https://github.com/FabricAttachedMemory/Emulation
https://github.com/HewlettPackard/Quartz

Acknowledgments
Ablimit Aji
Alvin AuYoung
Cullen Bash
Susan Benzel
Suparna Bhattacharya
Hans Boehm
Kumud Bhandari
Kirk Bresniker
Helge Brugner
John Byrne
Dhruva Chakrabarti
Fei Chen
Yuan Chen
Al Davis
Izzat El Hajj
Katy Evertson
Paolo Faraboschi
Dan Feldman
Martin Fink
Rich Friedrich
Lokesh Gidra
Daniel Gmach

Maria Teresa Gonzalez
Goetz Graefe
Wey Guy
Terry Hsu
Terence Kelly
Mijung Kim
Hideaki Kimura
Evan Kirshenbaum
Mike Krause
Harumi Kuno
Hernan Laffitte
Christina Lee
Richard Lewington
Jun Li
Mark Lillibridge
Manish Marwah
Alexander Merritt
Dejan Milojicic
April Mitchell
Brad Morrey
Siamak Nazari
Lisa Pallotti
Kivanc Ozonat
Janneth Rivera

Indrajit Roy
Mehmet Sayal
Rob Schreiber
Sergey Serebryakov
Amit Sharma
Alkis Simitsis
Sharad Singhal
John Sontag
Susan Spence
Ram Swaminathan
Mike Tan
Joe Tucek
Alexander Ulanov
Natalia Vassilieva
Krishna Viswanathan
Doug Voigt
Haris Volos
Andrew Wheeler
Kevin Wilkinson
Gerd Zellweger
Yupu Zhang
Linux for The Machine team
Silicon Design Lab
The Machine Architectural Simulator team

©Copyright 2017 Hewlett Packard Enterprise Company

Wrapping up

Memory-Driven Computing
• Fast load/store access to large shared pool of

fabric-attached non-volatile memory

Many opportunities for software innovation
• Operating systems
• Data stores
• Programming models and tools
• Analytics platforms
• Applications
• Algorithms

How would you exploit Memory-Driven
Computing?

SoC
SoC

SoC

So
C

Memory
+

Fabric

https://www.labs.hpe.com/the-machine/

©Copyright 2017 Hewlett Packard Enterprise Company

https://www.labs.hpe.com/the-machine/

	Memory-Driven Computing
	Need answers quickly and on bigger data
	A need for something new…�
	A need for something new…�
	A need for something new…�
	The New Normal: traditional compute not keeping up
	The New Normal: memory isn’t keeping up
	Slide Number 8
	Core Memory-Driven Computing components
	Outline
	Technology trends enabling Memory-Driven Computing
	Memory + storage hierarchy technologies
	Non-Volatile Memory (NVM)
	Interconnect advances
	Gen-Z: open systems interconnect standard�http://www.genzconsortium.org
	Heterogeneous compute
	Putting it all together: Memory-Driven Computing
	Memory-Driven Computing in context
	Memory-Driven Computing in context
	How Memory-Driven Computing benefits applications
	Memory-Driven Computing benefits applications�
	Large in-memory processing for Spark��
	Extreme similarity search
	Large-scale graph inference��
	Large-scale graph inference�
	Memory-Driven Monte Carlo (MC) simulations
	Experimental comparison: Memory-Driven MC vs. traditional MC
	Performance possible with Memory-Driven programming
	How might Memory-Driven Computing benefit HPC applications?�
	Slide Number 30
	Slide Number 31
	The Machine program: Memory Fabric Testbed
	How fabric-attached memory works
	How fabric-attached memory works
	How fabric-attached memory works
	Opportunities to rethink the whole software stack
	Linux for The Machine
	Slide Number 39
	Data management and programming frameworks
	Traditional databases
	Fast optimistic engine for data unification services
	Fast optimistic engine performance
	Do we need separate data representations?
	NVM-aware application programming
	NVM-aware application programming
	NVM-aware application programming
	Manual solution
	Fault-tolerant programming model for non-volatile memory
	Fault-tolerant programming model for non-volatile memory
	Managed Data Structures (MDS)
	Isolation contexts support safe data sharing
	Fewer software layers
	The Machine Distribution
	Memory-Driven Computing challenges for the MSST community
	What does software expect from fabric-attached NVM?
	Storing data reliably, securely and cost-effectively
	Storing data reliably, securely and cost-effectively
	Memory + storage hierarchy technologies
	Memory + storage hierarchy – a usage view (residence)
	Memory + storage hierarchy – a usage view (ownership)
	The appropriate API for the technology
	The appropriate API for the technology
	Research publication highlights... �
	For open source code…�https://www.labs.hpe.com/the-machine/the-machine-distribution
	Acknowledgments
	Wrapping up

