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Need answers quickly and on bigger data
By 2020:
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System of record

A need for something new…

Electronic record of event
Ex: banking
Mediated by people
Structured data
Accurate, traceable
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System of record System of engagement

A need for something new…

Electronic record of event Interactive apps for humans
Ex: banking Ex: social media
Mediated by people Interactive
Structured data Unstructured data
Accurate, traceable Complete accuracy not required
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System of record System of engagement System of action

A need for something new…

Electronic record of event Interactive apps for humans Machines making decisions
Ex: banking Ex: social media Ex: smart and self-driving cars
Mediated by people Interactive Real time, low latency
Structured data Unstructured data Structured and unstructured data
Accurate, traceable Complete accuracy not required Accurate and traceable
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The New Normal: traditional compute not keeping up
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The New Normal: memory isn’t keeping up

+14.2%/year
2x / 5.2 years

+24.5%/year
2x / 3.2 years

J. McCalpin, “Memory Bandwidth and System Balance in HPC Systems,” Invited talk at SC16, 2016. 
http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

Processors are becoming increasingly imbalanced with respect to data motion
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From Processor-Centric Computing…
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…to Memory-Driven Computing
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Core Memory-Driven Computing components

Fast, persistent
memory Fast memory fabric Task-specific

processing New software
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Outline

– Overview: Memory-Driven Computing
– Technology trends enabling Memory-Driven Computing
– How Memory-Driven Computing benefits applications
– How do we get to Memory-Driven Computing

– Data management and programming models

– Memory-Driven Computing challenges for the MSST community 
– Summary
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Technology trends enabling 
Memory-Driven Computing



Memory + storage hierarchy technologies
LATENCY

SRAM 
(caches)

DDR
DRAM

SSDs

DISKs

HBM
DRAM

NVM

ms

MBs 10-100GBs 1-10TBs 10-100TBs

1-10ns

50-100ns

1-10µs

50ns

+ Massive b/w

1TBs

200ns-1µs

Storage class memory

CAPACITY

Two new 
entries!
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Non-Volatile Memory (NVM)

– Persistently stores data
– Access latencies comparable to DRAM
– Byte addressable (load/store) rather than block addressable (read/write)
– More energy efficient and denser than DRAM

Resistive RAM
(Memristor)

3D Flash

Phase-Change Memory

Spin-Transfer Torque 
MRAM

ns μs

Latency

Haris Volos, et al. "Aerie: Flexible File-System 
Interfaces to Storage-Class Memory," Proc. 
EuroSys 2014. 
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Interconnect advances

– Photonic interconnects
– Ex: Vertical Cavity Surface Emitting Lasers (VCSELs) 
– 4 λ Coarse Wavelength Division Multiplexing (CWDM)
– 100Gbps/fiber; 1.2Tbps with 12 fibers
– Low power ~ < 5pJ/bit (target)
– Low cost << $1/Gbps

– High-radix switches enable low-diameter network 
topologies
– Pooled NVM will appear at near-uniform low latency

Source: J. H. Ahn, et al., “HyperX: topology, routing, and 
packaging of efficient large-scale networks,” Proc. SC, 2009.

VCSEL 
optics

HyperX
topology
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Gen-Z: open systems interconnect standard
http://www.genzconsortium.org
– Open standard for memory-semantic interconnect

– Members: 30+ companies covering SoC, memory, 
I/O, networking, mechanical, system software, etc.

– Motivation
– Emergence of low-latency storage class memory
– Demand for large capacity, rack-scale resource pools 

and multi-node architectures

– Memory semantics
– All communication as memory operations (load/store, 

put/get, atomics)

– High performance
– Tens to hundreds GB/s bandwidth
– Sub-microsecond load-to-use memory latency

– Draft spec available for public download I/O

Accelerators

FPGA GPU

CPUs

SoC SoC GPUFPGA

MemoryMemoryMemory Memory

Pooled Memory Network Storage

Direct Attach, Switched, or Fabric Topology
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Heterogeneous compute

– Dark silicon effects
– Microprocessor designs are limited by power, not area
– Solution: combination of function blocks that are selectively activated

– Task-specific accelerators augment CPU compute
– Examples: GPUs, FPGAs, ASICs
– Enables higher energy efficiency

HPE Edgeline  
ProLiant m710x

©Copyright 2017 Hewlett Packard Enterprise Company
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Putting it all together: Memory-Driven Computing

– Converging memory and storage
– Byte-addressable NVM replaces hard drives and SSDs

– Resource disaggregation leads to high capacity shared memory pool
– Fabric-attached memory pool is accessible by all compute resources
– Low diameter networks provide near-uniform low latency

– Distributed heterogeneous compute resources

– Local volatile memory provides lower latency, high performance tier

– Software
– Memory-speed persistence
– Direct, unmediated access to all fabric-attached NVM across the memory 

fabric
– Non-coherent accesses between compute nodes
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SoC
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Memory-Driven Computing in context

Shared nothing
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How Memory-Driven Computing 
benefits applications



Memory-Driven Computing benefits applications

Memory is shared Memory is large

Memory is persistent

Communicate 
thru memory

Unpartitioned 
datasets

In-memory 
indexes

Pre-compute, 
memoize 
analyses

No storage overheads

Fast 
checkpointing

No recalculations
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Large in-memory processing for Spark
Spark with Superdome X

Our approach:

– In-memory data shuffle

– Off-heap memory management
– Reduce garbage collection overhead
– Exploit large NVM pool for data caching of   

per-iteration data sets

– Use case: predictive analytics using GraphX

– Superdome X: 240 cores, 12 TB DRAM
Dataset 2: synthetic
1.7 billion nodes
11.4 billion edges

Spark for The Machine: 300 sec
Spark: does not complete

Dataset 1: web graph
101 million nodes
1.7 billion edges

Spark for 
The Machine

Spark

201 sec

13 sec

15X
faster

https://github.com/HewlettPackard/sparkle
https://github:com/HewlettPackard/sandpiper

©Copyright 2017 Hewlett Packard Enterprise Company 
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Extreme similarity search
Buying speed with large persistent memory

– Search for similar items in high-dimensional space
– Ex: image search, e-commerce fraud mitigation

– Linear scan over feature vectors too slow for 
interactive queries

– Memory-Driven Computing: locality-sensitive hashing 
– Partition data, build per-partition index, search indexes in 

parallel, aggregate results
– Index size depends on desired accuracy: typically large

– Comparison points
– Disk-based platform using Hadoop
– In-memory: linear search on feature vectors in DRAM
– Simulated MDC: locality-sensitive hashing indexes in 

emulated fabric-attached NVM

– MDC outperforms alternatives by orders of magnitude

In-memory

Simulated MDC
(Per-partition NVRAM usage)

Disk-based

0.2
TB

0.5
TB

1.3
TB

3.5
TB

6
TB

8800 x

20 x

K. Viswanathan, M. Kim, J. Li, M. Gonzalez, “A memory-driven computing approach to high-
dimensional similarity search,” Hewlett Packard Labs Technical Report HPE-2016-45, May 2016. 
Open source coming soon at https://www.labs.hpe.com/the-machine/the-machine-distribution ©Copyright 2017 Hewlett Packard Enterprise Company 
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Large-scale graph inference

– Large-scale graph inference
– Compute probabilities across whole graph 

based on a small known set of vertices
– Popular algorithms like belief propagation, 

Gibbs sampling, label propagation
– Ex: malware detection, online advertising

– Challenges
– Expensive: random data accesses, locking, 

CPU operations
– Network-based synchronization overheads for 

distributed graph processing

? State

? State
M evil.comHost1

Host2

hpe.comHost3

any.com

Benign State

Malicious State

? State

? State

Infer the unknown
vertex state: 
Malicious or not ?

Repeat

Until Converge
©Copyright 2017 Hewlett Packard Enterprise Company 



Large-scale graph inference

– Memory-Driven Computing approach
– Maximize sequential memory operations
– Lock-free vertex updates avoid lock overheads
– Asynchronous coordination through fabric-attached 

memory minimizes synchronization overheads of 
vertex states

– Comparison on Superdome X 
– 240 cores, 12TB DRAM
– Fabric-attached memory surrogate

– Memory-Driven Computing achieves orders of 
magnitude improvements
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F. Chen, M. Gonzalez, et al., “Billion node graph inference: iterative 
processing on The Machine,” Hewlett Packard Labs Technical Report 
HPE-2016-101, December 2016.

128 x
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Memory-Driven Monte Carlo (MC) simulations

Step 1: Create a parametric model y = f(x1,…,xk)
Step 2: Generate a set of random inputs
Step 3: Evaluate the model and store the results
Step 4: Repeat steps 2 and 3 many times
Step 5: Analyze the results

Traditional Memory-Driven
Replace steps 2 and 3 with look-ups, transformations 
• Pre-compute representative simulations and store 

in memory
• Use transformations of stored simulations instead 

of computing new simulations from scratch

Model Results
Generate/
Evaluate/

Store

Many times

Model ResultsLook-ups/ 
Transform

©Copyright 2017 Hewlett Packard Enterprise Company 



Experimental comparison: Memory-Driven MC vs. traditional MC
Speed of option pricing and risk management

Option pricing
S&P 500 call option

Value-at-Risk
Portfolio of 10000 products with 
500 correlated underlying assets
Time horizon: 14 days

1

10

100

1000

10000

100000

1000000

10000000

Option Pricing Value-at-Risk

Valuation time (milliseconds)

Traditional MC Memory-Driven MC

~10 200x
~8 600x
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Performance possible with Memory-Driven programming

In-memory analytics

15x
faster

Completely rethinkModify existing 
frameworks

Similarity search

20x
faster

Financial models

8,000x
faster

Large-scale
graph inference

100x
faster

New algorithms

©Copyright 2017 Hewlett Packard Enterprise Company 



How might Memory-Driven Computing benefit HPC applications?

Memory is shared Memory is large

Memory is persistent

In-memory 
collectives

Single copy of 
read-only data

Uncertainty 
quantification

Simultaneously 
explore multiple 

alternatives

Fast checkpointing

Fast visualization, 
verification

No explicit data loading

Memoized 
analyses

In-situ analytics 
& compute 
steering 
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How do we get to 
Memory-Driven 

Computing? 





The Machine program: Memory Fabric Testbed
Compute 

SOC Fabric BridgeFabric Attached Memory 
(FAM)

Memory Fabric 
Media Controller Local  Memory

©Copyright 2017 Hewlett Packard Enterprise Company 



SOC

Bridge

“Private” memory

Fabric-attached 
memory

SOC

Bridge

“Private” memory

Fabric-attached 
memory

How fabric-attached memory works

2-4
TB

2-4
TB

Allows a compute node 
to access any part of the 
fabric-attached memory 
pool
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SOC

Bridge

“Private” memory

SOC

Bridge

“Private” memory

How fabric-attached memory works

2-4
TB

2-4
TB

Allows a compute node 
to access any part of the 
fabric-attached memory 
pool

Fabric-attached 
memory

Fabric-attached 
memory
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SOC

Bridge

“Private” memory

SOC

Bridge

“Private” memory

How fabric-attached memory works

2-4
TB

2-4
TB

Allows a compute node 
to access any part of the 
fabric-attached memory 
pool

Fabric-attached 
memory

Fabric-attached 
memory
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Opportunities to rethink the whole software stack

Hardware

Operating System

Applications

Management
Services

Data Management & Programming Frameworks

©Copyright 2017 Hewlett Packard Enterprise Company 



Linux for The Machine

Hardware

Applications

Data Management & Programming Frameworks

Node Operating System

Persistent 
Memory Library

(pmem.io)

Librarian File System (LFS)

Fabric attached memory (FAM)
atomics library

Linux 
(L4TM)

Management
Services

Librarian

Open sourced components

• L4TM: Linux modifications to 
support fabric-attached 
persistent memory

• FAM atomics primitives to handle 
sharing across nodes

• Pmem.io modifications to 
support non-coherent access

• LFS exposes fabric-attached 
memory as mmap’d shared FS

• Librarian for cross-node fabric 
memory allocation

https://github.com/FabricAttachedMemory
©Copyright 2017 Hewlett Packard Enterprise Company 
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SpaceJMP: Programming with Multiple Virtual Address Spaces
• Virtual address space as first-class citizen
• Process can have multiple virtual address spaces

• Efficient safe programming and sharing for huge memories 
• Data sharing and communication between processes
• Versioning and checkpointing
• Co-design between OS, programming languages, compilers, and runtimes
• Prototype implementations in BSD, Linux, and Barrelfish

I. El Hajj, et al. “SpaceJMP: Programming with Multiple Virtual Address Spaces,” Proc. Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), 2016.

©Copyright 2017 Hewlett Packard Enterprise Company



Data management and programming frameworks

Hardware

Operating System

Applications

Management
Services

Data Management & Programming Frameworks
Fast optimistic 

engine
Fault-tolerant 
programming 

Managed data 
structures

Open sourced components

©Copyright 2017 Hewlett Packard Enterprise Company 



Traditional databases

–Example: A database (write) transaction

• Traditional databases struggle 
with big & fast data

• 90% of a database transaction 
is overhead

• Memory-semantics non-volatile 
memory: up to 10x improvement

Other

Buffer manager

Latching

Locking

Logging

Btree 8.1%

21.0%

18.7%

10.2%

29.6%

12.3%

S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker, “OLTP Through the 
Looking Glass, and What We Found There,” Proc. SIGMOD, 2008.
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Fast optimistic engine for data unification services

–Open-source, from-scratch database engine designed to
– Take advantage of large multi-core machines
– Manipulate data both in DRAM and NVM

–Fully ACID, serializable database kernel
– Can be embedded in applications as a library
– Simplified in-memory applications

–Designed to eliminate scalability bottlenecks
– Lightweight optimistic concurrency control 
– Decentralized logs are SoC-friendly
– Design maximizes NVM bandwidth and endurance

H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. SIGMOD, 2015.

©Copyright 2017 Hewlett Packard Enterprise Company



Fast optimistic engine performance

– Scalable up to tens of SoCs
– Tested scale: Superdome X: 12 TB DRAM, 240 cores

– Efficiently handles datasets larger than DRAM

– Orders of magnitude faster when compared to 
state-of-the-art in-memory engines

– Open source code, documentation and papers at
https://github.com/HewlettPackard/foedus

©Copyright 2017 Hewlett Packard Enterprise Company

H. Kimura, A. Simitsis, K. Wilkinson, “Janus: Transactional processing of navigational and 
analytical graph queries on many-core servers,” Proc. CIDR, 2017.

H. Kimura, “FOEDUS: OLTP engine for a thousand cores and 
NVRAM,” Proc. SIGMOD, 2015.

https://github.com/HewlettPackard/foedus


Do we need separate data representations?

In-storage durability
+ Separate object and persistent formats

– Programmability and performance issues
– Translation code error-prone and insecure

In-memory durability
+ In-memory objects are durable throughout
+ Byte-addressability simplifies programmability
+ Low ld/st latencies offer high performance

– Persistent does not mean consistent!

Serialize

Deserialize

In-memory 
objects File or

database

CPU

Caches

DRAM NVM
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NVM-aware application programming
Why can’t I just write my program, and have all my data be persistent?

What if I crash here?

Consider a simple banking program (just two accounts):
double accounts[2];

I want to transfer money between accounts. Naïve implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;
accounts[to] += amount;

}

©Copyright 2017 Hewlett Packard Enterprise Company
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NVM-aware application programming
Why can’t I just write my program, and have all my data be persistent?

What if I crash here?

Processor caches are still volatile
Crashes cause corruption, which prevents us from merely restarting the computation

Consider a simple banking program (just two accounts):
double accounts[2];

I want to transfer money between accounts. Naïve implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;
accounts[to] += amount;

}

©Copyright 2017 Hewlett Packard Enterprise Company



Manual solution

• Need code that plays back 
undo log on restart

• Getting this to work with 
threads and locks is very hard

• Really want to optimize it
• Very unlikely application 

programmers will get it right

persistent double accounts[2];
transfer(int from, int to, double amount) {
<save old value of accounts[from] in undo log>;
<flush log entry to NVM>

accounts[from] -= amount;
<save old value of accounts[to] in undo log>;
<flush log entry to NVM>

accounts[to]   += amount;
<flush all other persistent stores to NVRAM>
<clear and flush log>
}

©Copyright 2017 Hewlett Packard Enterprise Company



Fault-tolerant programming model for non-volatile memory
Atlas

– Programmer distinguishes persistent and transient data

– Persistent data lives in a “persistent region”
– E.g., in pseudo-file-system in NVM
– Directly mapped into process address space (no DRAM 

buffers)
– Accessed via CPU loads and stores

– Programmer writes ordinary multithreaded code
– Automatic durability support at a fine granularity, complete with 

recovery code
– Supports consistency of durable data derived from 

concurrency constructs

– Open source code available at 
https://github.com/HewlettPackard/Atlas

Persistent 
Region API 

Consistency 
API 

Atlas 
library

User Program

Instrumented 
User Program

Persistent Data

Compile

Execute

Recover

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory 
Consistency,” Proc. Object-Oriented Programming, Systems, Languages & Applications (OOPSLA), 2014.

©Copyright 2017 Hewlett Packard Enterprise Company
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Fault-tolerant programming model for non-volatile memory
NVthreads

– Approach: multi-process execution + redo logs + intercept lock operations

– Drop-in replacement for the pthreads library

T. Hsu, H. Brugner, I. Roy, K. Keeton, P. Eugster, “NVthreads: Practical Persistence for 
Multi-threaded Applications,” Proc. EuroSys, 2017.
Open source code at https://github.com/HewlettPackard/nvthreads

– Use synchronization points to infer consistent 
regions ([Atlas, OOPSLA14])
– Does not require applications to use transactions

– Execute multithreaded program as multi-process 
program ([Dthreads, SOSP11])
– Process memory buffers uncommitted writes

– Track data modifications at page granularity
– Amortizes logging overhead vs fine-grained tracking

©Copyright 2017 Hewlett Packard Enterprise Company
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Managed Data Structures (MDS)
Simplify programming on persistent in-memory data

– Ease of Programming
– Programmer manages only application-level data 

structures
– MDS data structures are automatically persisted in NVM

– APIs in multiple programming languages: Java, C++
– Programmer access through references to data
– Direct reads and writes 

– Ease of Data Sharing
– Just pass a reference

– Each program treats the data as if it was local to the program

– High-level concurrency controls
– Ensure consistent data in the face of data sharing by multiple 

threads/processes

Managed Space

Process 1 Process 2

Java, C++
simultaneously

App-level data 
structures: Record, 
Array, Map, Set, 
Graph, List, Queue, 
. . .

©Copyright 2017 Hewlett Packard Enterprise Company 



Isolation contexts support safe data sharing

Non-blocking transactions Zero-copy snapshots

Parent view

Live child view

Snapshot child view

Consumer update transactions

Business Intelligence analytics

Conflict resolution

©Copyright 2017 Hewlett Packard Enterprise Company 



Fewer software layers
Traditional Database System Managed Data Structures

Application

Database client

Database server

Filesystem

Object → Relation

Application

MDS Runtime

Open source code at https://github.com/HewlettPackard/mds
©Copyright 2017 Hewlett Packard Enterprise Company 
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The Machine Distribution
Software stack for Memory-Driven Computing

Machine (Prototype) hardware

The Machine Distribution

Node Operating System

Persistent 
Memory Library

(pmem.io)

Librarian File System (LFS)

Fabric attached memory
atomics library

Linux 
(L4TM)

Example Applications

Management
Services

Librarian

Data Management & Programming Frameworks
Fast optimistic 

engineSPARKLE

Emulation/Simulation Tools
Performance 

emulation for NVM
Fabric attached

memory emulation

X86 emulation hardware Open sourced components

Fault-tolerant 
programming 

Managed data 
structures

Programming and 
analytics tools
Operating system support
Emulation/simulation tools

Memory 
managers

https://github.com/HewlettPackard/mdc-toolkit
https://www.labs.hpe.com/the-machine/the-machine-distribution

©Copyright 2017 Hewlett Packard Enterprise Company 
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Memory-Driven Computing 
challenges for the MSST community



What does software expect from fabric-attached NVM?

–If fabric-attached NVM is the new storage…
it must safely remember persistent data.

–Persistent data should be stored:
– Reliably, in the face of failures
– Securely, in the face of exploits
– In a cost-effective manner
– Using a data access API that’s most natural for the device characteristics

©Copyright 2017 Hewlett Packard Enterprise Company



Storing data reliably, securely and cost-effectively
The problem

– Potential concerns about using fabric-attached NVM to safely store persistent data:
– NVM failures may result in loss of persistent data
– Persistently data may be stolen

– Time to revisit traditional storage services
– Ex: replication, erasure codes, encryption, compression, deduplication, wear leveling, snapshots

– New challenges:
– Need to operate at memory speeds, not storage speeds
– Traditional solutions (e.g., encryption, compression) complicate direct access
– Space-efficient redundancy for NVM

©Copyright 2017 Hewlett Packard Enterprise Company 



Storing data reliably, securely and cost-effectively
Potential solutions

– Software implementations can trade performance for reliability, security and cost-effectiveness
– But will diminish benefits from faster technologies

– Memory-side hardware acceleration
– Memory speeds may demand acceleration (e.g., DMA-style data movement, memset, encryption, compression)
– What memory-side acceleration functions strike good balance between application performance and generality?
– Where should memory-side acceleration execute (e.g., compute node, fabric controller, media controller, media)?

– Wear leveling for fabric-attached non-volatile memory
– Fabric-attached NVM is natural place to store shared coordination state. 
– Repeated NVM writes may exacerbate device wear issues
– What’s the right balance between (hardware-assisted) memory-side wear leveling and software techniques?

– Fabric-attached non-volatile memory diagnostics
– What is the equivalent of Self-Monitoring, Analysis and Reporting Technology (SMART) for NVM?
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Memory + storage hierarchy technologies
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Load/store memory won’t be the most cost-
effective “forever” storage for cold data
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Memory + storage hierarchy – a usage view (residence)
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Memory + storage hierarchy – a usage view (ownership)
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How to manage multi-tiered hierarchy, 
to ensure data is in “right” tier?
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The appropriate API for the technology
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Memory (load/store cachelines, atomics) API
Note: needs to include entire data path (i.e., load-to-use)

I/O (read/write, get/put blocks) API
Need to amortize access times over larger data blocks
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The appropriate API for the technology
– Adapt access control

– As access granularity gets smaller, access control enforcement needs to adjust
– Potential solutions: ISA-based capabilities provide fine-grained access control and protection

– Support new failure models
– I/O-aware applications are written to tolerate storage failures
– Traditional memory-aware applications assume loads and stores will succeed
– Memory-driven computing brings new memory error models 

– Ex: fabric errors may lead to load/store failures, which may be visible only after the originating instruction

– Need to provide reasonable reporting and handling of memory errors, so software can tolerate unreliable memory
– Need ability to update data in persistent memory from one consistent state to another (e.g., checkpoints, snapshots)

– Assure that “wider” memory APIs don’t lead to inadvertent data corruption or loss
– “Narrow” storage APIs require explicit action for persistence, but “wider” memory APIs allow stores to persist data
– Need to ensure wider memory-based APIs for persistence don’t increase errors and data corruption
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For open source code…
https://www.labs.hpe.com/the-machine/the-machine-distribution

− Spark for The Machine: 
− https://github.com/HewlettPackard/sparkle

− https://github:com/HewlettPackard/sandpiper

− Fast optimistic engine for data unification services: https://github.com/HewlettPackard/foedus

− Fault-tolerant programming model for non-volatile memory: 
– Atlas: https://github.com/HewlettPackard/Atlas
– NVthreads: https://github.com/HewlettPackard/nvthreads

− Managed Data Structures: https://github.com/HewlettPackard/mds

− Memory-Driven Computing toolkit: https://github.com/HewlettPackard/mdc-toolkit

− Linux for The Machine: https://github.com/FabricAttachedMemory

− Fabric Attached Memory Emulation: https://github.com/FabricAttachedMemory/Emulation

− Performance emulation for NVM latency and bandwidth: https://github.com/HewlettPackard/Quartz
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Wrapping up

Memory-Driven Computing
• Fast load/store access to large shared pool of 

fabric-attached non-volatile memory

Many opportunities for software innovation
• Operating systems
• Data stores
• Programming models and tools
• Analytics platforms
• Applications
• Algorithms

How would you exploit Memory-Driven 
Computing?

SoC
SoC

SoC

So
C

Memory
+

Fabric

https://www.labs.hpe.com/the-machine/
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