Ouroboros Wear-leveling:
A Two-level Hierarchical Wear-leveling
Model for NVRAM

Qingyue Liu
Peter Varman

ECE Department, Rice University
May 18, 2017

RRAM PCM 3DXpoint

* Advantages * Major Drawback:
— High-Density: Easy to — Lifetime endurance problem

scale down under 10nm — PCM: 107~108 writes per cell
— Non-volatile

— In practice, lifetime around
— In-place update 20x shorter without wear-

— Low leakage power leveling

* Atechnique for prolonging the service life of some
kinds of erasable computer storage media

* Block migration across the memory with certain rules

— Move high usage blocks to low usage frames

Aim: Make write evenly
distributed across the
memory

e Solid State Disk (SSD) e NVRAM

— Written out-of-place — In-place writing
— Granularity: — Granularity:

»Read/write: page »Read/write: byte

» Erase: block »No erase
— Requires garbage collection — No garbage collection

* NVRAM has more freedom and can do better
— No complex design for garbage collection
— Fine-grained wear-leveling

— Allows both algebraic and full-associative logical to
physical mappings

 Previous Work

e Our Contributions
— Hierarchical Ouroboros Wear-leveling
— System Design
* Architecture
* Parameter selection

— Experiments and Results

* Conclusion

* Wear-leveling using restricted algebraic mappings
— No address mapping table
— Granularity: memory line (cache line)
— Example: Start-Gap Wear-leveling [1]

* Wear-leveling using fully-associative mappings

— Additional address mapping table needed
— Granularity: block
— Example: Segment Swapping [2], PCM-aware swap [3]

[1] Qureshi etal, "Enhancing lifetime and security of PCM-based main memory with start-gap wear-leveling." MICRO, 2009.
[2] Zhou etal, “A durable and energy efficient main memory using phase change memory technology” ISCA, 2009.

[3] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Moss e, “Increasing pcm main memory lifetime,” in
Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association,
2010, pp. 914-9109.

Start — {5 ——
0
— b

WRITE — A

* Advantages:

— Distribute writes smoothly Gap —
within the frame

— Small space overhead Q|
R |

— Simple algorithm 6
* Disadvantages:

— Region size is limited since only

1 line is relocated at a time
V|
— May not use all the region to 7

distribute the writes

* Wear-leveling using fully-associative mappings

— Additional address mapping table needed
— Granularity: block
— Example: Segment Swapping [2], PCM-aware swap [3]

[1] Qureshi etal, "Enhancing lifetime and security of PCM-based main memory with start-gap wear-leveling." MICRO, 2009.
[2] Zhou etal, “A durable and energy efficient main memory using phase change memory technology” ISCA, 2009.

[3] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Moss e, “Increasing pcm main memory lifetime,” in
Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association,
2010, pp. 914-9109.

Segment Swap: PCM-aware Swap:

— Periodically swap content in — Periodically swap content in

highest-usage frame with highest-usage frame with
content in lowest-usage content in random frame

frame

* Advantages:

— Caninvolve all space into wear-
leveling

— Can easily be implemented

NoOuThWNER O
T(>MMOO|w|d

Without Wear-leveling Segment Swap

PCM-aware Swap

e A* Pattern: Write to the same logical block A

continuously

 Deterministic swap is better than randomized

swap under correct conditions

10

Without Wear-leveling Segment Swap

PCM-aware Swap

 AB* Pattern: Alternate writes to two

ogical blocks A

and B (catastrophic pattern for Segment Swap)
 Randomized swap is better than deterministic swap in

bad cases

11

e Our Contributions
— Hierarchical Ouroboros Wear-leveling
— System Design
* Architecture
* Parameter selection

— Experiments and Results

* Conclusion

* Memory partitioned
into frames

e Each frame holds a
block

A block holds a set of
memory lines

* Block assumed to have
consecutive address range

Memory line

e Aim:

— Guarantee write distribution as smooth as possible

e Level 1: Local WL within frames
— Start-gap like rule

— Smooth distribution of writes
within a frame

— Granularity: Memory line

— Aim: Make expensive large block
Global WL less frequent

e Level 2: Global WL across
frames

— Exploit demand prediction to
direct global wear-leveling

— Use randomization in block
migration to avoid worst-case
behavior

— Smooth distribution of writes
across frames

— Granularity: Frame

— Aim: Involve all memory space
into wear-leveling

[Demand-based Ouroboros Migration]

* |nputs

1. Usage counter of each physical frame (U)

2. Prediction of the number of future writes to each logical
block (P)

— Repetitive workloads
— Program Analysis (embedded applications)
— Use recent activity (demand) as predictor

1. Collect statistics:
e Estimate future demand of each block to form a vector P
e Collect current usage for each frame to form a vector U
2. Generate raw block migration mapping

* Aim: Map the it" hottest (highest demand) block to the ith
coldest (lowest usage) frame

Initialization:
Physical Frame(Usage U)

0 1 2 3

20 5 | 100 | 40

Logical Block (Demand P)

Fmal BIock Order

Hot-to-Cold Blocks Cold-to-Hot Frames

151 C 1 | 5

10

3. Classification step:

* |dentify a hot pool with up to K hottest blocks that meet a
minimum demand threshold

4. Pruning Step:
 Move only blocks in the hot pool to deterministic frames

Initialization:
Physical Frame(Usage U)

0 1 2 3

20 5 | 100 | 40

Logical Block (Demand D)

0 1 2 3 4 5
A B C E F
0 10 15 0 0
I
A
afcfefofe]r
0 1 2 3 4 5

Final Block Order:

Hot-to-Cold Blocks Cold-to-Hot Frames

5

1 4

c _.

Hot Cold
Block Block

Deterministic Block
Migration

Random
Free Block

A

Cold Cold
Block Block

Deterministic Block Ouroboros Block

linist _ Free Frame Pool
Migration Migration Ring

Deterministic Block
Migration

A

Cold
Block

Random
Free Block

Hot
Block Block

Ouroboros Block
Migration Ring

Free Frame Pool

5. Randomization step:

* l|dentify free frame pool with more than K free frames for
randomization

6. Form Ouroboros block migration ring for block relocation

Initialization:

Physical Frame(Usage U)

0 1

2

3

20 5

100

40

Logical Block (Demand D)

Fmal BIock Order.

Hot-to-Cold Blocks Cold-to-Hot Frames

v o0

Free Frame Pool

0

[H| =[C| =2, [F|=2

— System Design
* Architecture
* Parameter selection

— Experiments and Results

* Conclusion

* Each request
— Size 16B * 32 =5128B
— Touch same partition and offset for all 32 chips

Local WL || Global WL System
Constraint || Constraint || Configurations

\4 \4 A\ 4

Smoothness level: |, — — Frame size: F

Ti head: Q, — :
me OVerneas >4 Parameter Selection [— Global WL threshold: I';

Space overhead: Q. —
— Local WL threshold :T,

System parameters —

 Example: Parameter Selection for 512GB Memory
— Input:
* |, :7x10°°,Q, :0.6%, Q. : 0.5%
— Output:
* F: 8KB, I': 1x108, ,: 195
— Worst case overhead: Q, : 0.52%, Q, : 0.2%

— Experiments and Results

* Conclusion

* Smoothness value:

Loo = max |u; — ;|

— L_ smoothness:

— L, smoothness:

NB /wi—1i; \¢
Lg\/z"_ﬂl(%)z

Note: u; is the real usage
distribution, u; is the ideal
usage distribution, W is the
Npg total number of writes

e Usage Distribution

* Experiments

— Micro Benchmarks: Parameters

Micro

Storage

NVM size (M)

512 MB

512 GB

* A* pattern, AB* pattern,

Frame size (F)

8 KB

8 KB

Line size (L)

AB*50% pattern

16 bytes

|6 bytes

Stripe size (C)

32 chips

32 chips

* Total writes: 10** Local Threshold (I'z)

195

195

Global Threshold (I
— Storage Benchmarks: obal Threshold (I')

1 x 107

1 x 10°

 MSR Cambridge pattern,
FIU I0Dedup pattern
 Total writes per chip: 2.83 x 1012
* Write rate per chip: 500MB/s x 32

A* Pattern AB* Pattern (AB)*50% Pattern
Without Wear-leveling | Without Wear-leveling | Without Wear-leveling
L~ 500 [~ 500
3400 3400
:'12300* :'12300*
= =
= 200 = 200
£ 100 £ 100
=] =]
Z 0 ‘ . Z 0 ‘ .
0 S0 100 0 S0 100
Phyvsical Block Number Phyvsical Block Number

After Wear-leveling

After Wear-leveling

After Wear-leveling

\p
P

* Correct prediction: Achieve the best possible
smoothness behavior

* Wrong prediction: No worse than the distribution
obtained by a random write pattern

e Partial correct prediction: Fully take advantages of
correct prediction to make usage distribution smooth

MSR Cambridge FIU IODedup
Without Wear-leveling Without Wear-leveling

After Wear-leveling After Wear-leveling

l.. smoothness level |, smoothness level

* Conclusion

Design a Hierarchical Ouroboros Wear-leveling Method
— Memory line level Local Wear-leveling

— Frame level Global Wear-leveling

Devise a cyclic block migration method

— Deterministically smooth wear out based on prediction

— Involve randomization to break up destructive write pattern

Show Ouroboros wear-leveling system architecture

Provide a general way to select parameter settings

Show the realizability and feasibility of Ouroboros wear-
leveling through experiments

