
Ouroboros Wear-leveling:
A Two-level Hierarchical Wear-leveling

Model for NVRAM
Qingyue Liu

Peter Varman
ECE Department, Rice University

May 18, 2017

New Challenges for New Technologies

2

• Advantages

– High-Density: Easy to
scale down under 10nm

– Non-volatile

– In-place update

– Low leakage power

• Major Drawback:

– Lifetime endurance problem

– PCM: 107~108 writes per cell

– In practice, lifetime around
20x shorter without wear-
leveling

RRAM PCM 3DXpoint

Wear-leveling (WL)

3

• A technique for prolonging the service life of some
kinds of erasable computer storage media

• Block migration across the memory with certain rules

– Move high usage blocks to low usage frames

A A 800

B 20

C 270

D 6

E 80

F 600

G 100

H 96

0

1

2

3

4

5

6

7

Write D

A
Aim: Make write evenly
distributed across the
memory

SSD WL vs. NVRAM WL

4

• Solid State Disk (SSD)

– Written out-of-place

– Granularity:

➢Read/write: page

➢Erase: block

– Requires garbage collection

• NVRAM

– In-place writing

– Granularity:

➢Read/write: byte

➢No erase

– No garbage collection

• NVRAM has more freedom and can do better

– No complex design for garbage collection

– Fine-grained wear-leveling

– Allows both algebraic and full-associative logical to
physical mappings

Outline

5

• Background

• Previous Work

• Our Contributions

– Hierarchical Ouroboros Wear-leveling

– System Design

• Architecture

• Parameter selection

– Experiments and Results

• Conclusion

Previous Work: NVRAM

6

• Wear-leveling using restricted algebraic mappings

– No address mapping table

– Granularity: memory line (cache line)

– Example: Start-Gap Wear-leveling [1]

• Wear-leveling using fully-associative mappings

– Additional address mapping table needed

– Granularity: block

– Example: Segment Swapping [2], PCM-aware swap [3]

[1] Qureshi etal, "Enhancing lifetime and security of PCM-based main memory with start-gap wear-leveling." MICRO, 2009.
[2] Zhou etal, “A durable and energy efficient main memory using phase change memory technology” ISCA, 2009.
[3] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Moss é, “Increasing pcm main memory lifetime,” in
Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association,
2010, pp. 914–919.

7

Start-Gap Method Analysis

• Advantages:

– Distribute writes smoothly
within the frame

– Small space overhead

– Simple algorithm

• Disadvantages:

– Region size is limited since only
1 line is relocated at a time

– May not use all the region to
distribute the writes

AWRITE
A
B
C
D

GapLine

Q
R
S
T

GapLine

U
V
W
X

GapLine

0

7

6

Start

Gap

Previous Work: NVRAM

8

• Wear-leveling using restricted algebraic mappings

– No address mapping table

– Granularity: memory line (cache line)

– Example: Start-Gap Wear-leveling [1]

• Wear-leveling using fully-associative mappings

– Additional address mapping table needed

– Granularity: block

– Example: Segment Swapping [2], PCM-aware swap [3]

[1] Qureshi etal, "Enhancing lifetime and security of PCM-based main memory with start-gap wear-leveling." MICRO, 2009.
[2] Zhou etal, “A durable and energy efficient main memory using phase change memory technology” ISCA, 2009.
[3] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Moss é, “Increasing pcm main memory lifetime,” in
Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association,
2010, pp. 914–919.

Segment Swap vs. PCM-aware Swap

9

• Segment Swap:

– Periodically swap content in
highest-usage frame with
content in lowest-usage
frame

A
B
C
D
E
F
G
H

0
1
2
3
4
5
6
7

A• Advantages:

– Can involve all space into wear-
leveling

– Can easily be implemented

A

G

• PCM-aware Swap:

– Periodically swap content in
highest-usage frame with
content in random frame

10

Analysis of 2 Swap Methods: A* Pattern

Without Wear-leveling Segment Swap PCM-aware Swap

• A* Pattern: Write to the same logical block A
continuously

• Deterministic swap is better than randomized
swap under correct conditions

11

Analysis of 2 Swap Methods: AB* Pattern

Without Wear-leveling Segment Swap PCM-aware Swap

• AB* Pattern: Alternate writes to two logical blocks A
and B (catastrophic pattern for Segment Swap)

• Randomized swap is better than deterministic swap in
bad cases

Outline

12

• Background

• Previous Work

• Our Contributions

– Hierarchical Ouroboros Wear-leveling

– System Design

• Architecture

• Parameter selection

– Experiments and Results

• Conclusion

NVRAM Model

13

• Memory partitioned
into frames

• Each frame holds a
block

• A block holds a set of
memory lines

• Block assumed to have
consecutive address range

Block

Memory line

A
B
C
D

Q
R
S
T

U
V
W
X

A
B
C
D

Frame

Hierarchical Ouroboros Wear-leveling

14

• Aim:

– Guarantee write distribution as smooth as possible

• Level 1: Local WL within frames

– Start-gap like rule

– Smooth distribution of writes
within a frame

– Granularity: Memory line

– Aim: Make expensive large block
Global WL less frequent

Hierarchical Ouroboros Wear-leveling

15

• Level 2: Global WL across
frames

– Exploit demand prediction to
direct global wear-leveling

– Use randomization in block
migration to avoid worst-case
behavior

– Smooth distribution of writes
across frames

– Granularity: Frame

– Aim: Involve all memory space
into wear-leveling

Global Wear-Leveling Framework

16

• Inputs
1. Usage counter of each physical frame (U)

2. Prediction of the number of future writes to each logical
block (P)

– Repetitive workloads

– Program Analysis (embedded applications)

– Use recent activity (demand) as predictor

Demand-based Ouroboros Migration

Global Wear-Leveling Framework

17

1. Collect statistics:
• Estimate future demand of each block to form a vector P

• Collect current usage for each frame to form a vector U

2. Generate raw block migration mapping
• Aim: Map the ith hottest (highest demand) block to the ith

coldest (lowest usage) frame

Raw Block Migration

C

D

E

B

A

3

0

5

4

115 5

10

0

0

0

6

20

40

100

- +

Hot-to-Cold Blocks Cold-to-Hot Frames

F 2

0

10

18

Initialization:

Physical Frame(Usage U)

0 31 2 4

Logical Block (Demand P)

D FC E B

0 31 2 4

A

0

B C D E

0 31 2 4

Final Block Order

5

F

A

5

5

20 5 100 40 6 10

10 15 0 0 0

Global Wear-Leveling Framework

19

1. Collect statistics:
• Estimate future demand of each block to form a vector A

• Collect current usage for each frame to form a vector U

2. Generate raw block migration mapping
• Aim: Map the ith hottest (highest demand) block to the ith

coldest (lowest usage) frame

3. Classification step:
• Identify a hot pool with up to K hottest blocks that meet a

minimum demand threshold

4. Pruning Step:
• Move only blocks in the hot pool to deterministic frames

Block Migration with Pruning Method
Initialization:

A EC D B

0 31 2 4

Final Block Order:

F

5

C

D

E

B

A

3

0

5

4

115 5

10

0

0

0

6

20

40

100

- +

Hot-to-Cold Blocks Cold-to-Hot Frames

F 2

0

10

|H| = |C| =2
20

C

B

Physical Frame(Usage U)

0 31 2 4 5

20 5 100 40 6 10

Logical Block (Demand D)

A

0

B C D E

0 31 2 4

F

5

10 15 0 0 0

Deterministic Block Migration Ring

21

C

…

Deterministic Block
Migration

EB

2

1 4

C B

E
Hot

Block

Hot
Block

Cold
Block

Cold
Block

Ouroboros Block Migration Ring

22

C

B

E

F

0

5

3

2

1

4

5

Ouroboros Block
Migration Ring

Free Frame Pool

C

…

Deterministic Block
Migration

EB

2

1 4

Hot
Block

Cold
Block

Cold
Block

Hot
Block

Random
Free Block

Ouroboros Block Migration Ring

22

C

B

E

F

0

5

3

2

1

4

5

Ouroboros Block
Migration Ring

Free Frame Pool

C

…

Deterministic Block
Migration

EB

2

1 4 C

B

E

F
Hot

Block

Cold
Block

Hot
Block

Cold
Block

Random
Free Block

Global Wear-Leveling Framework

23

1. Collect statistics:
• Estimate future demand of each block to form a vector A

• Collect current usage for each frame to form a vector U

2. Generate raw block migration mapping
• Aim: Map the ith hottest (highest demand) block to the ith coldest

(lowest usage) frame

3. Classification step:
• Identify a hot pool with up to K hottest blocks that meet a

minimum demand threshold

4. Pruning Step:
• Move only blocks in the hot pool to deterministic frames

5. Randomization step:
• Identify free frame pool with more than K free frames for

randomization

6. Form Ouroboros block migration ring for block relocation

Block Migration with Randomization
Initialization:

Physical Frame(Usage U)

A FC D B

0 31 2 4

Final Block Order:

E

5

C

D

E

B

A

3

0

5

4

115 5

10

0

0

0

6

20

40

100

- +

Hot-to-Cold Blocks Cold-to-Hot Frames

Free Frame Pool

0 5

F 2

0

10

|H| = |C| =2, |F|=2

5

24

1

2

4

0 31 2 4 5

20 5 100 40 6 10

Logical Block (Demand D)

A

0

B C D E

0 31 2 4

F

5

10 15 0 0 0

Outline

25

• Background

• Previous Work

• Our Contributions

– Hierarchical Ouroboros Wear-leveling

– System Design

• Architecture

• Parameter selection

– Experiments and Results

• Conclusion

Architecture

26

• Each request

– Size 16B * 32 = 512B

– Touch same partition and offset for all 32 chips

Parameter Selection

27

• Example: Parameter Selection for 512GB Memory

– Input:

• l2 : 7x10−6 , Ωt : 0.6%, Ωs : 0.5%

– Output:

• F: 8KB, ΓG: 1x108 , ΓL: 195

– Worst case overhead: Ωt : 0.52%, Ωs : 0.2%

Parameter Selection

Smoothness level: l2

Global WL threshold: ΓG

Local WL threshold :ΓL

Frame size: F

Time overhead: Ωt

Space overhead: Ωs

Local WL
Constraint

Global WL
Constraint

System
Configurations

System parameters

Outline

28

• Background

• Previous Work

• Our Contributions

– Hierarchical Ouroboros Wear-leveling

– System Design

• Architecture

• Parameter selection

– Experiments and Results

• Conclusion

Experiments

29

• Smoothness value:

– L ∞ smoothness:

– L2 smoothness:

• Usage Distribution

• Experiments

– Micro Benchmarks:

• A* pattern, AB* pattern,

AB*50% pattern

• Total writes: 1014

– Storage Benchmarks:

• MSR Cambridge pattern,

FIU IODedup pattern

• Total writes per chip: 2.83 x 1012

• Write rate per chip: 500MB/s x 32

Note: is the real usage
distribution, is the ideal
usage distribution, W is the

total number of writes

30

Micro Experiments Results
A* Pattern AB* Pattern (AB)*50% Pattern

Without Wear-leveling Without Wear-leveling Without Wear-leveling

After Wear-leveling After Wear-leveling After Wear-leveling

Summary of Ourobros WL

31

• Correct prediction: Achieve the best possible
smoothness behavior

• Wrong prediction: No worse than the distribution
obtained by a random write pattern

• Partial correct prediction: Fully take advantages of
correct prediction to make usage distribution smooth

32

Storage Experiments Results
MSR Cambridge FIU IODedup

Without Wear-leveling Without Wear-leveling

After Wear-leveling After Wear-leveling

Comparison Among Three WL Methods

33

l∞ smoothness level l2 smoothness level

Outline

34

• Background

• Previous Work

• Our Contributions

– Hierarchical Ouroboros Wear-leveling

– System Design

• Architecture

• Parameter selection

– Experiments and Results

• Conclusion

Conclusion

35

• Design a Hierarchical Ouroboros Wear-leveling Method

– Memory line level Local Wear-leveling

– Frame level Global Wear-leveling

• Devise a cyclic block migration method

– Deterministically smooth wear out based on prediction

– Involve randomization to break up destructive write pattern

• Show Ouroboros wear-leveling system architecture

• Provide a general way to select parameter settings

• Show the realizability and feasibility of Ouroboros wear-
leveling through experiments

