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New Challenges for New Technologies
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• Advantages

– High-Density: Easy to 
scale down under 10nm 

– Non-volatile

– In-place update

– Low leakage power

• Major Drawback: 

– Lifetime endurance problem

– PCM: 107~108 writes per cell

– In practice, lifetime around 
20x shorter without wear-
leveling 

RRAM PCM 3DXpoint



Wear-leveling (WL)
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• A technique for prolonging the service life of some 
kinds of erasable computer storage media

• Block migration across the memory with certain rules

– Move high usage blocks to low usage frames

A A 800

B 20

C 270

D 6

E 80

F 600

G 100

H 96

0

1

2

3

4

5

6

7

Write D

A
Aim: Make write evenly 
distributed across the 
memory



SSD WL vs. NVRAM WL
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• Solid State Disk (SSD)

– Written out-of-place

– Granularity: 

➢Read/write: page

➢Erase: block

– Requires garbage collection

• NVRAM

– In-place writing

– Granularity: 

➢Read/write: byte

➢No erase

– No garbage collection

• NVRAM has more freedom and can do better

– No complex design for garbage collection

– Fine-grained wear-leveling

– Allows both algebraic and full-associative logical to 
physical mappings



Outline
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• Background

• Previous Work

• Our Contributions

– Hierarchical Ouroboros Wear-leveling

– System Design

• Architecture

• Parameter selection

– Experiments and Results

• Conclusion



Previous Work: NVRAM
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• Wear-leveling using  restricted algebraic mappings

– No address mapping table

– Granularity: memory line (cache line)

– Example: Start-Gap Wear-leveling [1]

• Wear-leveling using fully-associative mappings

– Additional address mapping table needed

– Granularity: block

– Example: Segment Swapping [2], PCM-aware swap [3]

[1] Qureshi etal,  "Enhancing lifetime and security of PCM-based main memory with start-gap wear-leveling." MICRO, 2009.
[2] Zhou etal, “A durable and energy efficient main memory using phase change memory technology” ISCA, 2009.
[3] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Moss é, “Increasing pcm main memory lifetime,” in 
Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association, 
2010, pp. 914–919. 
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Start-Gap Method Analysis

• Advantages:

– Distribute writes smoothly 
within the frame

– Small space overhead

– Simple algorithm

• Disadvantages:

– Region size is limited since only 
1 line is relocated at a time

– May not use all the region to 
distribute the writes
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Previous Work: NVRAM
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• Wear-leveling using  restricted algebraic mappings

– No address mapping table

– Granularity: memory line (cache line)

– Example: Start-Gap Wear-leveling [1]

• Wear-leveling using fully-associative mappings

– Additional address mapping table needed

– Granularity: block

– Example: Segment Swapping [2], PCM-aware swap [3]

[1] Qureshi etal,  "Enhancing lifetime and security of PCM-based main memory with start-gap wear-leveling." MICRO, 2009.
[2] Zhou etal, “A durable and energy efficient main memory using phase change memory technology” ISCA, 2009.
[3] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Moss é, “Increasing pcm main memory lifetime,” in 
Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association, 
2010, pp. 914–919. 



Segment Swap vs. PCM-aware Swap 
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• Segment Swap:

– Periodically swap content in 
highest-usage frame  with 
content in lowest-usage
frame
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• PCM-aware Swap:

– Periodically swap content in 
highest-usage frame  with 
content in random frame
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Analysis of 2 Swap Methods: A* Pattern

Without Wear-leveling Segment Swap PCM-aware Swap

• A* Pattern:  Write to the same logical block A  
continuously

• Deterministic swap is better than randomized 
swap under correct conditions
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Analysis of 2 Swap Methods: AB* Pattern

Without Wear-leveling Segment Swap PCM-aware Swap

• AB* Pattern: Alternate writes to two logical blocks A 
and B (catastrophic pattern for Segment Swap)

• Randomized swap is better than deterministic swap in 
bad cases



Outline
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• Background

• Previous Work

• Our Contributions

– Hierarchical Ouroboros Wear-leveling

– System Design

• Architecture
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– Experiments and Results

• Conclusion



NVRAM Model
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• Memory partitioned
into frames

• Each frame holds a 
block

• A  block holds a set of
memory lines

• Block assumed to have
consecutive address range
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Hierarchical Ouroboros Wear-leveling
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• Aim:

– Guarantee write distribution as smooth as possible

• Level 1: Local WL within frames

– Start-gap like rule

– Smooth distribution of writes 
within a frame

– Granularity: Memory line

– Aim: Make expensive large block 
Global WL less frequent



Hierarchical Ouroboros Wear-leveling
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• Level 2: Global WL across 
frames

– Exploit demand prediction to 
direct global wear-leveling

– Use randomization in block 
migration to avoid worst-case 
behavior

– Smooth distribution of writes 
across frames

– Granularity: Frame

– Aim: Involve all memory space 
into wear-leveling



Global Wear-Leveling Framework
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• Inputs
1. Usage counter of each physical frame (U)

2. Prediction of the number of future writes to each logical 
block  (P)

– Repetitive workloads

– Program Analysis (embedded applications)

– Use recent activity (demand) as predictor

Demand-based Ouroboros Migration



Global Wear-Leveling Framework
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1. Collect statistics:
• Estimate future demand of each block to form a vector P

• Collect current usage for each frame to form a vector U

2. Generate raw block migration mapping
• Aim: Map the ith hottest (highest demand) block to the ith

coldest (lowest usage) frame
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Initialization:
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Global Wear-Leveling Framework
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1. Collect statistics:
• Estimate future demand of each block to form a vector A

• Collect current usage for each frame to form a vector U

2. Generate raw block migration mapping
• Aim: Map the ith hottest (highest demand) block to the ith

coldest (lowest usage) frame

3. Classification step:
• Identify a hot pool with up to K hottest blocks  that meet a 

minimum demand threshold

4. Pruning Step:
• Move only blocks in the hot pool to deterministic frames



Block Migration with Pruning Method
Initialization:
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Deterministic Block Migration Ring
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Ouroboros Block Migration Ring
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Ouroboros Block Migration Ring
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Global Wear-Leveling Framework
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1. Collect statistics:
• Estimate future demand of each block to form a vector A

• Collect current usage for each frame to form a vector U

2. Generate raw block migration mapping
• Aim: Map the ith hottest (highest demand) block to the ith coldest 

(lowest usage) frame

3. Classification step:
• Identify a hot pool with up to K hottest blocks  that meet a 

minimum demand threshold

4. Pruning Step:
• Move only blocks in the hot pool to deterministic frames

5. Randomization step:
• Identify free frame pool with more than K free frames for 

randomization

6. Form Ouroboros block migration ring for block relocation



Block Migration with Randomization
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Architecture
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• Each request 

– Size 16B * 32 = 512B

– Touch same partition and offset for all 32 chips



Parameter Selection
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• Example: Parameter Selection for 512GB Memory

– Input:

• l2  : 7x10−6 , Ωt : 0.6%, Ωs : 0.5% 

– Output:

• F: 8KB, ΓG: 1x108 , ΓL: 195

– Worst case overhead: Ωt : 0.52%, Ωs : 0.2% 

Parameter Selection

Smoothness level: l2

Global WL threshold: ΓG

Local WL threshold :ΓL

Frame size: F

Time overhead: Ωt 

Space overhead: Ωs

Local WL 
Constraint

Global WL 
Constraint

System 
Configurations

System parameters
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Experiments
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• Smoothness value:

– L ∞ smoothness:

– L2 smoothness:

• Usage Distribution

• Experiments

– Micro Benchmarks: 

• A* pattern, AB* pattern,

AB*50% pattern

• Total writes: 1014

– Storage Benchmarks:

• MSR Cambridge pattern, 

FIU IODedup pattern

• Total writes per chip: 2.83 x 1012

• Write rate per chip: 500MB/s x 32

Note:      is the real usage 
distribution,      is the ideal 
usage distribution, W is the 

total number of writes
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Micro Experiments Results
A* Pattern AB* Pattern (AB)*50% Pattern

Without Wear-leveling Without Wear-leveling Without Wear-leveling

After Wear-leveling After Wear-leveling After Wear-leveling



Summary of Ourobros WL
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• Correct prediction: Achieve the best possible 
smoothness behavior

• Wrong prediction: No worse than the distribution 
obtained by a random write pattern

• Partial correct prediction: Fully take advantages of 
correct prediction to make usage distribution smooth
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Storage Experiments Results
MSR Cambridge FIU IODedup

Without Wear-leveling Without Wear-leveling

After Wear-leveling After Wear-leveling



Comparison Among Three WL Methods
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l∞ smoothness level l2 smoothness level
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Conclusion
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• Design a Hierarchical Ouroboros Wear-leveling Method

– Memory line level Local Wear-leveling

– Frame level Global Wear-leveling

• Devise a cyclic block migration method 

– Deterministically smooth wear out based on prediction

– Involve randomization to break up destructive write pattern

• Show Ouroboros wear-leveling system architecture

• Provide a general way to select parameter settings

• Show the realizability and feasibility of Ouroboros wear-
leveling through experiments


