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Docker Becomes Very Popular
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Software container platform with many desirable features 
Ease of deployment, developer friendliness and light virtualization 

Mainstay in cloud platforms 
Google Cloud Platform, Amazon EC2, Microsoft Azure   

Storage Hierarchy is the key component 
High Performance SSDs 

NVMe, NVMe over Fabrics

https://www.docker.com/company


Agenda

Docker, NVMe and NVMe over Fabrics (NVMf) 

How to best utilize NVMe SSDs for single container? 
Best configuration performs similar to raw performance 

Where do the performance anomalies come from? 

Do Docker containers scale well on NVMe SSDs? 
Exemplify using Cassandra  

Best strategy to divide the resources 

Scaling Docker containers on NVMe-over-Fabrics
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What is Docker Container?

Each virtualized application 
includes an entire OS (~10s of GB) 

Docker container comprises just 
application and bins/libs 

Shares the kernel with other 
container 

Much more portable and efficient 
figure from https://docs.docker.com

https://docs.docker.com


Non-Volatile Memory Express (NVMe)
A storage protocol standard on top of PCIe 

NVMe SSDs connect through PCIe and support the standard 
Since 2014 (Intel, Samsung) 

Enterprise and consumer variants  

NVMe SSDs leverage the interface to deliver superior perf 
5X to 10X over SATA SSD[1]
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[1] Qiumin Xu et al. “Performance analysis of NVMe SSDs and their implication on real world databases.” SYSTOR’15



Why NVMe over Fabrics (NVMf)?
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Retains NVMe performance over network fabrics 
Eliminate unnecessary protocol translations 
Enables low latency and high IOPS remote storage

J. M. Dave Minturn, “Under the Hood with NVMe over Fabrics,”, SINA Ethernet Storage Forum
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Storage Architecture in Docker

Container Read / Write Operations

Host Backing File system (EXT4, XFS, etc.)

Thin Pool

Aufs, Btrfs, 
Overlayfs 

Devicemapper
 (Loop-lvm, direct-lvm)

Data Volume

Base Device

NVMe SSDs

Sparse Files

Storage Driver
1 2 3

2.a 2.b

-g option -v option

Storage Options: 
1. Through Docker Filesystem (Aufs, Btrfs, Overlayfs) 
2. Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm) 
3. Through Docker Data Volume (-v) 

1
2
3



Dual-socket, 12 HT cores Xeon E5-2670 V3 
enterprise-class NVMe SSD 
Samsung XS1715 

kernel v4.6.0 
Docker v1.11.2 
fio used for traffic generation  
Asynchronous IO engine, libaio 

32 concurrent jobs and iodepth is 32 

Measure steady state performance

Optimize Storage Configuration for Single 
Container  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Experimental Environment

?

NVMe SSD
(XS1715)

Docker
FIO



Performance Comparison
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EXT4 performs 25% worse for RR 

XFS performs closely resembles RAW for all but RW

— Host Backing Filesystems



Tuning the Performance Gap
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XFS allows multiple processes to read a file at once 
Uses allocation groups which can be accessed independently 

EXT4 requires mutex locks even for read operations
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[1] https://www.percona.com/blog/2012/03/15/ext4-vs-xfs-on-ssd/ 
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Tuning the Performance Gap
—Random Writes

XFS performs poorly with high thread count  

Contention in exclusive locking kills the write performance  
Used by extent look up and write checks 

Patch available but not for Linux 4.6 [1]
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Storage Architecture in Docker

Container Read / Write Operations

Host Backing File system (EXT4, XFS, etc.)

Thin Pool

Aufs, Btrfs, 
Overlayfs 

Devicemapper
 (Loop-lvm, direct-lvm)

Data Volume

Base Device

NVMe SSDs

Sparse Files

Storage Driver
1 2 3

2.a 2.b

-g option -v option

Storage Options: 
1. Through Docker Filesystem (Aufs, Btrfs, Overlayfs) 
2. Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm) 
3. Through Docker Data Volume (-v) 

1
2
3



Docker Storage Options
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Aufs (Advanced multi-layered Unification FileSystem): 
A fast reliable unification file system 

Btrfs (B-tree file system): 
A modern CoW file system which implements many advanced features for fault 

tolerance, repair and easy administration 

Overlayfs: 
Another modern unification file system which has simpler design and potentially 

faster than Aufs 

Option 1: Through Docker File System 



Performance Comparison
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Option 1: Through Docker File System  

Aufs and Overlayfs performs close to raw block device for 
most cases 

Btrfs has the worst performance for random workloads



Tuning the Performance Gap of Btrfs
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—Random Reads
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Btrfs doesn’t work well for small block size yet 

Btrfs must read the file extent before reading the file data. 
Large block size reduces the frequency of reading metadata



Tuning the Performance Gap of Btrfs
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—Random Reads

Btrfs doesn’t work well for random writes 
due to CoW overhead
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Storage Architecture in Docker

Container Read / Write Operations

Host Backing File system (EXT4, XFS, etc.)

Thin Pool

Aufs, Btrfs, 
Overlayfs 

Devicemapper
 (Loop-lvm, direct-lvm)

Data Volume

Base Device

NVMe SSDs

Sparse Files

Storage Driver
1 2 3

2.a 2.b

-g option -v option

Storage Options: 
1. Through Docker Filesystem (Aufs, Btrfs, Overlayfs) 
2. Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm) 
3. Through Docker Data Volume (-v) 

1
2
3
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Docker Storage Configurations
Option 2: Through Virtual Block Device

Devicemapper storage driver leverages the thin provisioning 
and snapshotting capabilities of the kernel based Device 
Mapper Framework 

Loop-lvm uses sparse files to build the thin-provisioned pools

Direct-lvm uses block device to directly create the thin pools 

     (Recommended by Docker)



19

Docker Storage Configurations
Option 3: Through Docker Data Volume (-v)

Data persists beyond 
the lifetime of the 
container and can be 
shared and accessed 
from other containers 

* figure from https://github.com/libopenstorage/openstorage 



Performance Comparison  
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Option 2 & Option 3
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Direct-lvm has worse performance for RR/RW 

LVM, device mapper, and the dm-thinp kernel module 
introduced additional code paths and overhead may not suit 
IO intensive workloads 



Application Performance
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NoSQL database 

Scale linearly to the number of nodes in the cluster 
(theoretically) [1] 

Requires data persistence  
uses docker volume to store data

Cassandra Database

[1] Rabl, Tilmann et al.  "Solving Big Data Challenges for Enterprise Application Performance Management”, VLDB’13 
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Scaling Docker Containers on NVMe
multiple containerized Cassandra Databases
Experiment Setup

Dual socket, Xeon E5 server, 10Gb ethernet 
N = 1, 2, 3, … 8 containers 
Each container is driven by a YCSB client 
Record Count: 100M records, 100GB in each DB 
Client thread count: 16 

Workload A, 50% read, 50% update, Zipfian distribution 
Workload D, 95% read, 5% insert, normal distribution

Workloads



Results-Throughput
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Aggregated throughput peaks at 4 containers 

Cgroups: 6 CPU cores, 6GB memory, 400MB/s bandwidth

Workload D, directly attached SSD



Strategies for Dividing Resources
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MEM has the most significant impact on throughput 
Best strategy for dividing resources using cgroups 
Assign 6 CPU cores for each container, leave other resource uncontrolled



Scaling Containerized Cassandra 
using NVMf
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Experiment Setup

YCSB Clients Application 
Server

NVMf Target 
Storage Server

10Gbe 40Gbe

Cassandra + 
Docker



Results-Throughput
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The throughput of NVMf is within 6% - 12% compared to 
directly attached SSDs 



Results-Latency
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NVMF incurs only 2% - 15% longer latency than direct 
attached SSD.   
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Results-CPU Utilization

NVMF incurs less than 1.8% CPU Utilization on Target 
Machine 



SUMMARY
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THANK YOU! 
QIUMIN@USC.EDU

Best Option in Docker for NVMe Drive Performance  
Overlay FS + XFS + Data Volume 

Best Strategy for Dividing Resources using Cgroups 
Control only the CPU resources 

Scaling Docker Containers on NVMf  
Throughput: within 6% - 12% vs. DAS 

  Latency: 2% - 15% longer than DAS 

mailto:qiumin@usc.edu

