
PERFORMANCE ANALYSIS OF
CONTAINERIZED APPLICATIONS
ON LOCAL AND REMOTE STORAGE

1

Qiumin Xu1, Manu Awasthi2, Krishna T. Malladi3, Janki Bhimani4,
Jingpei Yang3, Murali Annavaram1
1USC, 2IIT Gandhinagar 3Samsung 4Northeastern

Docker Becomes Very Popular

2

Software container platform with many desirable features
Ease of deployment, developer friendliness and light virtualization

Mainstay in cloud platforms
Google Cloud Platform, Amazon EC2, Microsoft Azure

Storage Hierarchy is the key component
High Performance SSDs

NVMe, NVMe over Fabrics

https://www.docker.com/company

Agenda

Docker, NVMe and NVMe over Fabrics (NVMf)

How to best utilize NVMe SSDs for single container?
Best configuration performs similar to raw performance

Where do the performance anomalies come from?

Do Docker containers scale well on NVMe SSDs?
Exemplify using Cassandra

Best strategy to divide the resources

Scaling Docker containers on NVMe-over-Fabrics

3

4

What is Docker Container?

Each virtualized application
includes an entire OS (~10s of GB)

Docker container comprises just
application and bins/libs

Shares the kernel with other
container

Much more portable and efficient
figure from https://docs.docker.com

https://docs.docker.com

Non-Volatile Memory Express (NVMe)
A storage protocol standard on top of PCIe

NVMe SSDs connect through PCIe and support the standard
Since 2014 (Intel, Samsung)

Enterprise and consumer variants

NVMe SSDs leverage the interface to deliver superior perf
5X to 10X over SATA SSD[1]

5

[1] Qiumin Xu et al. “Performance analysis of NVMe SSDs and their implication on real world databases.” SYSTOR’15

Why NVMe over Fabrics (NVMf)?

6

Retains NVMe performance over network fabrics
Eliminate unnecessary protocol translations
Enables low latency and high IOPS remote storage

J. M. Dave Minturn, “Under the Hood with NVMe over Fabrics,”, SINA Ethernet Storage Forum

7

Storage Architecture in Docker

Container Read / Write Operations

Host Backing File system (EXT4, XFS, etc.)

Thin Pool

Aufs, Btrfs,
Overlayfs

Devicemapper
 (Loop-lvm, direct-lvm)

Data Volume

Base Device

NVMe SSDs

Sparse Files

Storage Driver
1 2 3

2.a 2.b

-g option -v option

Storage Options:
1. Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
2. Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
3. Through Docker Data Volume (-v)

1
2
3

Dual-socket, 12 HT cores Xeon E5-2670 V3
enterprise-class NVMe SSD
Samsung XS1715

kernel v4.6.0
Docker v1.11.2
fio used for traffic generation
Asynchronous IO engine, libaio

32 concurrent jobs and iodepth is 32

Measure steady state performance

Optimize Storage Configuration for Single
Container  

8

Experimental Environment

?

NVMe SSD
(XS1715)

Docker
FIO

Performance Comparison

9

1000

1500

2000

2500

3000

SR SW

Av
er

ag
e

 B
W

(M

B
/s

)

RAW
EXT4
XFS

0

200

400

600

800

RR RW

Av
er

ag
e

 IO
PS

K RAW
EXT4
XFS

EXT4 performs 25% worse for RR

XFS performs closely resembles RAW for all but RW

— Host Backing Filesystems

Tuning the Performance Gap

10

0

200

400

600

800

Default dioread_nolock

IO
PS

 o
f R

R

K

EXT4

—Random Reads
700K IOPS

XFS allows multiple processes to read a file at once
Uses allocation groups which can be accessed independently

EXT4 requires mutex locks even for read operations

11

[1] https://www.percona.com/blog/2012/03/15/ext4-vs-xfs-on-ssd/

0

50

100

150

200

250

1 2 4 8 16 24 28 32 48 64

IO
PS

 o
f

R
W

of Jobs

RAW EXT4 XFS
K

Tuning the Performance Gap
—Random Writes

XFS performs poorly with high thread count

Contention in exclusive locking kills the write performance
Used by extent look up and write checks

Patch available but not for Linux 4.6 [1]

12

Storage Architecture in Docker

Container Read / Write Operations

Host Backing File system (EXT4, XFS, etc.)

Thin Pool

Aufs, Btrfs,
Overlayfs

Devicemapper
 (Loop-lvm, direct-lvm)

Data Volume

Base Device

NVMe SSDs

Sparse Files

Storage Driver
1 2 3

2.a 2.b

-g option -v option

Storage Options:
1. Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
2. Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
3. Through Docker Data Volume (-v)

1
2
3

Docker Storage Options

13

Aufs (Advanced multi-layered Unification FileSystem):
A fast reliable unification file system

Btrfs (B-tree file system):
A modern CoW file system which implements many advanced features for fault

tolerance, repair and easy administration

Overlayfs:
Another modern unification file system which has simpler design and potentially

faster than Aufs

Option 1: Through Docker File System

Performance Comparison

14

1000

1500

2000

2500

3000

SR SW

Av
er

ag
e

 B
W

(M

B
/s

)

Raw
Aufs
Btrfs
Overlay

0

200

400

600

800

RR RW

Av
er

ag
e

 IO
PS

K Raw
Aufs
Btrfs
Overlay

Option 1: Through Docker File System

Aufs and Overlayfs performs close to raw block device for
most cases

Btrfs has the worst performance for random workloads

Tuning the Performance Gap of Btrfs

15

—Random Reads

0

1000

2000

3000

4000
BW

 (M
B/

s)
 o

f R
R

Block Size

RAW EXT4 Btrfs

Btrfs doesn’t work well for small block size yet

Btrfs must read the file extent before reading the file data.
Large block size reduces the frequency of reading metadata

Tuning the Performance Gap of Btrfs

16

—Random Reads

Btrfs doesn’t work well for random writes
due to CoW overhead

0

50

100

150

200

Default nodatacow

IO
PS

 o
f R

W
K

Btrfs

17

Storage Architecture in Docker

Container Read / Write Operations

Host Backing File system (EXT4, XFS, etc.)

Thin Pool

Aufs, Btrfs,
Overlayfs

Devicemapper
 (Loop-lvm, direct-lvm)

Data Volume

Base Device

NVMe SSDs

Sparse Files

Storage Driver
1 2 3

2.a 2.b

-g option -v option

Storage Options:
1. Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
2. Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
3. Through Docker Data Volume (-v)

1
2
3

18

Docker Storage Configurations
Option 2: Through Virtual Block Device

Devicemapper storage driver leverages the thin provisioning
and snapshotting capabilities of the kernel based Device
Mapper Framework

Loop-lvm uses sparse files to build the thin-provisioned pools

Direct-lvm uses block device to directly create the thin pools

 (Recommended by Docker)

19

Docker Storage Configurations
Option 3: Through Docker Data Volume (-v)

Data persists beyond
the lifetime of the
container and can be
shared and accessed
from other containers

* figure from https://github.com/libopenstorage/openstorage

Performance Comparison

20

Option 2 & Option 3

0

200

400

600

800

RR RW

Av
er

ag
e

 IO
PS

K
RAW
Direct-lvm
Loop-lvm -v
Aufs -v
Overlay -v

1000

1500

2000

2500

3000

SR SW

Av
er

ag
e

 B
W

(M

B/
s)

RAW
Direct-lvm
Loop-lvm -v
Aufs -v
Overlay -v

Direct-lvm has worse performance for RR/RW

LVM, device mapper, and the dm-thinp kernel module
introduced additional code paths and overhead may not suit
IO intensive workloads

Application Performance

21

NoSQL database

Scale linearly to the number of nodes in the cluster
(theoretically) [1]

Requires data persistence
uses docker volume to store data

Cassandra Database

[1] Rabl, Tilmann et al. "Solving Big Data Challenges for Enterprise Application Performance Management”, VLDB’13

22

Scaling Docker Containers on NVMe
multiple containerized Cassandra Databases
Experiment Setup

Dual socket, Xeon E5 server, 10Gb ethernet
N = 1, 2, 3, … 8 containers
Each container is driven by a YCSB client
Record Count: 100M records, 100GB in each DB
Client thread count: 16

Workload A, 50% read, 50% update, Zipfian distribution
Workload D, 95% read, 5% insert, normal distribution

Workloads

Results-Throughput

23

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

op
s/s

ec
)

of Cassandra Containers

C1 C2 C3 C4 C5 C6 C7 C8 Cgroups

Aggregated throughput peaks at 4 containers

Cgroups: 6 CPU cores, 6GB memory, 400MB/s bandwidth

Workload D, directly attached SSD

Strategies for Dividing Resources

24

0

10000

20000

30000

40000

50000

0 1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t (

op
s/

se
c)

of Cassandra Containers

CPU MEM CPU+MEM BW All Uncontrolled

MEM has the most significant impact on throughput
Best strategy for dividing resources using cgroups
Assign 6 CPU cores for each container, leave other resource uncontrolled

Scaling Containerized Cassandra
using NVMf

25

Experiment Setup

YCSB Clients Application
Server

NVMf Target
Storage Server

10Gbe 40Gbe

Cassandra +
Docker

Results-Throughput

26

0

1

2

3

4

1 2 3 4 5 6 7 8

R
el

at
iv

e
T

PS

of Cassandra Instances

DAS_A NVMf_A DAS_D NVMf_D

The throughput of NVMf is within 6% - 12% compared to
directly attached SSDs

Results-Latency

27

0

2

4

6

8

1 2 3 4 5 6 7 8

R
el

at
iv

e
L

at
en

cy

of Cassandra Instances

DAS_A NVMf_A DAS_D NVMf_D

NVMF incurs only 2% - 15% longer latency than direct
attached SSD.

28

Results-CPU Utilization

NVMF incurs less than 1.8% CPU Utilization on Target
Machine

SUMMARY

29

THANK YOU!
QIUMIN@USC.EDU

Best Option in Docker for NVMe Drive Performance
Overlay FS + XFS + Data Volume

Best Strategy for Dividing Resources using Cgroups
Control only the CPU resources

Scaling Docker Containers on NVMf
Throughput: within 6% - 12% vs. DAS

 Latency: 2% - 15% longer than DAS

mailto:qiumin@usc.edu

