PERFORMANCE ANALYSIS OF
CONTAINERIZED APPLICATIONS
ON LOCAL AND REMOTE STORAGE

Qiumin Xu', Manu Awasthi?, Krishna T. Malladi3, Janki Bhimani*,
Jingpei Yang?, Murali Annavaram’

1USC, 2lIT Gandhinagar 3Samsung “Northeastern

Docker Becomes Very Popular

] Software container platform with many desirable features

[Ease of deployment, developer friendliness and light virtualization

] Mainstay in cloud platforms

J Google Cloud Platform, Amazon EC2, Microsoft Azure

] Storage Hierarchy is the key component

J High Performance SSDs

JNVMe, NVMe over Fabrics

gdocker

https://www.docker.com/company

Agenda

[J Docker, NVMe and NVMe over Fabrics (NVMf)

[JHow to best utilize NVMe SSDs for single container?

O Best configuration performs similar to raw performance

0 Where do the performance anomalies come from?

[J Do Docker containers scale well on NVMe SSDs?

3 Exemplify using Cassandra

[Best strategy to divide the resources

[Scaling Docker containers on NVMe-over-Fabrics

What is Docker Container?

[Each virtualized application
includes an entire 0S (~10s of GB)

[Docker container comprises just
application and bins/libs

[0 Shares the kernel with other
container

J Much more portable and efficient

figure from https://docs.docker.com

4

https://docs.docker.com

Non-Volatile Memory Express (NVMe)

] A storage protocol standard on top of PCle

JNVMe SSDs connect through PCle and support the standard

0 Since 2014 (Intel, Samsung)

1 Enterprise and consumer variants

JNVMe SSDs leverage the interface to deliver superior perf

[J5X to 10X over SATA SSD!

[1] Qiumin Xu et al. “Performance analysis of NVMe SSDs and their implication on real world databases.” SYSTOR’15

5

Why NVMe over Fabrics (NVMT)?

] Retains NVMe performance over network fabrics
[Eliminate unnecessary protocol translations
] Enables low latency and high I0PS remote storage

J. M. Dave Minturn, “Under the Hood with NVMe over Fabrics,”, SINA Ethernet Storage Forum

6

Storage Architecture in Docker
Storage Options:
Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
Through Docker Data Volume (-v)

Container Read / Write Operations

@ -g option
Storage Driver

Aufs, Btrfs, Devicemapper Data VVolume

Overlavfs (Loop-Ilvm, direct-lvm)
2.a 2.b i

Host Backing File siystem (EXT4, XFS, etc.)
v

Base Device

'%hin Pool '
v

Sparse Files

© -v option

<
<

NVMe SSDs

Optimize Storage Configuration for Single

Container
Experimental Environment

] Dual-socket, 12 HT cores Xeon E5-2670 V3

[enterprise-class NVMe SSD Docker
JSamsung XS1715

[kernel v4.6.0 i

] Docker v1.11.2 ?

1 fio used for traffic generation l
[Asynchronous 10 engine, libaio NVMe SSD
132 concurrent jobs and iodepth is 32 (XS1 71 5)

] Measure steady state performance

Performance Comparison
— Host Backing Filesystems

800 K ORAW 3000 + -
%)
0600 +-| |- ____BEXT4.| = |
5 axes | D20
9400 T 2 [2 S 2000 -
: =
gZOO - - -“"; """ z 1500 1+
< i

0 | Zm 1000
RR RW

[EXT4 performs 25% worse for RR
[XFS performs closely resembles RAW for all but RW

Tuning the Performance Gap
—Random Reads

700K I0PS
800K
id .
2600
5400 -
Q
0200 -
O B I
Default dioread _nolock
EXT4

1 XFS allows multiple processes to read a file at once

[Uses allocation groups which can be accessed independently

] EXT4 requires mutex locks even for read operations

10

Tuning the Performance Gap
—Random Writes

250 K
O RAW 9-EXT4 A XFS
200 A/A-\‘/i—l\‘\
150
—t o W
100
50 \‘\A>~r

0

IOPS of RW

1 2 4 8 16 24 28 32 48 64
of Jobs

1 XFS performs poorly with high thread count

] Contention in exclusive locking Kkills the write performance

J Used by extent look up and write checks

(J Patch available but not for Linux 4.6 [1]

[1] https://www.percona.com/blog/2012/03/15/ext4-vs-xfs-on-ssd/

11

Storage Architecture in Docker
Storage Options:
Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
Through Docker Data Volume (-v)

Container Read / Write Operations

@ -g option
Storage Driver

Aufs, Btrfs, Devicemapper Data VVolume

Overlavfs (Loop-Ilvm, direct-lvm)
2.a 2.b i

Host Backing File siystem (EXT4, XFS, etc.)
v

Base Device

'%hin Pool '
v

Sparse Files

© -v option

<
<

NVMe SSDs

12

Docker Storage Options
Option 1: Through Docker File System

] Aufs (Advanced multi-layered Unification FileSystem):

(] A fast reliable unification file system

1 Btrfs (B-tree file system):

0 A modern CoW file system which implements many advanced features for fault
tolerance, repair and easy administration

] Overlayfs:

J Another modern unification file system which has simpler design and potentially
faster than Aufs

13

Performance Comparison
Option 1: Through Docker File System

800K

% 2000 F{ Loo... . HORaw
al . % @ Aufs
: oo || N B
0400 + %EZOOO 1] / _________ 31
S S S 7
$200 £ 1500 |- Z
0 1000 Z

SR

] Aufs and Overlayfs performs close to raw block device for
most cases

] Btrfs has the worst performance for random workloads

14

Tuning the Performance Gap of Btrfs

—Random Reads

4000
nd O RAW *EXTA4 AN Btrfs
< 3000 i N e B
o
)
=2 2000
2 1000
<
m O L L L L L L L L L
N N QA AV N A A
SN LN gy @?1'000 AN
Block Size

] Btrfs doesn’t work well for small block size yet

[Btrfs must read the file extent before reading the file data.

(] Large block size reduces the frequency of reading metadata

15

Tuning the Performance Gap of Btrfs

—Random Reads
200

150 +------------ ---
100 +------------ - --
50 +------------ - --

0 -

Default nodatacow
Btrfs

RW

|OPS of

[Btrfs doesn’t work well for random writes
due to GoW overhead

16

Storage Architecture in Docker
Storage Options:
Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
Through Docker Data Volume (-v)

Container Read / Write Operations

@ -g option
Storage Driver

Aufs, Btrfs, Devicemapper Data VVolume

Overlavfs (Loop-Ilvm, direct-lvm)
2.a 2.b i

Host Backing File siystem (EXT4, XFS, etc.)
v

Base Device

'%hin Pool '
v

Sparse Files

© -v option

<
<

NVMe SSDs

17

Docker Storage Configurations

Option 2: Through Virtual Block Device

] Devicemapper storage driver leverages the thin provisioning
and snapshotting capabilities of the kernel based Device
Mapper Framework

] Loop-lvm uses sparse files to build the thin-provisioned pools

] Direct-lvm uses block device to directly create the thin pools

(Recommended by Docker)

18

Docker Storage Configurations

Option 3: Through Docker Data Volume (-v)

] Data persists beyond
the lifetime of the
container and can be
shared and accessed
from other containers

* figure from https://github.com/libopenstorage/openstorage

19

Average 10OPS

Performance Comparison

Option 2 & Option 3
800
i 3000 |
600 +1 |- - BDheet-lvm--{ =
BLoop-lvm-v | @ 52500
400) - BAdUfs=v--- - L o
7 OOverlay -v g S2000 -
- é _____________ 3: 1500 -+ |
: - — - 1000
RR .

Direct-lvm
-8 Leep-lvm—-v|
B Aufs -v

SR

] Direct-lvm has worse performance for RR/RW

JLVM, device mapper, and the dm-thinp kernel module
introduced additional code paths and overhead may not suit

10 intensive workloads

20

Application Performance

Cassandra Database cassandra
O NoSQL database

[1Scale linearly to the number of nodes in the cluster
(theoretically) [']

[Requires data persistence

J uses docker volume to store data

[1] Rabl, Tilmann et al. "Solving Big Data Challenges for Enterprise Application Performance Management”, VLDB’13

21

Scaling Docker Containers on NVMe
multiple containerized Cassandra Databases

Experiment Setup

[Dual socket, Xeon E5 server, 10Gb ethernet
ON=1,2,3,... 8 containers

[Each container is driven by a YCSB client

] Record Gount: 100M records, 100GB in each DB
] Client thread count: 16

Workloads

JWorkload A, 50% read, 50% update, Zipfian distribution
] Workload D, 95% read, 5% insert, normal distribution

22

Results-Throughput
Workload D, directly attached SSD

BECl mmC2 WmC3 W=C4 mmC5 mmCo ==CY C8 -@-Cgroups
50000

N W o
o o o
o o o
o) o
o o o

Throughput (ops/sec)

10000 -

1 2 3 4 5 6 7 8
of Cassandra Containers

] Aggregated throughput peaks at 4 containers
1 Cgroups: 6 CPU cores, 6GB memory, 400MB/s bandwidth

23

Strategies for Dividing Resources

& CPU O-MEM A CPU+MEM -OBW -@AIll O Uncontrolled
50000

o 1 2 3 4 5 o6 7 8 9
of Cassandra Containers

1 MEM has the most significant impact on throughput

] Best strategy for dividing resources using cgroups
] Assign 6 CPU cores for each container, leave other resource uncontrolled

24

Scaling Containerized Cassandra

using NVMf

Experiment Setup

Cassandra +

Docker |

10Gbe
YCSB Clients

Application NVMTf Target

Server Storage Server

25

Results-Throughput

DAS_A = NVMf_A #DAS D & NVM_D

Relative TPS

1 2 3 4 5 6 7 8
of Cassandra Instances

[The throughput of NVMf is within 6% - 12% compared to
directly attached SSDs

26

Results-Latency
o DAS A-<-NVMf A4DAS D-aNVMF D

8

(@)
I

N
I

Relative Latency
S

1 2 3 4 5 6 7 8
of Cassandra Instances

o

J NVMF incurs only 2% - 15% longer latency than direct
attached SSD.

27

Results-CPU Utilization

[JNVMF incurs less than 1.8% GPU Utilization on Target
Machine

28

Best Option in Docker for NVMe Drive Performance
Overlay FS + XFS + Data Volume

Best Strategy for Dividing Resources using Cgroups
Control only the CPU resources

Scaling Docker Gontainers on NVMf
Throughput: within 6% - 12% vs. DAS

Latency: 2% - 15% longer than DAS

29

mailto:qiumin@usc.edu

