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Docker Becomes Very Popular

] Software container platform with many desirable features

[ Ease of deployment, developer friendliness and light virtualization

] Mainstay in cloud platforms

J Google Cloud Platform, Amazon EC2, Microsoft Azure

] Storage Hierarchy is the key component

J High Performance SSDs

JNVMe, NVMe over Fabrics

gdocker



https://www.docker.com/company

Agenda

[J Docker, NVMe and NVMe over Fabrics (NVMf)

[JHow to best utilize NVMe SSDs for single container?

O Best configuration performs similar to raw performance

0 Where do the performance anomalies come from?

[J Do Docker containers scale well on NVMe SSDs?

3 Exemplify using Cassandra

[ Best strategy to divide the resources

[ Scaling Docker containers on NVMe-over-Fabrics




What is Docker Container?

[ Each virtualized application
includes an entire 0S (~10s of GB)

[ Docker container comprises just
application and bins/libs

[0 Shares the kernel with other
container

J Much more portable and efficient

figure from https://docs.docker.com
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https://docs.docker.com

Non-Volatile Memory Express (NVMe)

] A storage protocol standard on top of PCle

JNVMe SSDs connect through PCle and support the standard

0 Since 2014 (Intel, Samsung)

1 Enterprise and consumer variants

JNVMe SSDs leverage the interface to deliver superior perf

[J5X to 10X over SATA SSD!

[1] Qiumin Xu et al. “Performance analysis of NVMe SSDs and their implication on real world databases.” SYSTOR’15
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Why NVMe over Fabrics (NVMT)?

] Retains NVMe performance over network fabrics
[ Eliminate unnecessary protocol translations
] Enables low latency and high I0PS remote storage

J. M. Dave Minturn, “Under the Hood with NVMe over Fabrics,”, SINA Ethernet Storage Forum
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Storage Architecture in Docker
Storage Options:
Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
Through Docker Data Volume (-v)

Container Read / Write Operations
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Optimize Storage Configuration for Single

Container
Experimental Environment

] Dual-socket, 12 HT cores Xeon E5-2670 V3

[ enterprise-class NVMe SSD Docker
JSamsung XS1715

[ kernel v4.6.0 i

] Docker v1.11.2 ?

1 fio used for traffic generation l
[ Asynchronous 10 engine, libaio NVMe SSD
132 concurrent jobs and iodepth is 32 (XS1 71 5)

] Measure steady state performance




Performance Comparison
— Host Backing Filesystems
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[ EXT4 performs 25% worse for RR
[ XFS performs closely resembles RAW for all but RW




Tuning the Performance Gap
—Random Reads
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1 XFS allows multiple processes to read a file at once

[ Uses allocation groups which can be accessed independently

] EXT4 requires mutex locks even for read operations
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Tuning the Performance Gap
—Random Writes
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1 XFS performs poorly with high thread count

] Contention in exclusive locking Kkills the write performance

J Used by extent look up and write checks

(J Patch available but not for Linux 4.6 [1]

[1] https://www.percona.com/blog/2012/03/15/ext4-vs-xfs-on-ssd/
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Storage Architecture in Docker
Storage Options:
Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
Through Docker Data Volume (-v)

Container Read / Write Operations

@ -g option
Storage Driver

Aufs, Btrfs, Devicemapper Data VVolume

Overlavfs (Loop-Ilvm, direct-lvm)
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Docker Storage Options
Option 1: Through Docker File System

] Aufs (Advanced multi-layered Unification FileSystem):

(] A fast reliable unification file system

1 Btrfs (B-tree file system):

0 A modern CoW file system which implements many advanced features for fault
tolerance, repair and easy administration

] Overlayfs:

J Another modern unification file system which has simpler design and potentially
faster than Aufs
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Performance Comparison
Option 1: Through Docker File System
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] Aufs and Overlayfs performs close to raw block device for
most cases

] Btrfs has the worst performance for random workloads
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Tuning the Performance Gap of Btrfs

—Random Reads
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] Btrfs doesn’t work well for small block size yet

[ Btrfs must read the file extent before reading the file data.

(] Large block size reduces the frequency of reading metadata
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Tuning the Performance Gap of Btrfs

—Random Reads
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[ Btrfs doesn’t work well for random writes
due to GoW overhead
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Storage Architecture in Docker
Storage Options:
Through Docker Filesystem (Aufs, Btrfs, Overlayfs)
Through Virtual Block Devices (2.a Loop-lvm, 2.b Direct-lvm)
Through Docker Data Volume (-v)

Container Read / Write Operations

@ -g option
Storage Driver

Aufs, Btrfs, Devicemapper Data VVolume
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Docker Storage Configurations

Option 2: Through Virtual Block Device

] Devicemapper storage driver leverages the thin provisioning
and snapshotting capabilities of the kernel based Device
Mapper Framework

] Loop-lvm uses sparse files to build the thin-provisioned pools

] Direct-lvm uses block device to directly create the thin pools

(Recommended by Docker)
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Docker Storage Configurations

Option 3: Through Docker Data Volume (-v)

] Data persists beyond
the lifetime of the
container and can be
shared and accessed
from other containers

* figure from https://github.com/libopenstorage/openstorage
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Average 10OPS

Performance Comparison

Option 2 & Option 3
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] Direct-lvm has worse performance for RR/RW

JLVM, device mapper, and the dm-thinp kernel module
introduced additional code paths and overhead may not suit

10 intensive workloads
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Application Performance

Cassandra Database cassandra
O NoSQL database

[1Scale linearly to the number of nodes in the cluster
(theoretically) [']

[ Requires data persistence

J uses docker volume to store data

[1] Rabl, Tilmann et al. "Solving Big Data Challenges for Enterprise Application Performance Management”, VLDB’13
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Scaling Docker Containers on NVMe
multiple containerized Cassandra Databases

Experiment Setup

[ Dual socket, Xeon E5 server, 10Gb ethernet
ON=1,2,3,... 8 containers

[ Each container is driven by a YCSB client

] Record Gount: 100M records, 100GB in each DB
] Client thread count: 16

Workloads

JWorkload A, 50% read, 50% update, Zipfian distribution
] Workload D, 95% read, 5% insert, normal distribution
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Results-Throughput
Workload D, directly attached SSD
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] Aggregated throughput peaks at 4 containers
1 Cgroups: 6 CPU cores, 6GB memory, 400MB/s bandwidth
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Strategies for Dividing Resources

& CPU O-MEM A CPU+MEM -OBW -@AIll O Uncontrolled
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1 MEM has the most significant impact on throughput

] Best strategy for dividing resources using cgroups
] Assign 6 CPU cores for each container, leave other resource uncontrolled

24




Scaling Containerized Cassandra

using NVMf

Experiment Setup

Cassandra +

Docker |

10Gbe
YCSB Clients

Application NVMTf Target

Server Storage Server
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Results-Throughput

DAS_A = NVMf_A #DAS D & NVM_D

Relative TPS
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[ The throughput of NVMf is within 6% - 12% compared to
directly attached SSDs
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Results-Latency
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J NVMF incurs only 2% - 15% longer latency than direct
attached SSD.

27




Results-CPU Utilization

[JNVMF incurs less than 1.8% GPU Utilization on Target
Machine

28




Best Option in Docker for NVMe Drive Performance
Overlay FS + XFS + Data Volume

Best Strategy for Dividing Resources using Cgroups
Control only the CPU resources

Scaling Docker Gontainers on NVMf
Throughput: within 6% - 12% vs. DAS

Latency: 2% - 15% longer than DAS

29



mailto:qiumin@usc.edu

