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HSM and Scale-out backup
What is Hierarchical Storage 

Management (HSM)
–Manages storage space efficiently 

using high-cost and low-cost media

What is Scale-out backup
–A kind of backup used with HSM
–Assumes file data is already

backed up by HSM
–Creates a backup of inodes and

the directory structures of a
file system when executed

–Faster than existing backup 
methods since a backup of 
file data is already done by HSM

Improving the performance of backup candidate 
file selection is the key for Scale-out backup

High-cost
media

Low-cost
media

1. HSM creates a 
backup of file data

2. Scale-out backup 
creates a backup
of metadata
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Backup candidate file selection
home
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fileA fileB fileD

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileC

/home/usr1/fileA
/home/usr2/fileD

Size of the list of all files can 
become a few hundred GB 
when more than a billion  
of files exist

Last Backup Time

List of created or
updated files

List of all files

File System 
Scan

List of all files from 
the previous backup

/home/usr2/fileC

List of deleted files

Diff

Cannot find backup candidate files efficiently because of
large intermediate files when more than a billion of files exist
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Our goal and approach
Goal: Improve the performance of backup candidate file selection 

Our approach: Uses inode bitmaps for finding deleted files
Effect: Reduces the size of intermediate files for backups
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List of deleted files

Inode bitmap

Inode bitmap from
the previous backup

Inode bitmap of
deleted files
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1. Traversing directory structure
2. Reading inode
3. Writing to file lists

Related work
home
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/home/usr1/fileB
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Last Backup Time

List of created and
updated files

List of all files

File System 
Scan

List of all files from 
the previous backup

/home/usr2/fileC

List of deleted files

Diff

Size of list of all files has not been discussed

Kaplan et. al. [2012]
Bisson et. al. [2012]

Improved the performance of first two steps in the FS scan 
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Basic idea of our approach

1. Reduces the size of intermediate files using inode bitmaps
2. Finds deleted files by bitwise operation of inode bitmaps
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Preliminary experiments

Format of 
intermediate files

Size of intermediate 
files

Time to create 
intermediate files

File list 640 GB 21629.0 seconds
Inode bitmap 1.25 GB 42.4 seconds

Measured the size of intermediate files and time to create them for
file list and inode bitmap
•A list of 10 billion files
•10 billion bits of an inode bitmap

Using inode bitmaps as intermediate files can 
have an advantage
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Flowchart of our approach

home

usr1 usr2

fileA fileB fileD

Last Backup Time

File System 
Scan

Bitwise
Operation

New Inode 
Bitmap

Old Inode
Bitmap

/home/usr1/fileA
/home/usr2/fileD

List of created and
updated files

Inode Bitmap of
Deleted Files

1. Creates a list
of files that have
been created or 
updated since the
last backup

2. Writes inode 
bitmap to a file

3. Get inode bitmap
of deleted files by
comparing two
inode bitmaps

1.Reduces the size of intermediate files using inode bitmaps
2.Finds deleted files by bitwise operation of inode bitmaps
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Finding deleted files from inode bitmaps

1 1 0 0

1 0 1 0

0 0 1 0Bitwise
Operation

Inode bitmap 

Inode bitmap from
the previous backup

Inode bitmap of
deleted files
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Inode bitmap of deleted files can be calculated by:
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Experimental results

Average file path length: 64 bytes Average file path length: 128 bytes

Our method improved the performance of 
backup candidate file section up to 44.5%
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Results with small number of files

Previous method showed the better results when a number of 
files in a file system is small
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Conclusion and future work

Conclusion
–Improved the performance of backup candidate file selection 

up to 44.5 %
–Used inode bitmap as intermediate files
–Calculated the bitwise operation of inode bitmaps to find 

deleted files

Future work
–Evaluate the performance of our method with 10 billion files
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