
© 2017 IBM Corporation

Improving the Performance of Backup
Candidate File Selection using Inode Bitmap

Sosuke Matsui, Tsuyoshi Miyamura, Noriko Tanemura,
Terue Watanabe, Norie Iwasaki

Tokyo Software & Systems Development Lab, IBM Japan

2017/05/19

HSM and Scale-out backup
What is Hierarchical Storage

Management (HSM)
–Manages storage space efficiently

using high-cost and low-cost media

What is Scale-out backup
–A kind of backup used with HSM
–Assumes file data is already

backed up by HSM
–Creates a backup of inodes and

the directory structures of a
file system when executed

–Faster than existing backup
methods since a backup of
file data is already done by HSM

Improving the performance of backup candidate
file selection is the key for Scale-out backup

High-cost
media

Low-cost
media

1. HSM creates a
backup of file data

2. Scale-out backup
creates a backup
of metadata

2017/05/19

Backup candidate file selection
home

usr1 usr2

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileD

fileA fileB fileD

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileC

/home/usr1/fileA
/home/usr2/fileD

Size of the list of all files can
become a few hundred GB
when more than a billion
of files exist

Last Backup Time

List of created or
updated files

List of all files

File System
Scan

List of all files from
the previous backup

/home/usr2/fileC

List of deleted files

Diff

Cannot find backup candidate files efficiently because of
large intermediate files when more than a billion of files exist

2017/05/19

Our goal and approach
Goal: Improve the performance of backup candidate file selection

Our approach: Uses inode bitmaps for finding deleted files
Effect: Reduces the size of intermediate files for backups

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileD

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileC

List of all files

List of all files from
the previous backup

/home/usr2/fileC

Diff

1 1 0 1

1 1 1 0

0 0 1 0

Bitwise
Operation

Previous method Our method

List of deleted files

Inode bitmap

Inode bitmap from
the previous backup

Inode bitmap of
deleted files

2017/05/19

1. Traversing directory structure
2. Reading inode
3. Writing to file lists

Related work
home

usr1 usr2

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileD

fileA fileB fileD

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileC

/home/usr1/fileA
/home/usr2/fileD

Last Backup Time

List of created and
updated files

List of all files

File System
Scan

List of all files from
the previous backup

/home/usr2/fileC

List of deleted files

Diff

Size of list of all files has not been discussed

Kaplan et. al. [2012]
Bisson et. al. [2012]

Improved the performance of first two steps in the FS scan

2017/05/19

Basic idea of our approach

1. Reduces the size of intermediate files using inode bitmaps
2. Finds deleted files by bitwise operation of inode bitmaps

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileD

/home/usr1/fileA
/home/usr1/fileB
/home/usr2/fileC

List of all files

List of all files from
the previous backup

/home/usr2/fileC

Diff

1 1 0 1

1 1 1 0

0 0 1 0

Bitwise
Operation

Previous method Our method

List of deleted files

Inode bitmap

Inode bitmap from
the previous backup

Inode bitmap of
deleted files

2017/05/19

Preliminary experiments

Format of
intermediate files

Size of intermediate
files

Time to create
intermediate files

File list 640 GB 21629.0 seconds
Inode bitmap 1.25 GB 42.4 seconds

Measured the size of intermediate files and time to create them for
file list and inode bitmap
•A list of 10 billion files
•10 billion bits of an inode bitmap

Using inode bitmaps as intermediate files can
have an advantage

2017/05/19

Flowchart of our approach

home

usr1 usr2

fileA fileB fileD

Last Backup Time

File System
Scan

Bitwise
Operation

New Inode
Bitmap

Old Inode
Bitmap

/home/usr1/fileA
/home/usr2/fileD

List of created and
updated files

Inode Bitmap of
Deleted Files

1. Creates a list
of files that have
been created or
updated since the
last backup

2. Writes inode
bitmap to a file

3. Get inode bitmap
of deleted files by
comparing two
inode bitmaps

1.Reduces the size of intermediate files using inode bitmaps
2.Finds deleted files by bitwise operation of inode bitmaps

2017/05/19

Finding deleted files from inode bitmaps

1 1 0 0

1 0 1 0

0 0 1 0Bitwise
Operation

Inode bitmap

Inode bitmap from
the previous backup

Inode bitmap of
deleted files

N

O
D

()NOD ¬∧=

Inode bitmap of deleted files can be calculated by:

2017/05/19

Experimental results

Average file path length: 64 bytes Average file path length: 128 bytes

Our method improved the performance of
backup candidate file section up to 44.5%

2017/05/19

Graph1

		50		50		50

		100		100		100

		500		500		500

		1000		1000		1000

		5000		5000		5000

		10000		10000		10000

0.1 % of files are updated

1 % of files are updated

10 % of files are updated

Number of files (1000 files)

Improvement rate of time for
finding backup candidate files (%)

-49.132948

-70.7792208

-35.3383459

-10.7023411

-17.2077922

-2.4952015

36.57442034

32.15277778

15.70833333

38.66799205

36.52882206

23.23724192

42.27184336

33.27289778

26.62154322

41.69520548

40.51504256

28.09796907

Sheet1

		Number of files		0.10%		1%		10%

		50		-49.132948		-70.7792208		-35.3383459

		100		-10.7023411		-17.2077922		-2.4952015

		500		36.57442034		32.15277778		15.70833333

		1000		38.66799205		36.52882206		23.23724192

		5000		42.27184336		33.27289778		26.62154322

		10000		41.69520548		40.51504256		28.09796907

Sheet1

		

0.1 % of files are updated

1 % of files are updated

10 % of files are updated

Number of files (1000 files)

Improvement rate of time for

finding backup candidate files (%

Graph1

		50		50		50

		100		100		100

		500		500		500

		1000		1000		1000

		5000		5000		5000

		10000		10000		10000

0.1 % of files are updated

1 % of files are updated

10 % of files are updated

Number of files (1000 files)

-20.23809524

-18.01470588

-10.10928962

11.67048055

9.312638581

7.535321821

38.625

38.97700238

24.11884649

43.00648129

39.49326362

27.36466389

44.47931291

40.77979305

31.44762068

40.17288111

39.43786616

29.35113079

Sheet1

		Number of Files		0.10%		1%		10%

		50		-20.23809524		-18.01470588		-10.10928962

		100		11.67048055		9.312638581		7.535321821

		500		38.625		38.97700238		24.11884649

		1000		43.00648129		39.49326362		27.36466389

		5000		44.47931291		40.77979305		31.44762068

		10000		40.17288111		39.43786616		29.35113079

Sheet1

		

0.1 % of files are updated

1 % of files are updated

10 % of files are updated

Number of files (1000 files)

Results with small number of files

Previous method showed the better results when a number of
files in a file system is small

2017/05/19

Graph1

		50		50		50

		100		100		100

		500		500		500

0.10%

1%

10%

Number of files (1000 files)

Improvement rate of time for
finding backup candidate files (%)

-49.132948

-70.7792208

-35.3383459

-10.7023411

-17.2077922

-2.4952015

36.57442034

32.15277778

15.70833333

Sheet1

		Number of files		0.10%		1%		10%

		50		-49.132948		-70.7792208		-35.3383459

		100		-10.7023411		-17.2077922		-2.4952015

		500		36.57442034		32.15277778		15.70833333

		1000		38.66799205		36.52882206		23.23724192

		5000		42.27184336		33.27289778		26.62154322

		10000		41.69520548		40.51504256		28.09796907

Sheet1

		

0.1 % of files are updated

1 % of files are updated

10 % of files are updated

Number of files (1000 files)

Improvement rate of time for

finding backup candidate files (%

		

0.10%

1%

10%

Number of files (1000 files)

Improvement rate of time for

finding backup candidate files (%

Graph1

		50		50		50

		100		100		100

		500		500		500

0.1% of files are updated

1 % of files are updated

10 % of files are updated

Number of files (1000 files)

-20.23809524

-18.01470588

-10.10928962

11.67048055

9.312638581

7.535321821

38.625

38.97700238

24.11884649

Sheet1

		Number of Files		0.10%		1%		10%

		50		-20.23809524		-18.01470588		-10.10928962

		100		11.67048055		9.312638581		7.535321821

		500		38.625		38.97700238		24.11884649

		1000		43.00648129		39.49326362		27.36466389

		5000		44.47931291		40.77979305		31.44762068

		10000		40.17288111		39.43786616		29.35113079

Sheet1

		

0.1 % of files are updated

1 % of files are updated

10 % of files are updated

Number of files (1000 files)

		

0.1% of files are updated

1 % of files are updated

10 % of files are updated

Number of files (1000 files)

Conclusion and future work

Conclusion
–Improved the performance of backup candidate file selection

up to 44.5 %
–Used inode bitmap as intermediate files
–Calculated the bitwise operation of inode bitmaps to find

deleted files

Future work
–Evaluate the performance of our method with 10 billion files

2017/05/19

	Improving the Performance of Backup Candidate File Selection using Inode Bitmap��
	HSM and Scale-out backup
	Backup candidate file selection
	Our goal and approach
	Related work
	Basic idea of our approach
	Preliminary experiments
	Flowchart of our approach
	Finding deleted files from inode bitmaps�
	Experimental results
	Results with small number of files
	Conclusion and future work

