
A Cost-efficient Rewriting Scheme
to Improve Restore Performance in

Deduplication Systems

Jie Wu, Yu Hua, Pengfei Zuo, Yuanyuan Sun

Huazhong University of Science and Technology, China

Data Deduplication

❐ Container
❐ Large fixed-size storage unit
❐ Basic unit of reads and writes
❐ Preserving the spatial locality

Data stream A B F G Hsplit

A
B
C
D
E

Identical copy

F
G
H

Blank

Old container New container

Unique chunks

1/27

Duplicate chunk

Chunk Fragmentation

❐ Logically consecutive chunks are scattered in
different containers

❐ Fragmentation degrades restore performance
❐ Consecutive disk accesses → random ones

❐ Penalty of disk seeks
❐ Unreferenced chunks in retrieved containers

❐consume limited disk bandwidth

❐ Infrequent restore: very important, main concern

2/27

Existing Containers Selection Solutions
❐ Rewriting Schemes: Capping (FAST’13), NED (ICA3PP’14)

❐ Trade off deduplication for reducing chunk fragmentation
❐ Improve restore performance

❐ Select some containers to de-duplicate
❐ Deduplicate chunks to identical copies in selected

containers
❐ Rewrite duplicate chunks belonging to other unselected

containers into new containers
❐ How to select?

❐ Capping: selects top T containers ranked by the reference
ratio

❐ NED: selects containers with the reference ratio over a
threshold

3/27

Observation: Redundancy among Containers

❐Rewrite: multiple identical copies stored in
different containers
❐Causing redundant chunks in selected containers

❐Existing rewriting schemes are suboptimal due to
overlooking the redundancy among containers

4/27

Example with Capping

❐ Backup 3 consecutive data streams each
with 13 chunks

❐Capping
❐select top (T = 2) containers ranked by
the number of referenced chunks
❐The container size: 5 chunks

5/27

Back up the First Two Data Streams

A B C D E F G H I J K L M

A B C D E F G K L M O P Q

6/27

A
B
C
D
E
I

F
G
H
I
J
II

K
L
M

Blank

III

F
G
O
P
Q
IV

A B C F G H I J O P R S T

A
B
C
D
E
I

F
G
H
I
J
II

K
L
M

Blank

III

F
G
O
P
Q
IV

The Number of Referenced Chunks
3 5 0 4

7/27

Back up the Third Data Stream

A
B
C
D
E
I

F
G
H
I
J
II

K
L
M

Blank

III

F
G
O
P
Q
IV

A
B
C
R
S
V

T

VI

Blank

Rewrite 3 duplicate chunks
Deduplicate 7 duplicate chunks

8/27

Rewrite

A B C F G H I J O P R S T

Back up the Third Data Stream

A
B
C
D
E
I

F
G
H
I
J
II

K
L
M

Blank

III

F
G
O
P
Q
IV

A
B
C
R
S
V

T

VI

Blank

9/27

A B C F G H I J O P R S T

Restore the Third Data Stream

Read 4 containers to restore the third backup stream

 Overlooking the redundancy among containers, redundant
chunks are mistakenly considered to be referenced chunks.

 Redundant chunks in selected containers reduces the
deduplication efficiency as well as restore performance.

Motivation

❐Review the observation
❐Redundancy among containers
❐Decrease the deduplicaton efficiency as well as

restore performance

❐Motivation
❐Consider the redundancy among containers

when selecting containers
❐Select a fixed-size subset of containers with

more distinct referenced chunks for
deduplication

10/27

Same Example for Our Scheme

❐Backup the same 3 data streams

❐Selecting two containers for deduplication

❐First and Second backup are ignored

11/27

Same Example for Our Scheme: Backup

A
B
C
D
E
I

F
G
H
I
J
II

K
L
M

Blank

III

F
G
O
P
Q
IV

A B C F G H I J O P R S T

Container ID Distinct Referenced Chunks Chunks Amount
I, II A B C F G H I J 8
I, III A B C 3
I, IV A B C F G O P 7
II, III F G H I J 5
II, IV F G H I J O P 7
III, IV F G O P 4

Selecting a fixed-size subset of containers with more distinct
referenced chunks for deduplication

12/27

A
B
C
D
E
I

F
G
H
I
J
II

K
L
M

Blank

III

F
G
O
P
Q
IV

O
P
Q
S
T
V

Rewrite 2 duplicate chunks
Deduplicate 8 duplicate chunks

13/27

A B C F G H I J O P R S T

Rewrite

Same Example for Our Scheme: Backup

14/27

A B C F G H I J O P R S T

A
B
C
D
E
I

F
G
H
I
J
II

K
L
M

Blank

III

F
G
O
P
Q
IV

O
P
Q
S
T
V

Read 3 containers to restore the third backup stream

Same Example for Our Scheme: Restore

Comparisons

❐ Selecting containers with more distinct referenced
chunks
❐De-duplicate more chunks
❐Rewrite less chunks
❐Read less containers in restore

❐ Better trade-off: achieving higher deduplication
ratio and also improving restore performance.

Capping Our Scheme
Deduplicate 7 chunks 8 chunks

Rewrite 3 chunks 2 chunks
Reads for Restore 4 containers 3 containers

Selecting a fixed-size subset of containers
with more distinct referenced chunks for
deduplication

15/27

SMR: A Submodular Maximization Rewriting Scheme

❐Select a subset of containers with more distinct
referenced chunks
❐Reduce the disk accesses for unreferenced and

redundant chunks

❐The number of containers in the subset is limited
❐Limit the number of containers read from disks

16/27

Formulate the Subset Selection Problem

❐Given a set of old containers to be selected V = 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶 𝑉𝑉

❐A budget T, the limited number of selected containers:

❐Find a container subset S (S ⊆ V，|S| ≤ T), offering the largest
number of distinct referenced chunks for the backup

❐The subset selection can be performed by computing:

17/27

The Scoring Function: F(S)

❐A scoring function 𝐹𝐹：2𝑉𝑉 → ℝ : the amount of distinct
referenced chunks in a subset

❐𝑤𝑤(𝐶𝐶𝑖𝑖): all referenced chunks in container 𝐶𝐶𝑖𝑖

❐𝐹𝐹(𝑆𝑆) is a monotone submodular function

18/27

How to Compute S*?

19/27

❐ Computing S* is intractable
❐ Selecting T containers from N containers: possible cases

❐ Naive scheme to compute S*
❐ Emulate all possible container subsets
❐ Rank these subsets by the scores and select one with the highest score
❐ Time and compuation inefficiency

❐ Our Scheme
❐ F(S) is monotone submodular function (MSF)
❐ Greedy algorithm is time-efficient for computing the maxization for

MSF
❐ Constant-factor mathematical quality guarantee

N
T

Evaluation Datasets

❐GCC: source code of the GNU Complier Collection
❐Linux: unpacked linux kernel sources

Datasets GCC Linux
Total size 56GB 97GB

of versions 89 96
Version numbers 2.95 to 6.1.0 4.0 to 4.7

20/27

Evaluations Metrics

❐Speed factor: 1 divided by mean container read per MB of
data restored (restore performance)

❐Deduplication ratio: the ratio of total size of the removed
duplicate chunks to that of all backed up chunks

(deduplication performance)

❐Deduplication throughput: the amount of backed up data
per second (deduplication performance)

21/27

Deduplication Ratio vs. Speed Factor

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.8 3 3.2 3.4 3.6 3.8 4
D

ed
up

lic
at

io
n

ra
tio

Speed factor

Capping SMR NED

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.9 2.2 2.5 2.8 3.1 3.4

D
ed

up
lic

at
io

n
ra

tio

Speed factor

Capping SMR

GCC dataset Linux dataset

SMR achieves better trade-off between restore performance and
deduplication ratio

22/27

Deduplication Throughput vs. Speed Factor

8.5

8.9

9.3

9.7

10.1

10.5

10.9

1.9 2.2 2.5 2.8 3.1 3.4

T
hr

ou
gh

pu
t(

M
B

/s
)

Speed factor

Capping SMR NED

11

12

13

14

15

16

17

18

19

2.8 3 3.2 3.4 3.6 3.8 4
T

hr
ou

gh
pu

t(
M

B
/s

)
Speed factor

Capping SMR NED

GCC dataset Linux dataset

In most cases, SMR achieves higher throughputs

23/27

The Effects of the Budget T

❐SMR T: selecting T containers for each data segment

1.5

2

2.5

3

3.5

4

0 15 30 45 60 75 90

Sp
ee

d
fa

ct
or

Backup versions

SMR 10 SMR 20 SMR 30 SMR 40 SMR 50

 Smaller T results in higher speed factor
 T is adjustable to meet the needs of different restore performance

24/27

Conclusion

❐ Fragmentation severely degrades restore performance
❐Existing work addressing the problem is suboptimal

due to overlooking redundancy among containers
❐ We propose a submodular maximization rewriting

scheme SMR
❐Consider the redudancy among containers when selecting

containers
❐ Select more suitable containers by a submodular

maximization model
❐ SMR outperforms the state-of-the-art work in both

restore performance and deduplication ratio

25/27

Thanks & Questions

Open-source Code: https://github.com/courageJ/SMR
E-mail: wujie@hust.edu.cn

26/27

The Monotone Submodular Function

❐Submodular
❐A set function 𝐹𝐹 is submodular if for any set 𝐴𝐴 ⊆ 𝐵𝐵 ⊂ 𝑉𝑉, and 𝑣𝑣 ∈
𝑉𝑉 ∖ 𝐵𝐵, we have that:

𝐹𝐹 𝐴𝐴 + 𝑣𝑣 − 𝐹𝐹 𝐴𝐴 ≥ 𝐹𝐹 𝐵𝐵 + 𝑣𝑣 − 𝐹𝐹 𝐵𝐵
❐Adding 𝑣𝑣 to smaller set A brings more benefit than to larger set B
❐Referenced chunks in new container v

❐Distinct to A
❐Redundant to set B
❐Incremental number of distinct referenced chunks of A ≥ number of B

❐Monotone
❐A set function 𝐹𝐹 is monotone if for any set 𝐴𝐴 ⊆ 𝐵𝐵 ⊂ 𝑉𝑉, we have

that:
𝐹𝐹 𝐵𝐵 ≥ 𝐹𝐹 𝐴𝐴

❐The number of distinct referenced chunks of B ≥ number of A.

27/27

	A Cost-efficient Rewriting Scheme to Improve Restore Performance in Deduplication Systems
	Data Deduplication
	Chunk Fragmentation
	Existing Containers Selection Solutions
	Observation: Redundancy among Containers
	Example with Capping
	Back up the First Two Data Streams
	Back up the Third Data Stream
	Back up the Third Data Stream
	Restore the Third Data Stream
	Motivation
	Same Example for Our Scheme
	Same Example for Our Scheme: Backup
	Same Example for Our Scheme: Backup
	Same Example for Our Scheme: Restore
	Comparisons
	SMR: A Submodular Maximization Rewriting Scheme
	Formulate the Subset Selection Problem
	The Scoring Function: F(S)
	How to Compute S*?
	Evaluation Datasets
	Evaluations Metrics
	Deduplication Ratio vs. Speed Factor
	Deduplication Throughput vs. Speed Factor
	The Effects of the Budget T
	Conclusion
	Thanks & Questions
	The Monotone Submodular Function

