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Data Deduplication

❐ Container
❐ Large fixed-size storage unit
❐ Basic unit of reads and writes
❐ Preserving the spatial locality
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Chunk Fragmentation

❐ Logically consecutive chunks are scattered in 
different containers

❐ Fragmentation degrades restore performance
❐ Consecutive disk accesses → random ones 

❐ Penalty of disk seeks
❐ Unreferenced chunks in retrieved containers 

❐consume limited disk bandwidth

❐ Infrequent restore: very important, main concern
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Existing Containers Selection Solutions
❐ Rewriting Schemes: Capping (FAST’13), NED (ICA3PP’14)

❐ Trade off deduplication for reducing chunk fragmentation
❐ Improve restore performance

❐ Select some containers to de-duplicate
❐ Deduplicate chunks to identical copies in selected 

containers
❐ Rewrite duplicate chunks belonging to other unselected

containers into new containers 
❐ How to select?

❐ Capping: selects top T containers ranked by the reference 
ratio

❐ NED: selects containers with the reference ratio over a
threshold
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Observation: Redundancy among Containers

❐Rewrite: multiple identical copies stored in 
different containers
❐Causing redundant chunks in selected containers

❐Existing rewriting schemes are suboptimal due to 
overlooking the redundancy among containers
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Example with Capping

❐ Backup 3 consecutive data streams each 
with 13 chunks

❐Capping
❐select top (T = 2) containers ranked by 
the number of referenced chunks
❐The container size: 5 chunks
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Back up the First Two Data Streams 
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Back up the Third Data Stream 
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Rewrite 3 duplicate chunks
Deduplicate 7 duplicate chunks
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Rewrite
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Back up the Third Data Stream
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Restore the Third Data Stream

Read 4 containers to restore the third backup stream

 Overlooking the redundancy among containers, redundant 
chunks are mistakenly considered to be referenced chunks.

 Redundant chunks in selected containers reduces the 
deduplication efficiency as well as restore performance.



Motivation

❐Review the observation
❐Redundancy among containers
❐Decrease the deduplicaton efficiency as well as 

restore performance

❐Motivation
❐Consider the redundancy among containers 

when selecting containers
❐Select a fixed-size subset of containers with 

more distinct referenced chunks for 
deduplication
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Same Example for Our Scheme

❐Backup the same 3 data streams 

❐Selecting two containers for deduplication

❐First and Second backup are ignored
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Same Example for Our Scheme: Backup
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Container ID Distinct Referenced Chunks Chunks Amount
I, II A B C F G H I J 8
I, III A B C 3
I, IV A B C F G O P 7
II, III F G H I J 5
II, IV F G H I J O P 7
III, IV F G O P 4

Selecting a fixed-size subset of containers with more distinct 
referenced chunks for deduplication
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Rewrite

Same Example for Our Scheme: Backup
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Read 3 containers to restore the third backup stream

Same Example for Our Scheme: Restore



Comparisons

❐ Selecting containers with more distinct referenced 
chunks
❐De-duplicate more chunks
❐Rewrite less chunks
❐Read less containers in restore

❐ Better trade-off: achieving higher deduplication 
ratio and also improving restore performance.

Capping Our Scheme
Deduplicate 7 chunks 8 chunks

Rewrite 3 chunks 2 chunks
Reads for Restore 4 containers 3 containers

Selecting a fixed-size subset of containers 
with more distinct referenced chunks for 
deduplication
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SMR: A Submodular Maximization Rewriting Scheme

❐Select a subset of containers with more distinct 
referenced chunks
❐Reduce the disk accesses for unreferenced and 

redundant chunks

❐The number of containers in the subset is limited
❐Limit the number of containers read from disks
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Formulate the Subset Selection Problem

❐Given a set of old containers to be selected V = 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶 𝑉𝑉

❐A budget T, the limited number of selected containers:

❐Find a container subset S (S ⊆ V，|S| ≤ T), offering the largest 
number of distinct referenced chunks for the backup

❐The subset selection can be performed by computing:
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The Scoring Function: F(S)

❐A scoring function 𝐹𝐹：2𝑉𝑉 → ℝ : the amount of distinct 
referenced chunks in a subset

❐𝑤𝑤(𝐶𝐶𝑖𝑖): all referenced chunks in container 𝐶𝐶𝑖𝑖

❐𝐹𝐹(𝑆𝑆) is a monotone submodular function
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How to Compute S*?
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❐ Computing S* is intractable
❐ Selecting T containers from N containers:          possible cases

❐ Naive scheme to compute S*
❐ Emulate all possible container subsets
❐ Rank these subsets by the scores and select one with the highest score
❐ Time and compuation inefficiency

❐ Our Scheme
❐ F(S) is monotone submodular function (MSF)
❐ Greedy algorithm is time-efficient for computing the maxization for 

MSF
❐ Constant-factor mathematical quality guarantee
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Evaluation Datasets

❐GCC: source code of the GNU Complier Collection
❐Linux: unpacked linux kernel sources 

Datasets GCC Linux
Total size 56GB 97GB

# of versions 89 96
Version numbers 2.95 to 6.1.0 4.0 to 4.7
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Evaluations Metrics

❐Speed factor: 1 divided by mean container read per MB of 
data restored (restore performance)

❐Deduplication ratio: the ratio of total size of the removed 
duplicate chunks to that of all backed up chunks

(deduplication performance)

❐Deduplication throughput: the amount of backed up data 
per second       (deduplication performance)
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Deduplication Ratio vs. Speed Factor
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SMR achieves better trade-off between restore performance and 
deduplication ratio

22/27



Deduplication Throughput vs. Speed Factor
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In most cases, SMR achieves higher throughputs
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The Effects of the Budget T

❐SMR  T:  selecting T containers for each data segment
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 Smaller T results in higher speed factor
 T is adjustable to meet the needs of different restore performance
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Conclusion

❐ Fragmentation severely degrades restore performance
❐Existing work addressing the problem is suboptimal 

due to overlooking redundancy among containers 
❐ We propose a submodular maximization rewriting

scheme SMR
❐Consider the redudancy among containers when selecting 

containers
❐ Select more suitable containers by a submodular

maximization model
❐ SMR outperforms the state-of-the-art work in both

restore performance and deduplication ratio
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Thanks & Questions

Open-source Code: https://github.com/courageJ/SMR
E-mail: wujie@hust.edu.cn
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The Monotone Submodular Function

❐Submodular
❐A set function 𝐹𝐹 is submodular if for any set 𝐴𝐴 ⊆ 𝐵𝐵 ⊂ 𝑉𝑉, and 𝑣𝑣 ∈
𝑉𝑉 ∖ 𝐵𝐵, we have that:

𝐹𝐹 𝐴𝐴 + 𝑣𝑣 − 𝐹𝐹 𝐴𝐴 ≥ 𝐹𝐹 𝐵𝐵 + 𝑣𝑣 − 𝐹𝐹 𝐵𝐵
❐Adding 𝑣𝑣 to smaller set A brings more benefit than to larger set B
❐Referenced chunks in new container v

❐Distinct to A 
❐Redundant to set B
❐Incremental number of distinct referenced chunks of A ≥ number of B

❐Monotone
❐A set function 𝐹𝐹 is monotone if for any set 𝐴𝐴 ⊆ 𝐵𝐵 ⊂ 𝑉𝑉, we have 

that:
𝐹𝐹 𝐵𝐵 ≥ 𝐹𝐹 𝐴𝐴

❐The number of distinct referenced chunks of B ≥ number of A.
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