

Michal Simon on behalf of CERN IT/ST group

# Storage Development at CERN





#### Outline

- Introduction: CERN
- Disk
- Tape
- Analytics
- Cloud / WLCG
- Summary



### **CERN:** introduction

- An international laboratory situated between Geneva and the French Jura mountains
- The world's most powerful particle accelerator: LHC
- 4 very large detectors ('Experiments')
- Experiments register particle collisions at rates up to 40MHz (depending on the run and beam type)





#### **CERN:** the data

- Each detector is equipped with up to ~40M sensors -> PB/s!
- Reduced by online filtering farms that select few hundreds 'good' collisions per second





- Selected events are recorded on disk and tape at up to 10GB/s
- 50 Petabytes per year (today) for four experiments



# **CERN storage group**

• Mandate:

Ensures a coherent development and operation of storage services at CERN for all aspects of physics data.

• Design and develop central storage services and their evolution.







#### **EOS** statistics





#### EOS core: XRootD

- XRootD originated at Stanford SLAC
- Collaboration members: SLAC, CERN, UCSD, JINR & Duke University
- The primary data access framework for the high-energy physics community
- Large Sky Synoptic Telescope (LSST)





#### EOS core: XRootD

- XRootD protocol designed for efficient remote file access in LAN/WAN
  - sync/async IO interfaces
  - 3<sup>rd</sup> party copy
  - storage clustering with hierarchical redirections
- Latest protocol enhancement: request signing





#### **EOS** architecture

APPS FUSE gridFTP ROOT SRM xrdcp O XROOTD Client CLIENT Disk only physics file storage x 2 O XROOTD MGM MD In memory hierarchical SERVER namespace O XROOTD MO ...... File layouts (default 2 replicas) SERVER FST Physics data & others DATA SERVER



#### **EOS:** architecture evolution





#### **EOS** namespace evolution

- Currently: C++ library used by the EOS MGM node
- Provides API for dealing with hierarchical collections of files

| Pros                                           | Cons                                                 |
|------------------------------------------------|------------------------------------------------------|
| Using hashes all in memory<br>(extremely fast) | For big instances it requires <b>a lot</b> of RAM    |
| Every change is logged (low risk of data loss) | Booting the namespace from the change log takes long |
| Views rebuild at each boot (high consistency)  |                                                      |



### **EOS** namespace evolution

#### Goals:

- Still fast and consistent
- Scale-out solution to avoid one machine's memory limitation
- Reduce the boot time





# **EOS** namespace evolution

- The new namespace persistence layer is code named QuarkDB
- RocksDB as the storage backend
- Translation of the communication protocol into RocksDB key-value transactions
- Raft consensus algorithm for replication and high-availability





request

response

client

#### **EOS: interface evolution**





# EOS FUSE mount

- Current implementation (2<sup>nd</sup> generation):
  - Pure client side implementation
  - FUSE low level API





# EOS FUSE 3<sup>rd</sup> generation

- Motivation:
  - Limitations in consistency and performance
  - Help AFS retire gracefully
- Implementation



- Dedicated server-side support
  - Async (bulk) communication, new locking model, file in-lining
- Local meta-data & data caching



## **CERN** Data Archive

#### Data:

- 190 PB physics data (CASTOR)
- ~7 PB backup (TSM)

Tape libraries:

- IBM TS3500 (3+2)
- Oracle SL8500 (4) Tape drives:
- ~90 archive
- ~55 backup

Capacity:

- ~70 000 slots
- ~25 000 tapes





## CERN Data Archive SW

- CASTOR (CERN Advanced STORage manager)
  - Hierarchical Storage management (HSM) system
    - Front-end disk and back-end tape layer
  - In production since 2001
  - Slowly being retired
- A new data archive solution (CTA) is being currently developed
  - Closely integrated with EOS
  - Designed to sustain Run3 (2021) expected data rate (150 PB per year)





# CERN Tape Archive (CTA)

- CTA is an EOS tape backend
- Archived files appear in the EOS namespace as file replicas





# EOS: 2D erasure encoding

- Native XRootD plugin
- Dimension 1: EC over nodes
- Dimension 2: EC over many disks within a node
- Based on Intel
  ISAL library
- Possible alternative to tape archive





# Analysis of Disk failures

- Failures on some 70k disks (order similar as blackblaze)
  - Failure impact on service performance
  - Comparison of enterprise and consumer disks
  - Predictive maintenance
- Using data from:
  - smart sensors
  - disk replacement logs
  - disk hardware repository



logs from EOS & Hadoop cluster



# **Cloud storage**

- We are interested in tactical storage (or cache) to support CPU procurements
- We are not interested in long term cloud storage
- CERN is part of Helix-Nebula
- We are in the process of evaluating for which use cases cloud storage cloud be attractive





#### File Transfer Service

- Low-level transferring from 3 big experiments (LHCb, CMS, ATLAS)
  - Multi-level, fair-share transfer scheduler
  - Maximise resource usage & congestion
    avoidance
  - Multi-protocol support
  - Support for staging
- ~15 PB data transferred monthly





# Summary

- XRootD: the framework of choice for our storage developments
- EOS: ~160 PB, ongoing development: namespace and FUSE mount
- Archive: ~200 PB, ongoing development: CTA
- Analytics: collaboration with UC Santa Cruz



# Useful links

- XRootD: <u>http://xrootd.org/</u>
- EOS: <u>https://eos.web.cern.ch/</u>
- CASTOR: <u>http://castor.web.cern.ch/</u>
- FTS3: <u>http://fts3-service.web.cern.ch/</u>
- Helix-nebula: <u>http://www.helix-nebula.eu/</u>







