
The Technology Basis for
AvesTerra:

An Overview of Ada and SPARK
Presented by Steve Baird

MSST 2018

Overview

• What is Ada?
• What is SPARK?
• Levels of Assurance and SPARK
• Industrial Experience
• Features that Matter
• Conclusions

2

What Is Ada?

• Ada is a high-level programming language intended for critical long-
lived applications where reliability, maintainability, portability and
performance are essential
• Originally designed in the early 1980s, with several subsequent

revisions and enhancements
• Current version of the language is known as Ada 2012

• Available on a wide range of native and embedded platforms
• Roughly comparable to C++ in expressive power but with many more

checks, both at compile time and run time

3

Summary of Ada Language Features (1)

• Reliable General-Purpose Sequential Programming
• Structured control facilities
• Data structuring, strong typing
• Exception handling
• Code modules (subprograms)
• Contract-based programming (pre- and postconditions)

• Programming in the Large
• Packages
• Data abstraction
• Generic templates
• General separate compilation facility
• Object-Oriented Programming

• No need for automatic garbage collection

4

Summary of Ada Language Features (2)

• Concurrent Programming
• Tasking and associated statements
• State-based mutual exclusion (protected objects/types)
• Multicore support
• Ravenscar profile

• Interfacing with Other Languages
• Importing / exporting subprograms, data objects
• Standard support for interfacing with C, C++, Fortran, COBOL

• Low-Level Programming
• Unchecked conversions
• Data layout control
• Machine-dependent types

5

Summary of Ada Language Features (3)

• Predefined Environment
• Input/Output
• Character and string handling
• Numerics
• Execution Environment Interfacing
• Containers
• Internationalization

• Specialized Needs Annexes
• Systems Programming
• Real-Time Systems
• Distributed Systems

6

• Information Systems
• Numerics
• Safety/Security (High-Integrity Systems)

What Is SPARK?

• A programming language (“SPARK 2014”)
• A subset of Ada 2012 amenable to modular static verification
• Additional features to enhance

program specification and
facilitate analysis

• A set of program analysis/proof tools
• SPARK subset enforcement
• Flow analysis
• Functionality proof 7

Ada
features
outside

the SPARK
subset

Core
language

constructs
common to

Ada and
SPARK

Additional
SPARK
aspects

Ada

SPARK

Rejected by
SPARK tools

Ignored by
Ada compiler

SPARK Language Summary

• Design principles
• Include as much of the Ada language as is possible / practical to analyze
• Eliminate sources of ambiguity / implementation dependence
• Add aspects that facilitate formal analysis

• Included Ada features
• Program structure
• Contract-based programming

• Pre- and postconditions
• Scalar ranges, type/subtype predicates

• Excluded Ada features
• Access types (pointers)
• Side effects in functions / expressions
• Problematic aliasing of names 8

• Most data types
• Object-Oriented Programming
• Ravenscar tasking profile

• goto statement
• Exception handling
• Most tasking features

Specification
of effects

Flow
analysis

Program
implements
specification

SPARK – Flow Analysis

9

Specification
of properties Proof

Program
implements
specification

SPARK – Proof

10

Levels of Software Assurance

11

Stone Level

12

Strong semantic coding standard

Program respects all the SPARK language legality rules

Enforces safer use of language features:
• Restricted concurrency (Ravenscar profile)
• Expressions and functions without side-effects

Forbids language features that make analysis difficult:
• Unrestricted pointers
• Exception handlers

Bronze Level

13

Initialization and correct data flow

Program passes SPARK flow analysis without violations

Detects programming errors:
• Read of uninitialized data
• Problematic aliasing between parameters
• Data race between concurrent tasks

Checks user specifications:
• Data read or written
• Flow of information from inputs to outputs

Silver Level

14

Absence of run-time errors

Program passes SPARK proof without violations

Detects programming errors:
• Divide by zero
• Array index out of bounds
• Integer, fixed-point and floating-point overflow
• Integer, fixed-point and floating-point range violation
• Explicit exception raised
• Violation of Ceiling Priority Protocol

Gold Level

15

Proof of key integrity properties

Program passes SPARK proof without violations

Checks user specifications:
• Type invariants (weak and strong)
• Preconditions
• Postconditions

Checks correct use of OO wrt Liskov Substitution Principle

Platinum Level

16

Proof of full functional correctness

Program passes SPARK proof without violations

Checks complete user specifications:
• Type invariants (weak and strong)
• Preconditions
• Postconditions

Checks loop termination (loop variant)

Industrial Practice

17

Established Practice at Altran UK

18

Software Integrity Level SPARK Software Assurance Level

DAL SIL Bronze Silver Gold Platinum

A 4

B 3

C 2

D 1

E 0

Past Projects at Altran UK

19

C130J: 1996 - now
Bronze (Lockheed
Martin) and Gold (UK
RAF and BAE Systems)

iFACTS: 2006 - now
Silver (NATS)

SHOLIS: 1995
DEFSTAN 00-55 SIL4
First Gold

Adoption Experiments at Thales

20

Use case 1: porting to new platform
context: 300 klocs radar software
target: Stone level
significant manual refactoring (several days)
on the way to completion on 300 klocs

Use case 2: demonstrate compliance to LLR
context: small numerical function
target: Gold level
difficulties in expressing suitable contracts
property was not proved automatically

Use case 3: identify and fix weakness
context: 100s slocs code generator
target: Gold level
half a day to reach Silver
property related to inner memory bounds
two days to reach Gold

Use case 4: guarantee safety properties
context: 7 klocs command & control
target: Gold level
one day to reach Silver
property expressed as automaton
four days to reach Gold

Adoption Guidelines with Thales

21

For every level, we present:
• Benefits, Impact on process, Costs and limitations
• Setup and tool usage
• Violation messages issued by the tool
• Remediation solutions

Guidance was put to test:
• During adoption experiments at Thales
• On the example (SPARK tool) presented in last section

Features that Matter

22

SPARK_Mode => On
• Ada types, expressions, statements, subprograms

SPARK_Mode => Off
• Ada pointers
• Ada exception handlers

• Ada generics
• Ada object orientation
• Ada concurrency
• Ada pointers

work in progress to
include safe Rust-like

pointers in SPARK

SPARK_Mode => On
• Ada types, expressions, statements, subprograms

SPARK_Mode => Off
• Ada pointers
• Ada exception handlers

• Ada generics
• Ada object orientation
• Ada concurrency

Stone Level – Large Language Subset

23

Bronze/Silver Level – Generation of Contracts

24

Example: SPARKSkein Skein cryptographic hash algorithm (Chapman, 2011)
target: Silver level

initial version (SPARK 2005) current version (SPARK 2014)
41 non-trivial contracts for effects and
dependencies

1 – effects and dependencies are
generated

31 conditions in preconditions and
postconditions on internal subprograms

0 – internal subprograms are inlined

43 conditions in loop invariants 1 – loop frame conditions are generated
23 annotations to prevent combinatorial
explosion

0 – no combinatorial explosion

Silver/Gold Level – Combination of Provers

25

Silver/Gold Level – Combination of Provers

26

Example: Safe bounds on trajectory computation (submitted to VSTTE 2017)
target: Gold level

Gold/Platinum Level – Auto-Active Verification

27

2
1 4

53

Example: Functional correctness of red-black trees (NFM 2017)
target: Platinum level

Auto-Active = portmanteau of Automatic and interActive

supported by ghost code: contracts, loop invariants,
intermediate assertions, lemma procedures

ghost code used to:
• define model of data used in specifications
• prove intermediate lemmas (e.g. for inductive proofs)
• provide witness for property (e.g. for transitivity relation)

Gold/Platinum Level – Auto-Active Verification

28

0

200

400

600

800

1000

1200

Binary Trees Search Trees Red-black Trees

Ghost
Contract
Code

Conclusion

29

Levels of Software Assurance

30

From strong semantic coding standard to full functional correctness

Every level implicitly builds on the lower levels

Lower levels require lower costs/efforts

Good match from DAL/SIL to Bronze-Silver-Gold-Platinum

Adoption greatly facilitated by detailed level-specific guidance

Catchy names are easy to remember!

SPARK Resources

SPARK toolset
http://www.adacore.com/sparkpro http://libre.adacore.com/

SPARK adoption guidance
www.adacore.com/knowledge/technical-papers/implementation-guidance-spark

SPARK blog and resources (User’s Guide)
http://www.spark-2014.org

SPARK online training
http://u.adacore.com

31

