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What Is Ada?

• Ada is a high-level programming language intended for critical long-
lived applications where reliability, maintainability, portability and 
performance are essential
• Originally designed in the early 1980s, with several subsequent 

revisions and enhancements
• Current version of the language is known as Ada 2012

• Available on a wide range of native and embedded platforms
• Roughly comparable to C++ in expressive power but with many more 

checks, both at compile time and run time
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Summary of Ada Language Features (1)

• Reliable General-Purpose Sequential Programming
• Structured control facilities
• Data structuring, strong typing
• Exception handling
• Code modules (subprograms)
• Contract-based programming (pre- and postconditions)

• Programming in the Large
• Packages
• Data abstraction
• Generic templates
• General separate compilation facility
• Object-Oriented Programming

• No need for automatic garbage collection
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Summary of Ada Language Features (2)

• Concurrent Programming
• Tasking and associated statements
• State-based mutual exclusion (protected objects/types)
• Multicore support
• Ravenscar profile

• Interfacing with Other Languages
• Importing / exporting subprograms, data objects
• Standard support for interfacing with C, C++, Fortran, COBOL

• Low-Level Programming
• Unchecked conversions
• Data layout control
• Machine-dependent types
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Summary of Ada Language Features (3)

• Predefined Environment
• Input/Output
• Character and string handling
• Numerics
• Execution Environment Interfacing
• Containers
• Internationalization

• Specialized Needs Annexes
• Systems Programming
• Real-Time Systems
• Distributed Systems
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• Information Systems
• Numerics
• Safety/Security (High-Integrity Systems)



What Is SPARK?

• A programming language (“SPARK 2014”)
• A subset of Ada 2012 amenable to modular static verification
• Additional features to enhance 

program specification and 
facilitate analysis

• A set of program analysis/proof tools
• SPARK subset enforcement
• Flow analysis
• Functionality proof 7
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SPARK Language Summary

• Design principles
• Include as much of the Ada language as is possible / practical to analyze 
• Eliminate sources of ambiguity / implementation dependence
• Add aspects that facilitate formal analysis

• Included Ada features
• Program structure
• Contract-based programming

• Pre- and postconditions
• Scalar ranges, type/subtype predicates

• Excluded Ada features
• Access types (pointers)
• Side effects in functions / expressions
• Problematic aliasing of names 8

• Most data types
• Object-Oriented Programming
• Ravenscar tasking profile

• goto statement
• Exception handling
• Most tasking features
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of effects

Flow 
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SPARK – Flow Analysis
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Specification 
of properties Proof

Program 
implements 
specification

SPARK – Proof 
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Levels of Software Assurance
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Stone Level
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Strong semantic coding standard

Program respects all the SPARK language legality rules

Enforces safer use of language features:
• Restricted concurrency (Ravenscar profile)
• Expressions and functions without side-effects

Forbids language features that make analysis difficult:
• Unrestricted pointers
• Exception handlers



Bronze Level
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Initialization and correct data flow

Program passes SPARK flow analysis without violations

Detects programming errors:
• Read of uninitialized data
• Problematic aliasing between parameters
• Data race between concurrent tasks

Checks user specifications:
• Data read or written
• Flow of information from inputs to outputs



Silver Level
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Absence of run-time errors

Program passes SPARK proof without violations

Detects programming errors:
• Divide by zero
• Array index out of bounds
• Integer, fixed-point and floating-point overflow
• Integer, fixed-point and floating-point range violation
• Explicit exception raised
• Violation of Ceiling Priority Protocol



Gold Level
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Proof of key integrity properties

Program passes SPARK proof without violations

Checks user specifications:
• Type invariants (weak and strong)
• Preconditions
• Postconditions

Checks correct use of OO wrt Liskov Substitution Principle



Platinum Level
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Proof of full functional correctness

Program passes SPARK proof without violations

Checks complete user specifications:
• Type invariants (weak and strong)
• Preconditions
• Postconditions

Checks loop termination (loop variant)



Industrial Practice
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Established Practice at Altran UK
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Software Integrity Level SPARK Software Assurance Level

DAL SIL Bronze Silver Gold Platinum

A 4

B 3

C 2

D 1

E 0



Past Projects at Altran UK
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C130J: 1996 - now
Bronze (Lockheed 
Martin) and Gold (UK 
RAF and BAE Systems)

iFACTS: 2006 - now
Silver (NATS)

SHOLIS: 1995
DEFSTAN 00-55 SIL4
First Gold



Adoption Experiments at Thales
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Use case 1: porting to new platform
context:      300 klocs radar software
target:         Stone level
significant manual refactoring (several days)
on the way to completion on 300 klocs

Use case 2: demonstrate compliance to LLR
context:      small numerical function 
target:         Gold level
difficulties in expressing suitable contracts
property was not proved automatically

Use case 3: identify and fix weakness
context:      100s slocs code generator
target:         Gold level
half a day to reach Silver
property related to inner memory bounds
two days to reach Gold

Use case 4: guarantee safety properties
context:      7 klocs command & control
target:         Gold level
one day to reach Silver
property expressed as automaton
four days to reach Gold



Adoption Guidelines with Thales
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For every level, we present:
• Benefits, Impact on process, Costs and limitations
• Setup and tool usage
• Violation messages issued by the tool
• Remediation solutions

Guidance was put to test:
• During adoption experiments at Thales
• On the example (SPARK tool) presented in last section



Features that Matter
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SPARK_Mode => On
• Ada types, expressions, statements, subprograms

SPARK_Mode => Off
• Ada pointers
• Ada exception handlers

• Ada generics
• Ada object orientation
• Ada concurrency
• Ada pointers

work in progress to 
include safe Rust-like 

pointers in SPARK

SPARK_Mode => On
• Ada types, expressions, statements, subprograms

SPARK_Mode => Off
• Ada pointers
• Ada exception handlers

• Ada generics
• Ada object orientation
• Ada concurrency

Stone Level – Large Language Subset
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Bronze/Silver Level – Generation of Contracts
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Example: SPARKSkein Skein cryptographic hash algorithm (Chapman, 2011)
target: Silver level

initial version (SPARK 2005) current version (SPARK 2014)
41 non-trivial contracts for effects and 
dependencies

1 – effects and dependencies are 
generated

31 conditions in preconditions and 
postconditions on internal subprograms

0 – internal subprograms are inlined

43 conditions in loop invariants 1 – loop frame conditions are generated
23 annotations to prevent combinatorial 
explosion

0 – no combinatorial explosion



Silver/Gold Level – Combination of Provers
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Silver/Gold Level – Combination of Provers
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Example: Safe bounds on trajectory computation (submitted to VSTTE 2017)
target: Gold level



Gold/Platinum Level – Auto-Active Verification
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Example: Functional correctness of red-black trees (NFM 2017)
target: Platinum level

Auto-Active = portmanteau of Automatic and interActive

supported by ghost code: contracts, loop invariants, 
intermediate assertions, lemma procedures

ghost code used to:
• define model of data used in specifications
• prove intermediate lemmas (e.g. for inductive proofs)
• provide witness for property (e.g. for transitivity relation)



Gold/Platinum Level – Auto-Active Verification
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Conclusion
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Levels of Software Assurance
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From strong semantic coding standard to full functional correctness

Every level implicitly builds on the lower levels

Lower levels require lower costs/efforts

Good match from DAL/SIL to Bronze-Silver-Gold-Platinum

Adoption greatly facilitated by detailed level-specific guidance

Catchy names are easy to remember!



SPARK Resources

SPARK toolset
http://www.adacore.com/sparkpro http://libre.adacore.com/

SPARK adoption guidance
www.adacore.com/knowledge/technical-papers/implementation-guidance-spark

SPARK blog and resources (User’s Guide)
http://www.spark-2014.org

SPARK online training
http://u.adacore.com
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