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Brief VPIC Overview 

•  Particle-in-cell MPI code (scales 
to ~100K processes) 

•  Fixed mesh range assigned to 
each process 

•  32 – 64 Byte particles 
•  Particles move frequently 

between 10’s of thousands of 
processes 

•  Million particles per node 
(Trillion particle in target 
simulation) 

•  Interesting particles identified at 
simulation end 
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VPIC + DeltaFS: Storing a Particle per File 

•  Store each particle as a file in a 
single directory 

•  TableFS metadata organization 
•  New DeltaFS data plane 

•  Embedded indexing/partitioning 
pipeline 

•  Leverage idle resources during 
bulk-synchronous output 

•  Custom storage organization  
•  Partitioning + hash tables + 

clustered indexes 

Indexing via post-
processing
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DeltaFS: Indexed Massive Directories 
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Tracking the Highest Energy Particles 
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HXHIM – Indexing for Unstructured Meshes  

•  How do you store/represent an AMR mesh? 
•  In memory, dynamic tree and nested list structures are common 

How many rows are in each of these columns?  
 
(For that matter, how many columns are in each of these columns?!) 
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Why Key-Value? 

•  Key-value exposes the data structures underlying most FS 
•  B-Tree, Log-Structured Merge Trees, LSM Tries, B-epsilon Trees … 
•  Can be tailored to range or point queries, different key-value size ratios 

•  Key-value allows fine-grained data annotation 
•  Not a unique benefit 
•  Key-space flexibility is useful – additional metadata is additive/auxiliary 
•  Resource Description Format layers neatly on top 

•  Key-Value is an effective way to expose a lot of CS research 
•  Hybridized indexing for point queries and/or range queries 

•  Need to add some HPC research to make efficient for HPC platforms 
•  Mercury RPC and Margo (lightweight IO threads) for platform services 
•  Multidimensional Hashing Indexing Middleware 
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HXHIM Mesh Storage Example 

Subject Predicate Object 
mesh name “My Mesh”

sim timestep 3.0

c0 position [0.0,0.0]

c1 position [0.1,0.0]

c2 position [0.0,0.1]

c3.0 position [0.1,0.1]

c3.1.0 position [0.15,0.1]

c3.1.1 position [0.175,0.1]

c3.1.2 position [0.125,0.15]

c3.1.3 position [0.125,0.125]

c3.2 position [0.1,0.15]
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Sample Query: Tracking a Wave thru Time 
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Sample Query: Tracking a Wave thru Time 
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Requirements 

•  A fast multi-dimensional index 
•  Time is discretized separately (indexing not required) 
•  Energy and position must both be indexed (and not trivially) 

•  Level arrays will result in pointers to pointers (you can often skip the third level of 
indirection) 

•  Energy extrema search is worse than VPIC example! 

•  Efficient filtering for contiguity! 
•  We could probably work around most of these problems, but level arrays will 

always convert spatially contiguous workloads into disjoint query sets 
•  Neighbor lists won’t limit the pointer chasing 

•  Why do I think a Key-Value organization can do better? 
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Range-based Iteration with Stored Procedures 

•  Advantages of Key-Value Organization 
•  Decouples file size, I/O size from data set size (efficient I/O) 
•  Keyspace dimension can change dynamically 

•  Leverage naming technique described by Farsite FS 

•  Supports iteration across multiple dimensions simultaneously 
•  In-situ rather than post-hoc 

•  Advantages of client-server architectures 
•  Even with the above we can’t accomplish what we need 
•  Stored procedures to identify extrema in-situ 
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Fast Storage 
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Motivation 

•  Many layers of storage at LANL 
•  By design – users would have us only buying storage if we used HSMs 

•  Data management by users is driven by need, sporadically 
•  Users go find unneeded data and delete, if prodded 
•  Users have no easy way to find particular datasets unless they have a good 

hierarchy or they remember where they put it 
•  Users have bad memories and bad hierarchies…(you can see where this leads) 
•  ...lower (longer) tiers of storage systems accumulate cruft over time 
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LANL Compute/Storage Environment (Secure) 
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GUFI Goals 

•  Unified index over home, project, scratch, campaign, and archive 
•  Metadata only with attribute support 
•  Shared index for users and admins 
•  Parallel search capabilities that are very fast (minutes for billions of files/dirs) 
•  Can appear as mounted file system where you get a virtual image of your file metadata 

based on query input 
•  Full/Incremental update from sources with reasonable update time/annoyance 
•  Leverage existing tech as much as possible both hdwr and software:  flash, threads, 

clusters, sql as part of the interface, commercial db tech, commercial indexing 
systems, commercial file system tech, threading/parallel process/node run times, src 
file system full/incremental capture capabilities, posix tree attributes (permissions, 
hierarchy representation, etc.), open source/agnostic to leveraged parts where 
possible. 

•  Simple so that an admin can easily understand/enhance/troubleshoot 
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Initial Design Thoughts 

•  Why not a flat namespace? 
•  Performance is great, but… 
•  Rename high in the tree is terribly costly 
•  Security becomes a nightmare if users/admins can access the namespace 

•  Leverage things that already work well, reduce required records to scan: 
•  POSIX permissions / tree walk (readdir+) 
•  Breadth first search for parallelization 
•  Our trees have inherent namespace divisions for parallelism 
•  Embedded DBs are fast if not many joins and individual DB size < TB 
•  Flash storage is cheap enough to hold everything with order ~10K IOPs each 
•  Entries in file system reduce to essentially <dir count> * 3 
•  Dense directories reduce footprint dramatically 
•  SQL is easily utilized for general queries of attributes 



Los Alamos National Laboratory 

5/16/18   |   25 

NOTE: 
This is the 
lab color 
palette. è 

GUFI Prototype 
SystemA-namespaceA 
/search/scratch2/ProjectA 

SystemA-namespaceB 
/search/scratch2/ProjectB 

SystemB-namespaceA 
/search/campaign/ProjectB 

DirA 

db.db 
-entries 
-dir summary 
-tree summary 

/search 

DirA DirA DirB DirB DirC DirB 

DirA DirB 

DirA DirB 

-Dir-Summary – 
      DB with summary of this directory 
-Tree-Summary –  
      DB with summary of the tree below 
      optional can be placed anywhere 
-Entries –  
      DB with name/stat/linkname/xattr info  
      for each file or link 

-Tree-Summary 
      optional and can be  
      placed anywhere in  
      the tree 

Process/Node Parallelism for different 
parts of the tree, within each system-
namespace combination use thread 
based parallelism 

db.db 
-entries 
-dir summary 
-tree summary 

db.db 
-entries 
-dir summary 
-tree summary 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 

db.db 
-entries 
-dirsum 
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Draft DB Schemas 

•  Parent-Inode mapping file   “directories-parent-inode  directories Inode” 
•  Parent inode is only kept for directories, not for files as that kills rename/move 

function performance   
•  "CREATE TABLE entries( !

•  name TEXT PRIMARY KEY, name of file (Not path due to renames) !
•  type TEXT, inode INT, f for file l for link    inode !
•  mode INT, posix mode bits !
•  nlink INT, number of links !
•  uid INT, gid INT, uid and gid !
•  size INT, blksize INT, size and blocksize !
•  blocks INT, blocks !
•  atime INT, access time !
•  mtime INT, file contents modification time !
•  ctime INT, metadata change time !
•  linkname TEXT, if link this is path to link !
•  xattrs TEXT);"; single text string, key/value pairs w/ delimiters !
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Draft DB Schemas (continued) 
•  "CREATE TABLE summary( summary info for this directory !

•  name TEXT PRIMARY KEY, name not path due to rename !
•  type TEXT, inode INT, d for directory inode!
•  mode INT, posix mode bits !
•  nlink INT, number of links !
•  uid INT, gid INT, uid gid !
•  size INT, blksize INT, blocks INT, size, blocksize, blocks !
•  atime INT, mtime INT, ctime INT, access time,  dir contents mod time, md chg time !
•  linkname TEXT, xattrs TEXT, if link, path to link, xattrs key/value delimited string !
•  totfiles INT, totlinks INT, tot files in dir, tot links in dir !
•  minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid !
•  minsize INT, maxsize INT, minimum file size and max file size !
•  totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB, !
•  totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB !
•  totsize INT, total bytes in files in dir !
•  minctime INT, maxctime INT, min max ctime !
•  minmtime INT, maxmtime INT, min max mtime !
•  minatime INT, maxatime INT, min max mtime !
•  minblocks INT, maxblocks INT, min max blocks !
•  totxattr INT, number of files with xattrs !
•  depth INT);"; depth this directory is in the tree !
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Draft DB Schemas (continued) 
•  "CREATE TABLE treesummary( summary info for this tree !

•  totsubdirs INT, tot subdirs in tree !
•  maxsubdirfiles INT, maxsubdirlinks INT, maxfiles in a subdir max links in a subdir !
•  maxsubdirsize INT, most bytes in any subdir !
•  totfiles INT, totlinks INT, tot files in tree, tot links in tree !
•  minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid !
•  minsize INT, maxsize INT, minimum file size and max file size !
•  totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB, !
•  totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB !
•  totsize INT, total bytes in files in tree !
•  minctime INT, maxctime INT, min max ctime !
•  minmtime INT, maxmtime INT, min max mtime !
•  minatime INT, maxatime INT, min max mtime !
•  minblocks INT, maxblocks INT, min max blocks !
•  totxattr INT, number of files with xattrs !
•  depth INT);"; depth this tree summary is in the tree !
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Programs Included / In Progress 

•  DFW – depth first walker, prints pinode, inode, path, attrs, xattrs 
•  BFW – breadth first walker, prints pinode, inode, path, attrs, xattrs 
•  BFWI – breadth first walker to create GUFI index tree from source tree 
•  BFMI – walk Robinhood MySQL and list tree and/or create GUFI index tree 
•  BFTI – breadth first walker that summarizes a GUFI tree from a source path 

down, can create treesummary index of that info 
•  BFQ – breadth first walker query that queries GUFI index tree 

•  Specify SQL for treesummary, directorysummary, and entries DBs 
•  BFFUSE – FUSE interface to run POSIX md tools on a GUFI search result 
•  Querydb – dumps treesummary, directorysummar, and optional entry 

databases given a directory in GUFI as input 
•  Programs to update, incremental update (in progress): 

•  Lustre, GPFS, HPSS 
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Early performance indicators 

•  All tests performed on a mid 2014 Macbook (quad core + nvme SSD) 
•  No tree indexes used 
•  ~136k directories, mostly small directories, 10 1M entry dirs, 20 100K 

size dirs, and 10 20M size dirs 
•  ~250M files total represented 
•  Search of all files: 2m10s (~1.75M files/sec) 
•  Search of all files and dirs: 2m19s (~1.63 M entries/sec) 
•  Search of all files and dirs, but exclude some very large dirs: 1m18s 
•  Search of all files and dirs, but exclude all < 1000 file directories: 1m59s 

•  …on a laptop! 
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Learn more! 

•  https://github.com/mar-file-system/GUFI 

Open Source 
BSD License 
Partners Welcome 


