
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Delivering science and technology
to protect our nation

and promote world stability

NOTE: THIS IS
YOUR WALK-IN
SLIDE OPTION
#2. Instead of the
Title Slide, display
this slide on the
venue screen
while your
audience is
arriving.

This is not a title
slide.

Use only a high-
resolution
photograph.

NOTE: THIS IS
YOUR TITLE
SLIDE.

If you use the
Walk-in Slide, you
may replace the
gray LANL logo
on the Title Slide
with your
organization’s
logo and delete
the NNSA logo/
management
statement.

If you DO NOT
use one of the two
the Walk-in Slide
options, you
MUST keep the
LANL and NNSA
logos and
management
statement on this
Title Slide.

Los Alamos National Laboratory

Massive Scale Metadata

David Bonnie

May 16th, 2018

Efforts and Solutions

LA-UR-18-24085

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

5/16/18 | 3

Metadata at Scale

DeltaFS
A File System Service for

Simulation Science

HXHIM
Indexing for Scientific Data

GUFI
Fast Userspace Metadata

Query

Los Alamos National Laboratory

5/16/18 | 4

HXHIM
Indexing for Scientific Data

GUFI
Fast Userspace Metadata

Query

Metadata at Scale

DeltaFS
A File System Service for

Simulation Science

Los Alamos National Laboratory

5/16/18 | 5

Brief VPIC Overview

•  Particle-in-cell MPI code (scales
to ~100K processes)

•  Fixed mesh range assigned to
each process

•  32 – 64 Byte particles
•  Particles move frequently

between 10’s of thousands of
processes

•  Million particles per node
(Trillion particle in target
simulation)

•  Interesting particles identified at
simulation end

Los Alamos National Laboratory

5/16/18 | 6

NOTE:
This is the
lab color
palette. è

DeltaFS
App2

compute nodes w/ fast interconnect
(10,000+)

storage nodes
(100+)

head node

I/O service nodes
(10+)

Lustre Metadata
Object Storage

DeltaFS
App1

IndexFS
App

Lustre
App

RPC

RPC
DeltaFS

App3

Partitioned IndexFS

Brief DeltaFS Overview

Los Alamos National Laboratory

5/16/18 | 7

NOTE:
This is the
lab color
palette. è

DeltaFS
App2

compute nodes w/ fast interconnect
(10,000+)

storage nodes
(100+)

head node

I/O service nodes
(10+)

Lustre Metadata
Object Storage

DeltaFS
App1

IndexFS
App

Lustre
App

RPC

RPC
DeltaFS

App3

Partitioned IndexFS

Brief DeltaFS Overview

Transient FS Servers

Persistent FS Servers

Los Alamos National Laboratory

5/16/18 | 8

VPIC + DeltaFS: Storing a Particle per File

•  Store each particle as a file in a
single directory

•  TableFS metadata organization
•  New DeltaFS data plane

•  Embedded indexing/partitioning
pipeline

•  Leverage idle resources during
bulk-synchronous output

•  Custom storage organization
•  Partitioning + hash tables +

clustered indexes

Indexing via post-
processing

Reduced B/W

High B/W

Campaign
PFS

BurstBuf

Post-
Processing Campaign

PFS Campaign
PFS

BurstBuf

In-transit In-situ
Indexing

Embedded In-situ
Indexing

BurstBuf

Data Indexing
Pipeline

Analysis Nodes

Compute
Resources

App
I/O Lib

(e.g. hdf5)

App
I/O Lib

(e.g. hdf5)

App
DeltaFS
In-situ

Los Alamos National Laboratory

5/16/18 | 9

DeltaFS: Indexed Massive Directories

VPIC
Simulation
Procs

FS
API

Object Store

Query by
Particle

A
C
D
B

E
B
F
A

P P

...

A B

D
D

F
F

B
B

E
E

A
A

C
C

P P P

Index

...

Index Index

A B C

O(1M)

O(1T)

O(1M)

O(1MB) search

O(1M)

O(1M)

O(1M)

O(1TB) search

Regular Directory Indexed Massive Directory

...

... ...

...

Partition

Write-back
BufferShuffle

Shuffle
Routing and Buffering

Mercury RPC
SM (share-memory), BMI, CCI, OFI (libfabric), MPI, …

Delivery
Queue

Local
Send/Recv

Remote
Send/Recv

App
Code fwrite()

Bypass Shuffle

Sub Partition

Sub Partition

Multi-way LSM Indexing

Log Writes

HPC Platform’s Storage

Filter Block

Data Block

Index Block

Logical View

Run N Run N+2Run N+1

…

Data Log

Index Log

Concept Overview
Implementation

Storage Organization

Los Alamos National Laboratory

5/16/18 | 10

Tracking the Highest Energy Particles

245x 665x 532x 625x 992x 2221x 4049x 5112x

0.015625

0.0625

0.25

1

4

16

64

256

1024

4096

496 992 1984 3968 7936 16368 32736 49104

Q
ue

ry
 T

im
e

(s
ec

)

Simulation Size (M Particles)

Baseline DeltaFS

Collaboration of CMU, LANL, ANL, HDF Group
(papers at PDSW 15, PDSW 17, SC18?)

VPIC Particle Dump Size VPIC Particle Trajectory Query

Los Alamos National Laboratory

5/16/18 | 11

GUFI
Fast Userspace Metadata

Query

DeltaFS
A File System Service for

Simulation Science

HXHIM
Indexing for Scientific Data

Metadata at Scale

Los Alamos National Laboratory

5/16/18 | 12

NOTE:
This is the
lab color
palette. è

HXHIM – Indexing for Unstructured Meshes

•  How do you store/represent an AMR mesh?
•  In memory, dynamic tree and nested list structures are common

How many rows are in each of these columns?

(For that matter, how many columns are in each of these columns?!)

Los Alamos National Laboratory

5/16/18 | 13

NOTE:
This is the
lab color
palette. è

Why Key-Value?

•  Key-value exposes the data structures underlying most FS
•  B-Tree, Log-Structured Merge Trees, LSM Tries, B-epsilon Trees …
•  Can be tailored to range or point queries, different key-value size ratios

•  Key-value allows fine-grained data annotation
•  Not a unique benefit
•  Key-space flexibility is useful – additional metadata is additive/auxiliary
•  Resource Description Format layers neatly on top

•  Key-Value is an effective way to expose a lot of CS research
•  Hybridized indexing for point queries and/or range queries

•  Need to add some HPC research to make efficient for HPC platforms
•  Mercury RPC and Margo (lightweight IO threads) for platform services
•  Multidimensional Hashing Indexing Middleware

Los Alamos National Laboratory

5/16/18 | 14

HXHIM Mesh Storage Example

Subject Predicate Object
mesh name “My Mesh”

sim timestep 3.0

c0 position [0.0,0.0]

c1 position [0.1,0.0]

c2 position [0.0,0.1]

c3.0 position [0.1,0.1]

c3.1.0 position [0.15,0.1]

c3.1.1 position [0.175,0.1]

c3.1.2 position [0.125,0.15]

c3.1.3 position [0.125,0.125]

c3.2 position [0.1,0.15]

Los Alamos National Laboratory

5/16/18 | 15

Sample Query: Tracking a Wave thru Time

E
ne

rg
y

Time

Position

E
ne

rg
y

Peak A

Peak B

P
os

iti
on

Time

Peak B

Peak A

Los Alamos National Laboratory

5/16/18 | 16

Sample Query: Tracking a Wave thru Time

Los Alamos National Laboratory

5/16/18 | 17

NOTE:
This is the
lab color
palette. è

Requirements

•  A fast multi-dimensional index
•  Time is discretized separately (indexing not required)
•  Energy and position must both be indexed (and not trivially)

•  Level arrays will result in pointers to pointers (you can often skip the third level of
indirection)

•  Energy extrema search is worse than VPIC example!

•  Efficient filtering for contiguity!
•  We could probably work around most of these problems, but level arrays will

always convert spatially contiguous workloads into disjoint query sets
•  Neighbor lists won’t limit the pointer chasing

•  Why do I think a Key-Value organization can do better?

Los Alamos National Laboratory

5/16/18 | 18

NOTE:
This is the
lab color
palette. è

Range-based Iteration with Stored Procedures

•  Advantages of Key-Value Organization
•  Decouples file size, I/O size from data set size (efficient I/O)
•  Keyspace dimension can change dynamically

•  Leverage naming technique described by Farsite FS

•  Supports iteration across multiple dimensions simultaneously
•  In-situ rather than post-hoc

•  Advantages of client-server architectures
•  Even with the above we can’t accomplish what we need
•  Stored procedures to identify extrema in-situ

Los Alamos National Laboratory

5/16/18 | 19

Fast Storage

Margo
RPC

Partition 2

App Process

HXHIM Client API

HXHIM Server Thread

Tput(s,p,o)
Tget(s,p)
Tdelete(s,p)

Partitioner

L0

LSM

Partition 0

App Process

HXHIM Client API

HXHIM Server Thread

Tput(s,p,o)
Tget(s,p)
Tdelete(s,p)

Partitioner

L0

App Process

HXHIM Client API

HXHIM Server Thread

Tput(s,p,o)
Tget(s,p)
Tdelete(s,p)

Partitioner

L0

LSM

Los Alamos National Laboratory

5/16/18 | 20

HXHIM
Indexing for Scientific Data

DeltaFS
A File System Service for

Simulation Science

GUFI
Fast Userspace Metadata

Query

Metadata at Scale

Los Alamos National Laboratory

5/16/18 | 21

NOTE:
This is the
lab color
palette. è

Motivation

•  Many layers of storage at LANL
•  By design – users would have us only buying storage if we used HSMs

•  Data management by users is driven by need, sporadically
•  Users go find unneeded data and delete, if prodded
•  Users have no easy way to find particular datasets unless they have a good

hierarchy or they remember where they put it
•  Users have bad memories and bad hierarchies…(you can see where this leads)
•  ...lower (longer) tiers of storage systems accumulate cruft over time

Los Alamos National Laboratory

5/16/18 | 22

NOTE:
This is the
lab color
palette. è

LANL Compute/Storage Environment (Secure)

Los Alamos National Laboratory

5/16/18 | 23

NOTE:
This is the
lab color
palette. è

GUFI Goals

•  Unified index over home, project, scratch, campaign, and archive
•  Metadata only with attribute support
•  Shared index for users and admins
•  Parallel search capabilities that are very fast (minutes for billions of files/dirs)
•  Can appear as mounted file system where you get a virtual image of your file metadata

based on query input
•  Full/Incremental update from sources with reasonable update time/annoyance
•  Leverage existing tech as much as possible both hdwr and software: flash, threads,

clusters, sql as part of the interface, commercial db tech, commercial indexing
systems, commercial file system tech, threading/parallel process/node run times, src
file system full/incremental capture capabilities, posix tree attributes (permissions,
hierarchy representation, etc.), open source/agnostic to leveraged parts where
possible.

•  Simple so that an admin can easily understand/enhance/troubleshoot

Los Alamos National Laboratory

5/16/18 | 24

NOTE:
This is the
lab color
palette. è

Initial Design Thoughts

•  Why not a flat namespace?
•  Performance is great, but…
•  Rename high in the tree is terribly costly
•  Security becomes a nightmare if users/admins can access the namespace

•  Leverage things that already work well, reduce required records to scan:
•  POSIX permissions / tree walk (readdir+)
•  Breadth first search for parallelization
•  Our trees have inherent namespace divisions for parallelism
•  Embedded DBs are fast if not many joins and individual DB size < TB
•  Flash storage is cheap enough to hold everything with order ~10K IOPs each
•  Entries in file system reduce to essentially <dir count> * 3
•  Dense directories reduce footprint dramatically
•  SQL is easily utilized for general queries of attributes

Los Alamos National Laboratory

5/16/18 | 25

NOTE:
This is the
lab color
palette. è

GUFI Prototype
SystemA-namespaceA
/search/scratch2/ProjectA

SystemA-namespaceB
/search/scratch2/ProjectB

SystemB-namespaceA
/search/campaign/ProjectB

DirA

db.db
-entries
-dir summary
-tree summary

/search

DirA DirA DirB DirB DirC DirB

DirA DirB

DirA DirB

-Dir-Summary –
 DB with summary of this directory
-Tree-Summary –
 DB with summary of the tree below
 optional can be placed anywhere
-Entries –
 DB with name/stat/linkname/xattr info
 for each file or link

-Tree-Summary
 optional and can be
 placed anywhere in
 the tree

Process/Node Parallelism for different
parts of the tree, within each system-
namespace combination use thread
based parallelism

db.db
-entries
-dir summary
-tree summary

db.db
-entries
-dir summary
-tree summary

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

Los Alamos National Laboratory

5/16/18 | 26

NOTE:
This is the
lab color
palette. è

Draft DB Schemas

•  Parent-Inode mapping file “directories-parent-inode directories Inode”
•  Parent inode is only kept for directories, not for files as that kills rename/move

function performance
•  "CREATE TABLE entries(!

•  name TEXT PRIMARY KEY, name of file (Not path due to renames) !
•  type TEXT, inode INT, f for file l for link inode !
•  mode INT, posix mode bits !
•  nlink INT, number of links !
•  uid INT, gid INT, uid and gid !
•  size INT, blksize INT, size and blocksize !
•  blocks INT, blocks !
•  atime INT, access time !
•  mtime INT, file contents modification time !
•  ctime INT, metadata change time !
•  linkname TEXT, if link this is path to link !
•  xattrs TEXT);"; single text string, key/value pairs w/ delimiters !

Los Alamos National Laboratory

5/16/18 | 27

NOTE:
This is the
lab color
palette. è

Draft DB Schemas (continued)
•  "CREATE TABLE summary(summary info for this directory !

•  name TEXT PRIMARY KEY, name not path due to rename !
•  type TEXT, inode INT, d for directory inode!
•  mode INT, posix mode bits !
•  nlink INT, number of links !
•  uid INT, gid INT, uid gid !
•  size INT, blksize INT, blocks INT, size, blocksize, blocks !
•  atime INT, mtime INT, ctime INT, access time, dir contents mod time, md chg time !
•  linkname TEXT, xattrs TEXT, if link, path to link, xattrs key/value delimited string !
•  totfiles INT, totlinks INT, tot files in dir, tot links in dir !
•  minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid !
•  minsize INT, maxsize INT, minimum file size and max file size !
•  totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB, !
•  totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB !
•  totsize INT, total bytes in files in dir !
•  minctime INT, maxctime INT, min max ctime !
•  minmtime INT, maxmtime INT, min max mtime !
•  minatime INT, maxatime INT, min max mtime !
•  minblocks INT, maxblocks INT, min max blocks !
•  totxattr INT, number of files with xattrs !
•  depth INT);"; depth this directory is in the tree !

Los Alamos National Laboratory

5/16/18 | 28

NOTE:
This is the
lab color
palette. è

Draft DB Schemas (continued)
•  "CREATE TABLE treesummary(summary info for this tree !

•  totsubdirs INT, tot subdirs in tree !
•  maxsubdirfiles INT, maxsubdirlinks INT, maxfiles in a subdir max links in a subdir !
•  maxsubdirsize INT, most bytes in any subdir !
•  totfiles INT, totlinks INT, tot files in tree, tot links in tree !
•  minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid !
•  minsize INT, maxsize INT, minimum file size and max file size !
•  totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB, !
•  totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB !
•  totsize INT, total bytes in files in tree !
•  minctime INT, maxctime INT, min max ctime !
•  minmtime INT, maxmtime INT, min max mtime !
•  minatime INT, maxatime INT, min max mtime !
•  minblocks INT, maxblocks INT, min max blocks !
•  totxattr INT, number of files with xattrs !
•  depth INT);"; depth this tree summary is in the tree !

Los Alamos National Laboratory

5/16/18 | 29

NOTE:
This is the
lab color
palette. è

Programs Included / In Progress

•  DFW – depth first walker, prints pinode, inode, path, attrs, xattrs
•  BFW – breadth first walker, prints pinode, inode, path, attrs, xattrs
•  BFWI – breadth first walker to create GUFI index tree from source tree
•  BFMI – walk Robinhood MySQL and list tree and/or create GUFI index tree
•  BFTI – breadth first walker that summarizes a GUFI tree from a source path

down, can create treesummary index of that info
•  BFQ – breadth first walker query that queries GUFI index tree

•  Specify SQL for treesummary, directorysummary, and entries DBs
•  BFFUSE – FUSE interface to run POSIX md tools on a GUFI search result
•  Querydb – dumps treesummary, directorysummar, and optional entry

databases given a directory in GUFI as input
•  Programs to update, incremental update (in progress):

•  Lustre, GPFS, HPSS

Los Alamos National Laboratory

5/16/18 | 30

NOTE:
This is the
lab color
palette. è

Early performance indicators

•  All tests performed on a mid 2014 Macbook (quad core + nvme SSD)
•  No tree indexes used
•  ~136k directories, mostly small directories, 10 1M entry dirs, 20 100K

size dirs, and 10 20M size dirs
•  ~250M files total represented
•  Search of all files: 2m10s (~1.75M files/sec)
•  Search of all files and dirs: 2m19s (~1.63 M entries/sec)
•  Search of all files and dirs, but exclude some very large dirs: 1m18s
•  Search of all files and dirs, but exclude all < 1000 file directories: 1m59s

•  …on a laptop!

Los Alamos National Laboratory

5/16/18 | 31

NOTE:
This is the
lab color
palette. è

Learn more!

•  https://github.com/mar-file-system/GUFI

Open Source
BSD License
Partners Welcome

