Memory Technologies & Distributed
Storage

Peter Braam

peter@braam.io
2018-05

Contents

- .
2000 storage for 2025
reflection HPC research

* Storage Tiers

* Software and IO Performance

* Emerging Deployments and Research Questions
* Challenges and Conclusions

Speaker: Storage architect and independent researcher. Introduced Lustre and
other ideas. Work on SKA telescope effort with Cambridge University.

2017-12

Storage Tiers

Architecture expanding dramatically

2000 - 2010

2017-12

J

\.
CPU

|

Accelerators
HBM & HMC

|

2010 - 2015

" DRAM | | DRAM |
\ . | GPU
" Disk | I CPU | [Flash | pam
: Tape [Disk |
_ Tape |
2015-2025 /
CPU - [DRAM |
+ NVM Bandwidths up > 10x & 10x
HBEM " Flash Latency down
" Disk Many tiers
, 4 Everything shifting scale
[Cloud] ~ Tape yHIng °

CPU or GPU packages

CPU
cores

Node BW
(GB/sec)

Latency

Cluster BW
(TB/sec)

Software

Purpose

2017-12

\ATBL

bandwidth
memory

C NVRAM

e.g. XPOINT,

. PCM, STTRAM

J

N SR

/

RAM

\

Latency hiding will remain important

1TB/s

100 ns
1 PB/s

Language level

transparent computation

50 GB/s /bus
(NV write ~10x slower)

100 ns (NV Write 1 us)
100 TB/s

Language level / PGAS
DAOS

transparent computation
PGAS and
ultra-fast storage

FLASH

{ 5GB/s >

i

____/
Burst buffer

[net target]

(cloud
: tape
C disks

(e.g. DDN IME, Cray Data Warp)

3 GB/s
(/device)

10 - 100 us
10’s TB/s

Parallel file systems

name space
scientific formats
FS style container

5 GB/s
(/enclosure)

10 ms - 1 min
-1TB GB/s

Parallel FS
Campaign Storage

bulk data movement
- many files
- subtrees of MD

NVM and software overhead

NVM device access: lus There is a new problem ...
NVMe flash read access: 100us
Software needs 10-100x speedup

User/kernel: 1us DAX like mechanisms
Network stack: 10us New challenges for kernel MM
FS + device stack call: 100us

Considerations About Tiers

Migration

RAM tiers are for computation
migrate pointers, cache lines, pages
on large memory ranges when more effective

Flash / disk is 5x faster with large 10

form containers at nvRAM level

Program memory layout: re-usable?
HDFS5 is a file internal layout specification
Is the next step - NumPy?

Persistence

NVRAM will be the fastest storage device
most demanding storage applications
but - write is not yet like RAM - caching!!

Tier S

High
Bandwidth

Memory
BW Cost ~ RAM?
s/ (GB/s)
Capacity ~ RAM?
Cost S/GB

‘

RAM

$10

NVRAM
XPOINT / PCM / FLASH
STTRAM (1/3 device)
(1 bus)
>S10 S200
<S8 S0.3

DISK
(10 disks)

S2K

$0.02

TAPE
(2 drives)

S30K

$0.01

1000x cost difference

Economic Models

= Flash cache: Disk vs Flash for bandwidth?

flash
cache
birth
cost of TB/s
bandwidth
disk
flash

2013

= Solid State Capacity Tier?

cost of .
capacity disk

flash

20227
2017-12

Staging: At what point is
asynchronous staging in burst
buffer cheaper than waiting for 10?
[workload dependent answer]

NVRAM: when does extreme (read)
bandwidth pay off?

Archive: Trade-off between
spin-down (SMR) disk archives vs

tape archives

Write contents of RAM to storage
in ~5 minutes?

Cost of using vs owning capacity?

SKA telescope

Interesting extreme economic example

SKA radio telescope requires ~300PF/s compute with
200 PB/sec memory bandwidth (to create images etc):

- upcoming HBM product may support 50 pJ / byte
- so energy consumption 10!/ x 50x101? =5 MW
- prior to awareness this was the entire energy budget

Systems will have more tiers of storage
Moving data between tiers will be essential
Transparency between tiers

Handling the fastest tiers

Richer cost model

Software & 10 Performance

The Drama

3% efficiency

Evolution of understanding

2000-2005

parallel file systems: impressive benchmarks but problems for
applications

2005-2012
ADIOS / PLFS: data layout & aggregation to the rescue

2010
object storage: has scalability, lacks distributed, shared 10, names

2013

Staging for harder problems, transactions for workflows, log
structures

3 desirable API’s

* File System API
* Object

*Rich data library — e.g. HDF5

'O Storage will offer all 3 API’s: FS - Object - HDF5

Parallel File System Trouble

Too many files
Too many separate bits of data in one file
Wrong alighment

e~ 2010: ADIOS library addresses most issues

What does ADIOS really do?

What needs to be written?

* New API — not POSIX, very
simple

* Form group of processes

e Declare what items and how
many need to be read / written

* Do |0 asynchronously

How will data be written?

* External specification of layout
* Plugins for storage infrastructure
* Align data & stripes & devices

g

IOR’s successful data layout as an
automatic optimization?

HDF5 - storing semi-structured data

* HPC standard for arrays, KV store, sub-file in file and more
 Surprisingly small overlap with custom data layout for cloud

e Other formats (e.g. NetCDF) starting to leverage HDF5
* HDF5 beginning to use sophisticated lower layers (e.g. ADIOS)

Desired: Integrate HDF5 solutions with objects as well as POSIX.

O Library Comparison

Oakridge National Laboratory

Write back caches — logs & containers

1 Fast Tier: Implementation Slower tier —
application FS aggregate
interface zfs send / diff

Hierarchy has fast & slow)
ontainer

. 7ES ¢l) Analytics
side layer clone Wl differential

Hence: Ve clone snapshot) analytics

* Create fine grained data ZFS file ZFS

Base layer —

e Packin a ”Iog” system snapshot Container Approach

- e.g. Docker / ZFS
* Move log < ZFS Pool >

* Avoid small writes

Examples: 2 DDN IME software

- scalable log based
storage system
Cray Datawarp

2017-12

Workflows and distributed transactions

Processing is evolving to workflows — e.g. simulation -> analytics
Coordination of 10 in the workflow: requires group
transactions

1 Precursors Lustre metadata epochs Object stores with snapshots D2T — flexible API

2 DAOQOS - DOE/Intel/HDF5 group collaboration

HDF5, Object and File System Drivers
2012 — 2015: initial prototype based on Lustre / ZFS ﬂ
2015 - : 2" pre-production NVM implementation

Transactional

s distributed
Key capabilities: object interface with
* |0 Process Groups with distributed transactions redundancy
* Scales to 100K’s servers, 1B client processes ﬂ
* Low sw overhead, Redundancy, NVM emphasis
Application: L] [] NVM object store

e Underpinning for HDF5 and legacy file system
* Probably not so easy to use directly

Partial File Staging

Hardest IO problems: massive 1/0 level exchange of small data

Problem E.g. in adaptive mesh refinement (AMR)
Principle: Data Staging
Solution Avoid reading from each node

Re-organize data, and cache in the network
Read from the cache (avoids many small reads)

ADIOS with data spaces

Implementation
Custom libraries — e.g. PUM library from LRZ

Whole file staging and archiving

Campaign Storage (MARFS from LANL)

()

10-100 TB/sec —»| NVM and Flash Solutions

(N J

Compute Clusters with
Fast Expensive Storage
(days - weeks)

(N\

Problem TB/sec — Parallel File System

archive |stage

decreasing
emphasis

Medium Term Cheaper Storage e . N
project “campaign” - months 100 GB/sec ™ Campaign Storage
large, reliable

10 GB/sec —» Archive

Alternatives:
1. HSM to object storage

2. IPFS, upspin.io

2017-12 24

Recap of software mechanisms

Layouts

Buffering

Transactions

Write back caching

Partial and whole file staging

A A

Not all of these are readily
available in deployed 10 solutions

HPC Deployments

Sample deployments 2000 - 2017

2000 - 2017

Racks with compute nodes

Disk enclosures

up to 1TB/sec, disk size = 100x RAM
Lustre / GPFS

2015-
Flash caches: 10x RAM, 5 TB/sec
Lustre / GPFS / DDN IME / Cray DataWarp
Increasing use of object stores

Future Deployments

2020 - Capability System at LANL
Many Lustre/ZFS flash servers?
5-10 TB/sec, 2-5 PB memory, ~100
PB flash
Maybe no burst buffer
Secondary tier: Campaign Storage

2025 SKA
10 TB/sec read, 1TB/sec write,
1EB output / archive (~0.5 PB/day)
200PB/sec memory bandwidth

2022 US Exascale
10PB RAM
10: %2 memory in 3 mins ~ 30TB/sec
Two tiers: capacity and performance
Total storage - 0.5 EB
1M stats / sec,
namespace ops < 100K/sec

10 Questions

- 1- Role of Al / ML for storage

Al to apply data layout & aggregation automatically?
So far limited success
Should be doable. Fast adaptive learning vs learn from all apps?

Design a new storage level tree layout (Google 2017)
Computer improved btree
Get used to Al generated code - like weird chess moves

- 2 - cloud deployments

HPC in the cloud is growing fast in places like Amazon, Azure, ...

A piece of a parallel distributed file system is requested

- synchronization of data
- global namespaces with reasonable performance

How to integrate this with the cloud native object stores?
- map file system devices to objects? map files to objects?

- 3 - Exa-scale storage candidates

1 Evolving parallel file system technology — Lustre / GPFS
2 DAOS - objects for NVRAM data & metadata, transactions
3 Emerging research projects (CEPH/Empress, SAGE, ADIOS)
4 Evolving or new proprietary solution

g New system will be costly to develop

Perhaps too many offerings may only solidify incumbents

- 4 - Application formats vs. File formats

Python NumPy array computations becoming incredibly popular
They dominate Al, much of University research computing

Is storing this as files, in memory format, a good idea?
No overheads and conversions
Would require an app and perhaps transactions

- 5 - Further software support of NVM

Persistent memory development kit offers transaction model

What really is a persistent memory computation? PL implications?
Are they restartable?
Are automatic program transformations to achieve persistence
Tiers of memory with stackable API

- 6 - Much higher performance NVM file system

DAX is a good part of the story

How to do metadata OS bypass?

- 7 - Distribute storage - local node performance

Network access to storage devices has always been a compromise
| don’t think that’s likely to change

Build a coherent system that almost always leverages local storage

- 8 - Accelerators

Numerous memory systems must be targeted by an O API
Linux heterogeneous memory subsystems are in progress

- 9 - Declarative storage organization

Contrast SQL schema definitions
and
Low level stuff like

- address spaces, stripe patterns, allocations, alignments
- building all data management apps from scratch

is the barrier to addressing really so high?

- 10 -

What is the future of archiving?

Conclusions

Conclusions

* More fundamental questions are being asked than 10 years ago
* Hardware developments have been and likely will remain fantastic

Set your eyes for 2020’s on distributed storage
that we can truly love using
with 1PB/sec 10, 1B/s namespace creates

Thank you

