
© 2018 Arm Limited

Accessing NVM
Locally and over RDMA

Challenges and Opportunities

Wendy Elsasser
Megan Grodowitz

William Wang

MSST - May 2018

© 2018 Arm Limited 2

Emerging NVM
A wide variety of technologies with varied characteristics

Address granularity

Cost per bit

Density

Read latency

Write latency

Endurance

DRAM STT-MRAM PCM ReRAM NAND
Variable latency and tail distributions

© 2018 Arm Limited 3

Multiple system use-cases with unique challenges

Storage

§ Filesystem

bottlenecks

DRAM NVM SSD

Transformative

Capacity/TCO-

advantage

§ Endurance

§ Bandwidth

§ Caching

DRAM

NVM

NVMDRAM

Persistency

§ Ordering

§ Point of Persistence

Faster Storage
1000x faster than NAND

Denser Mem
10x denser than DRAM

Persistent Mem
Non-Volatile

© 2018 Arm Limited 4

What about persistence?

§ Crash consistency (failure atomicity)

is needed to ensure recovery can

restore system to a consistent state

– Data move through volatile memories

before they get written to PM

– Using CPU cache flushes and fence

instructions

§ Direct connect PMEM protocols

(NVDIMM) include explicit FLUSH

semantics

Core-

1

Core-

2

Core-

3

Core-

4

L1 $ L1 $ L1 $ L1 $

LLC

DRAM

Recovery

Persistent Memory (PM)

Recovery can inspect the data-structures in PM to
restore system to a consistent state

Managing ordering requirements

© 2018 Arm Limited 5

Example: Add a node to a linked list with PMEM

root Node
headp

newNode

1

nextp

23

3

PM Allocate

Initialize & Persist
Publish & Persist

© 2018 Arm Limited 6

Persistent Memory Programming Models

Native Persistence Library Persistence – Atomic Library Persistence – Durable TXs

pt->x = 1;
pt->y = 1;
dccvap(&pt->x)
dccvap(&pt->y)
dsb

flag=1;
dccvap(&flag)
dsb

Programming simpler, overhead higher

TX_BEGIN{
pt->x = 1;
pt->y = 1;
} TX_END

pt->x = 1;
pt->y = 1;
pmem_persist(&pt,
sizeof(pt))

flag = 1;
pmem_persist(&flag,
sizeof(flag))

createPersistUndoLog (L)

mutateData (M)

commitLog (C)

persistData (P)

© 2018 Arm Limited 7

PMDK (Persistent Memory Development Kit)
Formally NVML, ‘pmem libraries’

• PMDK provides transactional APIs for persistent
memory programming
• libpmemobj transactional APIs

• Use fine-grained logging and cache flushes

• Works on 64-bit Linux, Windows and 64-bit
FreeBSD

Ref: pmem.io

© 2018 Arm Limited 8

71%

63%

96%

37%

68%
72%

95%

39%

83%

98%

81%

0.0

0.5

1.0

Log on Flush on Fence on All on

N
or

m
al

ize
d

th
ro

ug
hp

ut

i7-6600U PMDK-v1.3

map_insert map_remove Redis_SET

• Moving NVM from storage to local, byte addressable
memory greatly improves performance

• But... overheads still exist to maintain a point of
persistency. Can be minimized with:
• Architectural optimizations
• Software optimizations
• Hardware acceleration

Flushing, logging and fencing overheads

• Workloads: Map insert/remove, Redis Set. Implemented with NVML v1.3 libpmemobj transactions
• Platform: Intel i7-6600U with CLFLUSHOPT, single node with local DRAM

Baseline: PMDK without flushing/fencing and logging on

© 2018 Arm Limited 9

Fully incorporating NVM into your system
Numerous attachment points for the varied use cases

NVDIMM-P

Storage

SoC (Procesor)

NVMe

DDRx

DRAM DIMM

NVM

Emerging
NVM

Gen-Z,
Infiniband,

RoCE
PCIe,

Etc.

Emerging
NVMEmerging

NVMNVM

High capacity,
scalable

Low latency,
moderately high
capacity

Fast storage,
SSD caching

PMEM - Directly addressed NVM
Large capacity and/or persistent memory

Addressed as fast IO

§ Local and remote /
distributed NVM both
of interest

§ New interfaces take
advantage of byte
addressable NVM

§ How can we leverage
RDMA for PMEM?

© 2018 Arm Limited 10

Remote Direct Memory Access
Direct access to memory on a remote system without OS involvement

Zero-copy networking; read/write from main memory with network adaptor

Lower latency, higher bandwidth communication between distributed processes

Late 90’s: “Virtual Interface Architecture” tried to standardize zero-copy networking

Mid-late 00’s: First Infiniband implementations stable and mature.

Today (2018): Still be described as a “new technology”

Well, supercomputers, but also…

What?

How?

Why?

When?

Who /
Where?

• Nutanix's upcoming NX-9030 NVM

Express flash appliance is said to

support RDMA.

• Nvidia DGX-1 deep learning

appliance

• Oracle Solaris 11 and higher for NFS

over RDMA

• TensorFlow open source software

library for machine intelligence

• Torch scientific computing

framework

• VMware ESXi

• Apache Hadoop and Apache Spark

big data analysis

• Baidu Paddle (PArallel Distributed

Deep LEarning) platform

• Broadcom and Emulex adapters

• Caffe deep learning framework

• Cavium FastLinQ 45000/41000

Series Ethernet NICs

• Ceph object storage platform

• ChainerMN Python-based deep

learning open source framework

• Chelsio Terminator 5 & 6 iWARP adapters

• GlusterFS internetwork filesystem

• Intel Xeon Scalable processors and Platform Controller

Hub

• Mellanox ConnectX family of network adapters and

InfiniBand switches

• Microsoft Windows Server (2012 and higher) via SMB

Direct supports RDMA-capable network adapters,

Hyper-V virtual switch and the Cognitive Toolkit.

© 2018 Arm Limited 11

RDMA programming
Often abstracted underneath some other library layer

• MPI and other HPC communication libraries
• Lustre, NFS_RDMA and other I/O libraries
• SDP, rsockets, or other socket type interface

Explicit programming of RDMA uses Verbs
• Verbs is not actually an API, but is instead a functional description of RDMA
• libibverbs is the standard Linux verbs implementation API
• APIs for verbs register byte array contiguous memory regions to make them available for remote access

Same API for all RDMA enabled networks
• Infiniband
• RDMA Over Converged Ethernet (RoCE)
• Internet Wide Area RDMA Protocol (iWARP)

NVM API’s could leverage old ideas
- E.g. Memory mapped files
- Add a couple of more things like

- Allocation, Flush
- Great for adaption but must also ensure

functionality and performance with new
features and limitations

© 2018 Arm Limited 12

RDMA, PMEM, and filesystems – current state
Block device APIs already support concepts like flushing and persistence

• E.g. fflush() an IO stream means the data will “be there” after power outage Fundamental NVM value

- Data persistence

Fundamental PMEM value

- Byte Addressable NVM

Linux PMEM drivers are available for NVDIMM (byte addressable) support

• Byte level access with DAX to bypass the page cache and get memory like speeds

• Three device modes for NVDIMM namespaces include:

– Memory mode: DAX byte level access + DMA support

But there is a small problem

• With direct PMEM access, pinned RDMA pages may be corrupted when the file is truncated

• Patch is available (*https://patchwork.kernel.org/patch/10028887/)

© 2018 Arm Limited 13

Where can we go from here?
Emerging NVM is creating opportunities to redefine the memory sub-system

Will still have slow, cheap storage, but will have fast, distributed PMEM in front of it

FLUSH capability required for persistency across power-fail events
• Linux PMEM drivers currently available and NVDIMM-P natively supports FLUSH capabilities

Optimizations possible to reduce overheads for persistency

Must also ensure persistent capabilities work with RDMA
• Let’s start with a bottom-up approach, leveraging existing technologies and developing new APIs

Incorporate into distributed applications (work-flow model) to gain performance benefits
• Data sharing and synchronization in PMEM

1414

Thank You!
Danke!
Merci!
��!
�����!
Gracias!
Kiitos!
감사합니다
ध"यवाद

© 2018 Arm Limited

