Write-Optimization for
File-System Metadata

Rob Johnson
VMware Research

ExzonMobil A user does |s -l on a directory
with a million files”

Aaron Steichen

“Want fast find on trillions of files”

Chris Beecroft

“Flattening the namespace
gives great performance
but renames are expensive”

Dave Bonnie

File systems need to perform well on many metadata operations

Pgmj'_

Full- path
mdexmg

Reb

 Custom
data

\

structures

Query

estat

*grep

Upd% Write
e atime upﬂoptlmlzatlon

eunlink

erm —rf
*recursive chmod

" Full-path
Indexing

Full-path indexing Iin BetrFS

 BetrFS maintains two indexes

- Metadata iIndex: path - struct stat

- Data index: (path,blk#) - data[4096]
* Paths sorted in DFS order (i.e. full-path indexing)
* Implications:

— Data blocks laid out sequentially

- Directory scans — range queries

Full-path indexing yields fast directory scans

E Example: grep -r “key” /home/rob/doc/
3
r?eisalé /home/rob/dc.).c.:.

/home/rob/doc/latex
/home/rob/doc/latex/a.tex

/home/rob/doc/latex/b.tex
/home/rob/doc/bar.c
/home/rob/local

Directory Tree (logical) Disk (physical)

Rename Is expensive when using full-path indexing

Example: mv /home/rob/doc/latex /home/rob

/home/rob/doc

/home/rob/doc/latex
/home/rob/doc/latex/a.tex

/home/rob/doc/latex/b.tex
/home/rob/doc/bar.c
/home/rob/local

/home/rob/latex
/home/rob/latex/a.tex
/home/rob/latex/b.tex

Directory Tree (logical) Disk (physical)

Rename in BetrFS

/green/* — [red/*

Don’t want to access interior
of the /green subtree
during rename

A2 Y

/blue/* /green/* /purple/* lyellow/*

Lifted Bé-trees

ldea: omit common prefixes from nodes and sub-trees

/green/* — [red/*

Don’t want to access interior
of the /green subtree
during rename

1 §

A2 Y

/blue/* /green/* /purple/* lyellow/*

Lifted B&-trees

ldea: omit common prefixes from nodes and sub-trees
|

/green/* — [red/*

L /ININYN

/blue/* /green/* /purple/* lyellow/*

Range rename In lifted Bs-trees

1.Slice out the /green subtree

L /N INYN

/blue/* /green/* /purple/* lyellow/*

Range rename In lifted Bs-trees

1.Slice out the /green subtree

(maintain lifting)

/green/* — [red/*

/blue/* /purple/* lyellow/*

Range rename In lifted Bs-trees

1.Slice out the /green subtree

(maintain lifting)

2.Slice open the /red location

/green/* — [red/*

A /N

/blue/* /green/* /purple/* lyellow/*

Range rename In lifted Bs-trees

1.Slice out the /green subtree

(maintain lifting)

2.Slice open the /red location

(maintain lifting)

/green/* — [red/*

A /N

/blue/* /green/* /purple/* lyellow/*

Range rename In lifted Bs-trees

1.Slice out the /green subtree

(maintain lifting)

~ 2.Slice open the /red location

(maintain lifting)

3.Update pointers

/green/* — [red/*

/blue/* /green/* /purple/* lyellow/*

Range rename In lifted Bs-trees

1.Slice out the /green subtree

(maintain lifting)

2.Slice open the /red location

(maintain lifting)

3.Update pointers

/green/* — [red/*

/blue/* [red/* /purple/* lyellow/*

IO complexity of range rename

 Each slice touches a root-
to-leaf path O (tree height)

« Maintaining lifting doesn't -
need to access any =O(log,N)
additional nodes

Rename Throughput

The average throughput of renaming one file 100 times (higher is better)

100 - ext4
- btrfs
. xfs
- Zfs
-g - BetrFS-Zone
8 50 - BetrFS-RR
)
Q
-
©
§ 25
0
DRV DXV RV PV PV RV RRY YWY
8 o, 8 0 0 000 0 P o P o o

file size (log scale)

Rename Throughput

The average throughput of renaming one file 100 times (higher is better)

100 - extd
= btrfs
- xfs
75
- zfs
g - BetrFS-Zone
3 50 - BetrFS-RR
~
N
Q
-
©
§ 25

Rename can be as fast as inode-based file systems

Recursive directory traversals

60

1

find(sec)
O FRLPNWPHIMOUIOON OO OO
grep(sec)
w b
o o

Full-path indexing can dramatically improve metadata scans

Tokubench

Tokubench: create 3 million 200-byte files in a balanced directory tree (higher is better)

50000 - ext4
= btrfs
- xfs
-g 40000 .
g " i
g 30000 ’l i‘ - BetrFS-Zone
o | | - BetrFS-RR
2 |
'E 20000
2)
= M,
9 10000
© y . |

Write-optimization can accelerate metadata updates

Recursive delete

=
&)

recursive delete(sec)

O L N W P 01 ON O O

Full-path indexing can unleash new optimizations

Conclusion

 \Write optimization can solve a lot of metadata problems

e But write optimization can require rethinking how we organize
our metadata

 And we sometimes need to extend the underlying data
structures to support our metadata needs

Code available at
betrfs.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

