
Write-Optimization for
File-System Metadata

Rob Johnson
VMware Research

“Flattening the namespace
gives great performance
but renames are expensive”

Aaron Steichen

“A user does ls -l on a directory
with a million files”

Dave Bonnie

Chris Beecroft

“Want fast find on trillions of files”

File systems need to perform well on many metadata operations

Query Update

Point ●stat
● atime updates
●creat
●unlink

Recursive
●find
●grep

●rm -rf
● recursive chmod

rename

Write
optimization

Full-path
indexing

Full-path
indexing

Custom
data

structures

Full-path indexing in BetrFS
● BetrFS maintains two indexes

– Metadata index: path → struct stat

– Data index: (path,blk#) → data[4096]
● Paths sorted in DFS order (i.e. full-path indexing)
● Implications:

– Data blocks laid out sequentially
– Directory scans → range queries

Full-path indexing yields fast directory scans

Example: grep -r “key” /home/rob/doc/

Disk (physical)Directory Tree (logical)

/home/rob/doc
/home/rob/doc/latex
/home/rob/doc/latex/a.tex
/home/rob/doc/latex/b.tex
/home/rob/doc/bar.c
/home/rob/local

….

….

….

hom
e

rob
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
bar.c

disk
head

hom
e

rob
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
bar.c

Rename is expensive when using full-path indexing

/home/rob/doc

/home/rob/doc/bar.c
/home/rob/local

….

….

….

Example: mv /home/rob/doc/latex /home/rob

/home/rob/latex/a.tex
/home/rob/latex/b.tex

/home/rob/latex

/home/rob/doc/latex/b.tex
/home/rob/doc/latex/a.tex

Disk (physical)Directory Tree (logical)

/home/rob/doc/latex

la
te

x

Rename in BetrFS

/blue/* /green/* /purple/* /yellow/*

/green/* → /red/*
Don’t want to access interior

of the /green subtree
during rename

Lifted B-trees

/blue/* /green/* /purple/* /yellow/*

Idea: omit common prefixes from nodes and sub-trees

/green/* → /red/*
Don’t want to access interior

of the /green subtree
during rename

/blue/* /green/* /purple/* /yellow/*

Lifted B-trees

/green/* → /red/*

Idea: omit common prefixes from nodes and sub-trees

Range rename in lifted B-trees

/blue/* /green/* /purple/* /yellow/*

1.Slice out the /green subtree

/green/* → /red/*

Range rename in lifted B-trees

/blue/* /green/* /purple/* /yellow/*

(maintain lifting)

1.Slice out the /green subtree

/green/* → /red/*

Range rename in lifted B-trees

/blue/* /green/* /purple/* /yellow/*

(maintain lifting)

1.Slice out the /green subtree

2.Slice open the /red location
/green/* → /red/*

Range rename in lifted B-trees

/blue/* /green/* /purple/* /yellow/*

(maintain lifting)

1.Slice out the /green subtree

2.Slice open the /red location
(maintain lifting)/green/* → /red/*

Range rename in lifted B-trees

/blue/* /green/* /purple/* /yellow/*

(maintain lifting)

1.Slice out the /green subtree

2.Slice open the /red location
(maintain lifting)

3.Update pointers
/green/* → /red/*

Range rename in lifted B-trees

/blue/* /red/* /purple/* /yellow/*

(maintain lifting)

1.Slice out the /green subtree

2.Slice open the /red location
(maintain lifting)

3.Update pointers
/green/* → /red/*

IO complexity of range rename

● Each slice touches a root-
to-leaf path

● Maintaining lifting doesn’t
need to access any
additional nodes

O()tree height

=O(logB N)

Rename Throughput

Rename Throughput

Rename can be as fast as inode-based file systems

Recursive directory traversals

0
1
2
3
4
5
6
7
8
9

10

fin
d

(s
e

c)

0

10

20

30

40

50

60

g
re

p
(s

e
c)

34
6.

9

Full-path indexing can dramatically improve metadata scans

Tokubench

Write-optimization can accelerate metadata updates

Recursive delete

0

1

2

3

4

5

6

7

8

9

10

re
cu

rs
iv

e
 d

e
le

te
(s

e
c)

Full-path indexing can unleash new optimizations

Conclusion
● Write optimization can solve a lot of metadata problems

● But write optimization can require rethinking how we organize
our metadata

● And we sometimes need to extend the underlying data
structures to support our metadata needs

Code available at
betrfs.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

