
OpenFAM API: 
programming model for 
disaggregated persistent memory
Kimberly Keeton, Sharad Singhal, Haris Volos
{kimberly.keeton,sharad.singhal,haris.volos}@hpe.com

MSST 2018

©Copyright 2018 Hewlett Packard Enterprise Company

mailto:kimberly.keeton@hpe.com
mailto:sharad.singhal@hpe.com


Non-Volatile Memory (NVM)

– Persistently stores data
– Access latencies comparable to DRAM
– Byte addressable (load/store) rather than block addressable (read/write)
– More energy efficient and denser than DRAM

Resistive RAM
(Memristor)

3D Flash

Phase-Change Memory

Spin-Transfer Torque 
MRAM

ns μs

Latency

Haris Volos, et al. "Aerie: Flexible File-System 
Interfaces to Storage-Class Memory," Proc. 
EuroSys 2014. 

©Copyright 2018 Hewlett Packard Enterprise Company 2



Gen-Z: open systems interconnect standard
http://www.genzconsortium.org
– Open standard for memory-semantic interconnect

– Members: 40+ companies covering SoC, memory, 
I/O, networking, mechanical, system software, etc.

– Motivation
– Emergence of low-latency storage class memory
– Demand for large capacity, rack-scale resource pools 

and multi-node architectures

– Memory semantics
– All communication as memory operations (load/store, 

put/get, atomics)

– High performance
– Tens to hundreds GB/s bandwidth
– Sub-microsecond load-to-use memory latency

– Spec available for public download I/O

Accelerators

FPGA GPU

CPUs

SoC SoC GPUFPGA

MemoryMemoryMemory Memory

Pooled Memory Network Storage

Direct Attach, Switched, or Fabric Topology

©Copyright 2018 Hewlett Packard Enterprise Company 3

http://www.genzconsortium.org/


Fabric-attached (persistent) memory

– Converging memory and storage
– Byte-addressable NVM replaces hard drives and SSDs

– Resource disaggregation leads to high capacity shared memory pool
– Fabric-attached memory pool is accessible by all compute resources
– Low diameter networks provide near-uniform low latency

– Local volatile memory provides lower latency, high performance tier

– Distributed heterogeneous compute resources

– Software
– Memory-speed persistence
– Direct, unmediated access to all fabric-attached NVM across the memory 

fabric
– Non-coherent accesses between compute nodes

– Enables Memory-Driven Computing

Local DRAM

Local DRAM

Local DRAM

Local DRAM

SoC

SoC

SoC

SoC

NVM

NVM

NVM

NVM

Fabric-
Attached 

Memory Pool

C
om

m
un

ic
at

io
ns

 a
nd

 m
em

or
y 

fa
br

ic

N
et

w
or

k

4©Copyright 2018 Hewlett Packard Enterprise Company



Memory-Driven Computing in context

Shared nothing

Local DRAM

Local DRAM

Local NVM

Local NVM

Local DRAM

Local DRAM

Local NVM

Local NVM

N
et

w
or

k

SoC

SoC

SoC

SoC

Shared everything

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

N
et

w
or

k

Physical 
Server

C
oh

er
en

t 
In

te
rc

on
ne

ct

Physical 
Server

Physical 
Server

©Copyright 2018 Hewlett Packard Enterprise Company 5



Memory-Driven Computing in context

Shared nothing

Local DRAM

Local DRAM

Local NVM

Local NVM

Local DRAM

Local DRAM

Local NVM

Local NVM

N
et

w
or

k

SoC

SoC

SoC

SoC

Shared everything

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

N
et

w
or

k

Physical 
Server

C
oh

er
en

t 
In

te
rc

on
ne

ct

Physical 
Server

Physical 
Server

Local DRAM

Local DRAM

Local DRAM

Local DRAM

SoC

SoC

SoC

SoC

Shared something

NVM

NVM

NVM

NVM

Fabric-
Attached 

Memory Pool

C
om

m
un

ic
at

io
ns

 a
nd

 m
em

or
y 

fa
br

ic

N
et

w
or

k

©Copyright 2018 Hewlett Packard Enterprise Company 6



Memory-Driven Computing benefits applications

Memory is large

Memory is persistent

In-memory 
communication

Easier load 
balancing, 

failover

In-memory 
indexes

Simultaneously 
explore multiple 

alternatives

No storage overheads

Fast checkpointing, 
verification

No explicit data loading

Pre-compute 
analyses

In-situ analytics

Memory is shared
noncoherently over fabric

Unpartitioned 
datasets

©Copyright 2018 Hewlett Packard Enterprise Company 7



OpenFAM: programming model for fabric-attached memory

– Inspired by 
– OpenSHMEM (http://openshmem.org): open source partitioned global address space (PGAS) library with one-sided 

communication, atomic and collective operations
– HPE’s work on The Machine program (https://www.labs.hpe.com/the-machine) 

– Difference #1: Fabric-attached memory (FAM) instead of remote processing element (PE) memory
– We assume that node memory is treated as private and that FAM is shared

– Difference #2: FAM may be persistent. Data should be able to live beyond program invocation.

– One-sided/unmediated access to fabric-attached memory
– Find useful intersection between RDMA primitives, Gen-Z primitives and OpenSHMEM APIs

– Keep it as simple as possible: always possible to add on later

8

Note: work in progress

©Copyright 2018 Hewlett Packard Enterprise Company

http://openshmem.org/
https://www.labs.hpe.com/the-machine


OpenFAM concepts

9

Compute Nodes + Locally-Attached Memories (LAMs)

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

Region 1

Data items

Region 2 Region R

……

Node 1

…

Node 2

…

Node N

…

Node 3

Processing 
Elements (PEs)

One-sided 
Operations

DRAM

Data mover

DRAM

Data mover

DRAM

Data mover

DRAM

Data mover

©Copyright 2018 Hewlett Packard Enterprise Company



Regions vs. data items

– Regions define sections of FAM with specific characteristics (e.g., persistence, redundancy)

– Useful to permit multiple regions associated with a given job to accommodate different data needs. Ex:
– No redundancy for communication or scratch space
– Redundancy for computation results

– Named regions of FAM enable sharing between PEs of a given job and also between jobs of a workflow 
(for persistent data) 

– Region forms basis for heap allocator in memory management routines
– Data items are allocated using heap allocator

10©Copyright 2018 Hewlett Packard Enterprise Company



Descriptors

–Descriptors are opaque read-only data structures that uniquely identify a location in FAM 
–Descriptors are portable across OS instances

– Use base + offset addressing
– Can be freely copied and shared across processing nodes by the program

11

Region 1Fam_RegionDescriptor
• includes redundancy 

level Fam_Descriptor
• includes region ID, 

offset

©Copyright 2018 Hewlett Packard Enterprise Company



Allocation (region management)

– fam_create_region: allocates space for region, with associated options (size, redundancy, persistence, 
permissions, name)

– fam_destroy_region: used to indicate that user is done with allocated region
– Triggers delayed reclamation to accommodate ongoing users

– fam_resize_region: change size of a region allocation

12

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

Region 1 Region M

©Copyright 2018 Hewlett Packard Enterprise Company



Allocation (data item / heap management)

– fam_allocate: allocates space for data item within a region, with associated options (size, permissions, 
name)

– fam_deallocate: used to indicate that user is done with allocated data item
– Triggers delayed reclamation to accommodate ongoing users

– fam_change_permissions: change permissions of a data item or region in FAM

13

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

Region 1

Data items

Region M

©Copyright 2018 Hewlett Packard Enterprise Company



Data path (get / put)

14

Compute Nodes + Locally-Attached Memories (LAMs)

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

Region 1

Data items

…
Node 1 Processing 

Elements (PEs)

DRAM

Data mover

Region M

…
Node N

DRAM

Data moverfam_get fam_put

Variants:
• Blocking
• Non-blocking

©Copyright 2018 Hewlett Packard Enterprise Company



Data path (direct access)

15

Compute Nodes + Locally-Attached Memories (LAMs)

Global Shared Non-volatile Memory 
(aka Fabric-Attached Memory (FAM))

Region 1

Data items

…
Node 1 Processing 

Elements (PEs)

fam_map, fam_unmap
enable direct 

load, store access
to FAM

©Copyright 2018 Hewlett Packard Enterprise Company



Data path (gather / scatter)

16

Compute Nodes + Locally-Attached Memories (LAMs)

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

Region 1

Data items

…
Node 1 Processing 

Elements (PEs)

DRAM

Data mover

1 2 3 4 5 6 7 8 9

1 4 7

Region M

…
Node N

DRAM

Data mover

1 4 7

fam_gather fam_scatter

Variants:
• Constant stride
• Indexed

• Blocking
• Non-blocking

1 2 3 4 5 6 7 8 9

©Copyright 2018 Hewlett Packard Enterprise Company



Data management (copy)

17

Compute Node + Locally-Attached Memory (LAM)

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

Region 1

Data items

…
Node 1 Processing 

Element (PE)

DRAM

Data mover

Region M

fam_copy

©Copyright 2018 Hewlett Packard Enterprise Company



Atomics

18

Compute Nodes + Locally-Attached Memories (LAMs)

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

Region 1

Data items

…
Node 1

Processing 
Elements (PEs)

DRAM

Data mover

Region M

…
Node N

DRAM

Data mover

OpenFAM non-fetching routines:
Set, add, subtract, min, max: signed 
and unsigned 32b and 64b integer, float, 
double
And, or, xor: 32b and 64b unsigned 
integer

OpenFAM fetching routines:
Fetch, swap, add, subtract, min, max: 
signed and unsigned 32b and 64b integer, 
float, double
Compare-and-swap: signed and unsigned 
32b and 64b integer, 128b integer
And, or, xor: 32b and 64b unsigned integer

©Copyright 2018 Hewlett Packard Enterprise Company



Memory ordering (fence)

– fam_fence ensures that FAM operations issued by the calling PE before the fence are completed before 
FAM operations issued after the fence are dispatched (non-blocking)

– fam_quiet waits for completion of all outstanding requests to global fabric-attached memory (puts, 
atomics, stores) (blocking)

19

Memory fence

Pre-fence 
fabric memory 
operations

Post-fence 
fabric memory 
operations

©Copyright 2018 Hewlett Packard Enterprise Company



Alternatives for handling OpenFAM call failures

Failure-reporting (app control)
– OpenFAM failures report their errors

– Application can determine how to handle, based on severity of 
error, application logic, etc.

– Advantages:
– Permits applications to implement their own redundancy (e.g., 

app-directed replication)
– Stronger guarantees about semantics may be possible (e.g., 

all-or-nothing completion), albeit at greater overheads

– Disadvantages: Performance limitations
– Attributable failures can only be delivered for blocking calls
– All-or-nothing completion implementations must enforce 

stricter data update mechanisms (e.g., begin/end transaction, 
logging or non-in-place updates)

Fail-fast (performance)
– OpenFAM failures cause application to be killed

– Similar to OpenSHMEM semantics
– No guaranteed atomicity of operations; partial completions 

may occur
– Applications should be structured to perform appropriate 

application-specific recovery if needed

– Advantages: 
– Potential for improved performance (non-blocking operations 

possible)
– Guarantees better matched to direct access (load/store) mode

– Disadvantages:
– Fabric or FAM failures may result in corrupted persistent data

20©Copyright 2018 Hewlett Packard Enterprise Company



Summary

– OpenFAM API is a programming model for disaggregated persistent fabric-attached memory

– Status
– “Ported” example applications to validate OpenFAM API

– Ex: sparse matrix-vector multiplication, large-scale graph inference, PageRank pipeline, sort, random access

– Presented OpenFAM to OpenSHMEM steering committee
– Interest in including ideas for disaggregated and persistent memory in OpenSHMEM 2.0 (due late 2020)

– We’re interested in your feedback
– Draft of OpenFAM API spec available for review: https://github.com/OpenFAM/API
– Email us at openfam@groups.ext.hpe.com

21©Copyright 2018 Hewlett Packard Enterprise Company

https://github.com/OpenFAM/API
mailto:openfam@groups.ext.hpe.com

	OpenFAM API: �programming model for disaggregated persistent memory
	Non-Volatile Memory (NVM)
	Gen-Z: open systems interconnect standard�http://www.genzconsortium.org 
	Fabric-attached (persistent) memory
	Memory-Driven Computing in context
	Memory-Driven Computing in context
	Memory-Driven Computing benefits applications�
	OpenFAM: programming model for fabric-attached memory
	OpenFAM concepts
	Regions vs. data items
	Descriptors
	Allocation (region management)
	Allocation (data item / heap management)
	Data path (get / put)
	Data path (direct access)
	Data path (gather / scatter)
	Data management (copy)
	Atomics
	Memory ordering (fence)
	Alternatives for handling OpenFAM call failures
	Summary

