APIs for Persistent Memory
Programming

MSST 2018

Andy Rudoff

NVM Software Architect
plele

Data Center Group

Intel Corporation

A Full-Stack Example

Using a key-value store as an example

4)
App Unmodified App, uses KV APIs
_ J
(| Use Java containers to create pmem-aware KV Store
KV Store .
\) Caller just sees the same APIs, uses them as before
(N
PCJ Provide Java Containers
\ J

libpmemobj Provide transactions, persistent memory allocator
Abstract away hardware details

pmem-aware

Expose Persistent Memory as Memory-mapped files (DAX)
File System

Persistent Memory

DCG
Data Center Group

Another Full-Stack Example

The app does everything

-
App pmem-a\.lvare applicatio.n .
Handles its own allocations, transactions, etc

_
4

pmem-aware Expose Persistent Memory as Memory-mapped files (DAX)

File System

.

Persistent Memory

DCG
Data Center Group

Transparency Levels for pmem

[Application }
application
User
. Space
middleware
libraries
file systems File System
in-kernel usages
Kernel
block storage Driver Space

Increasing
barrier to Persistent Memory
adoption

DCG
Data Center Group

Transparency Levels for pmem

[Application }
application
User
. Space
middleware
libraries
file systems File System
in-kernel usages
Kernel
block storage Driver Space

Increasing
/everage Persistent Memory

DCG
Data Center Group

Ancient History

June 2012
* Formed the NVM Programming TWG
» Immediate participation from key OSVs, ISVs, IHVs

January 2013
» Held the first PM Summit (actually called “NVM Summit”)

January 2014
* TWG published rev 1.0 of the NVM Programming Model

June 2017
» Rev 1.2 published

And now...

» Programming model supported & shipping in multiple operating systems

= APIs built on top of the programming model available

DCG
Data Center Group

The SNIA NVM Programming Model

Management Ul [Application } [Application } [Application
Standard Standard Standard
1 Raw Device File API File API Load/Store
Access
. u
Management Library Spiire
A
v v
File System PM-Aware iy
i File System Mappings
v — = ~=nssnsnmana
> NVDIMM Driver (4 Kernel
Space
\ 4
NVDIMMs

DCG
Data Center Group

Must Open File Before Mapping

Standard Naming [Application -]

and ———, Standard

.. File API Load/Store
Permission Model
User
Space
PM-Aware MMU E
File System Mappings |
Kernel
Space

NVDIMMs -I

DCG
Data Center Group

Direct Access
Definition: no paging, no page cache use

[Application -]

Standard ') . q/store
File API

PM-Aware
File System Mappings |

NVDIMMs -I

DCG
Data Center Group

Direct Access

[Application -]

Standard ') . q/store

File API

PM-Aware
File System

Kernel
Space

NVDIMMs

Windows:
DAX Support is shipping
NTFS is PM-Aware
Some new APIs
PMDK support

DCG
Data Center Group

Direct Access

[Application -]

Standard
Load
File API cad/Store

PM-Aware MMU !
File System Mappings |

NVDIMMs -I

Kernel
Space

Linux:
DAX Support is shipping
ext4 is PM-Aware
XFS is PM-Aware
PMDK support

More filesystems coming

DCG
Data Center Group

Direct Access

Applicati . . .
[ae -] Virtualization of PM:
S;ﬁ:‘f;:’ Load/Store VMware
Smace Hyper-V
__— DAX KVM
"""""""""" , Xen
PM-Aware MMU i
File System Mappings |
Kernel
Space

NVDIMMs -I

DCG

Data Center Group

Applications: Public Demos

« 2017 was an interesting year for demos...

SAP SAPPHIRE Oracle OpenWorld

* Built on the Persistent Memory programming model!

Intel Persistent Memory

New Type of Memory
* Persistent, Large Capacity & Byte Addressable
e 6 TB per two-socket system
 DDR4 Socket Compatible
e Can Co-exist with Conventional DDR4 DRAM DIMMs
* Cheaper than DRAM
* Availability
e 2018

DCG
Data Center Group

trivial.c
fd = open(filename, O_RDWR);
pmaddr = mmap(NULL, 4096, PROT_READ |PROT_WRITE, MAP_SHARED, fd, 0);
close(fd);
strcpy(pmaddr, "Hello, Persistent Memory!");

msync((void *)pmaddr, 4096, MS_SYNC);

DCG
Data Center Group

trivial.c
fd = open(filename, O_RDWR);
pmaddr = mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
close(fd);
strcpy(pmaddr, "Hello, Persistent Memory!");
msync((void *)pmaddr, 4096, MS_SYNC);
e pmaddr could point to a really huge capacity — terabytes!

* Want some allocator like malloc/free/new or language integration

* strcpy is not atomic
* msync is not atomic

* Basic memory-mapped files are not transactional — up to the caller

DCG
Data Center Group

Also, you should know...

msync now just flushes CPU caches

" no page cache with DAX

Platforms may support "Optimized Flush”

* Flush changes from using user space instructions for performance

= Windows supports this

= Linux supports this with new MAP_SYNC flag

Future platforms may have persistent CPU caches

= ACPI property tells you this

= Write future-proof code by looking at this property & skipping flushes
Persistent Memory errors appear as memaory errors

* For example: SIGBUS on an uncorrectable in Linux

DCG
Data Center Group

The Persistent Memory Development Kit
PMDK http://pmem.io

e PMDK is a collection of libraries

* Developers pull only what they need
* Low level programming support

* Transaction APIs
* Fully validated

* Performance tuned.

* Open Source & Product neutral

DCG
Data Center Group

PMDK Libraries

————— e —_—

¢ P)
[C++]{ C };PCJ*E | Python |
RO SRV)
Interface to create a Interface for persistent Interface to create
persistent memory memory allocation, arrays of pmem-
resident log file transactions and general resident blocks, of
facilities same size, atomically
updated
Support for libpmemblk |
volatile
memory usage
Low level Low level support
libmemkind support for local for remote access
persistent to persistent
memory memory

In Development

* Persistent Collections for Java m m

DCG
Data Center Group

Also, you should know...

PMDK libraries are validated to product quality
= Many hundreds of unit tests

= Many hundreds of system tests

We don't think we're all done now...
= Performance work continues, with some significant results

» Feature development continues
= RAS
= More mature language integration (especially around C++)

= More mature replication

Still adding libraries

= Example: libpmemkyv

DCG
Data Center Group

PMDK in a Nutshell

Ten libraries, tools, examples...

void push(pool base &pop, uint64 t value) {
transaction: :exec_tx(pop, [&] {
auto n = make_persistent<pmem entry>();

n->value = value;

n->next = nullptr;

if (head == nullptr) {
head = tail = n;

1} else {
tail->next = n;
tail = n;
}
})s

DCG
Data Center Group

PMDK in a Nutshell

void push(pool base &pop, uint64 t value) {
transaction: :exec tx(pop, [&] {
auto n =| make_persistent<pmem _entry>();

n->value = value;

n->next = nullptr;

if (head == nullptr) {
head = tail = n;

T else {
tail->next = n; Memory
ta il = n 5 Allocations & Frees

DCG
Data Center Group

})s

PMDK in a Nutshell

void push(pool base &pop, uint64 t value) {
transaction: :exec_tx(pop, [&] {
auto n = make_persistent<pmem entry>();

n->value = value;

n->next = nullptr;

if (head == nullptr) {
head = tail = n;

1} else {
tail->next = n 5 Multiple Operations
tail = n; Made Atomic

})s

DCG
Data Center Group

PMDK in a Nutshell

Complex transactions, allocation handled by libraries
= No “flush” calls to manage in most cases

» Each ISV doesn’t have to re-invent

* Performance tuned (esp for future enhancements)
Licensing is very liberal

» Steal all the code you want!

PMDK is a convenience, not a requirement

= Build your own library if you like!

Persistent Collections for Java

PersistentintArray data = new PersistentintArray(1024);
ObjectDirectory.put("My_fancy_persistent_array", data); // no serialization
data.set(0, 123);

No flush calls.
Transactional.
Java library handles it all.

See “pilot” project at: https://github.com/pmem/pcj

DCG
Data Center Group

A Full-Stack Example

Using a key-value store as an example

4)
App Unmodified App, uses KV APIs
_ J
(| Use Java containers to create pmem-aware KV Store
KV Store .
\) Caller just sees the same APIs, uses them as before
(N
PCJ Provide Java Containers
\ J

libpmemobj Provide transactions, persistent memory allocator
Abstract away hardware details

pmem-aware

Expose Persistent Memory as Memory-mapped files (DAX)
File System

Persistent Memory

DCG
Data Center Group

SNIA TWG Ongoing Work

Security
* PM Hardware Security Threat Model (balloting)
Remote persistent memory (via RDMA)

* Ongoing — optimizations for RDMA worked in multiple forums

* Remote asynchronous flush (under discussion)

Higher-level Semantics

= As we learn more..

More Information

http://snia.org/PM

= Specs, workgroups, webcasts, videos, presentations

http://pmem.io

» PMDK and other persistent memory programming
information

http://pmem.io/documents

» Links to publications, standards, Windows & Linux info

http://software.intel.com/pmem

* Intel Developer Zone for persistent memory programming

DCG
Data Center Group

http://snia.org/PM
http://pmem.io/
http://pmem.io/documents
http://software.intel.com/pmem

