

Michal Simon

Modernizing xroot protocol

15/05/2018 Michal Simon

Outline

Introduction

Ongoing developments
Vector Writes
Extended Attributes
Encryption
Bundled Requests

27/02/2018

Michal Simon

XRootD Framework

Distributed low-latency file access system
Originated at SLAC (Stanford)

It is the data access framework of choice for High
Energy Physics community

Backbone of EOS, the main storage solution used at

CERN (250 PB of raw disk space, access to over 1.8
billion files)

27/02/2018 Michal Simon

XRootD Framework

Multithreaded C++ client/server framework
scalable
very stable (high quality code base)

Hierarchical filesystem-like namespace
storage clustering with hierarchical redirections

Plug-in based architecture

Authorization / authentication (X509, Kerberos, etc.)

27/02/2018 Michal Simon

XRootD Framework

Native xroot protocol has been designed for efficient
remote file access in LAN/WAN

checksums, vector reads

redirections

third-party-copy

Both synchronous & asynchronous 1/O interfaces for
data and metadata

Native RPC mechanism (SSI) and native caching
utility(XCache)

27/02/2018 Michal Simon

Ongoing developments

K

UNDER
CONSTRUCTION

I

Goals:
reduced latency (number of RTTs)
increased security

simplified programing model (new APIs)

15/05/2018 Michal Simon

Vector Writes

Motivation: reduce latency while flashing cache (e.g.
fuse mount caching)

Write scattered data chunks in one operation (within a
single file)

The protocol also supports vector writing to multiple files
(in case this is would be needed in the future)

15/05/2018 Michal Simon

Extended Attributes

Motivation:
catch up with the world (common feature)
very convenient for developers
metadata (checksum, version, stripe index)

Protocol extensions:
new request type for handling extended attributes
(kXR _fattr)
deleting / retrieving / setting
support for batch operations

15/05/2018 Michal Simon

Extended Attributes

Protocol extensions (cont.):
query request allows to retrieve information
regarding fattr support, limits, etc.

Implementation:
a fattr operation needs to be preceded by file open
and followed by file close
makes access and privilege checking very easy
sounds like considerable overhead (3x RTT), so stay
tuned for bundled requests

15/05/2018 Michal Simon

Encryption

Motivation:
additional protection against
malicious attacks (e.g. man-in-the-middle attack)
symmetry with HTTP protocol
opens XRootD to other communities that require
data encryption (e.g. medical data)

Does not require protocol changes, however once In
place sign requests will be deprecated

15/05/2018 Michal Simon

Encryption

Implementation:
TLS tunneling based on openssl async
APl and an event-loop
fully async I/0O no cheating
ABIl compatible
redirections (or equivalent) from unencrypted to
encrypted and vice versa
does not require additional login/authentication

15/05/2018 Michal Simon

Bundle requests

Motivation
reduce the number of RTTs
provide more modern APIs for the users

Protocol extensions
new request type for bundling other requests

15/05/2018 Michal Simon

Bundle requests

Use cases:
extended attribute operation =
open + fattr + close
extended stat = open + stat + fattr + close
object store like GET = open + read + close
object store like PUT = open + write + close

Modern C++ API

workflow(open | read >> handler | write | close >> handler))

15/05/2018 Michal Simon

Useful Links

http://xrootd.org

https://github.com/xrootd/xrootd.git
http://storage-ci.web.cern.ch/storage-ci/xrootd/experimental/
xrootd-dev@slac.stanford.edu

15/05/2018 Michal Simon

http://xrootd.org/
https://github.com/xrootd/xrootd.git
http://storage-ci.web.cern.ch/storage-ci/xrootd/experimental/
mailto:xrootd-dev@slac.stanford.edu

Questions?

15/05/2018 Michal Simon

