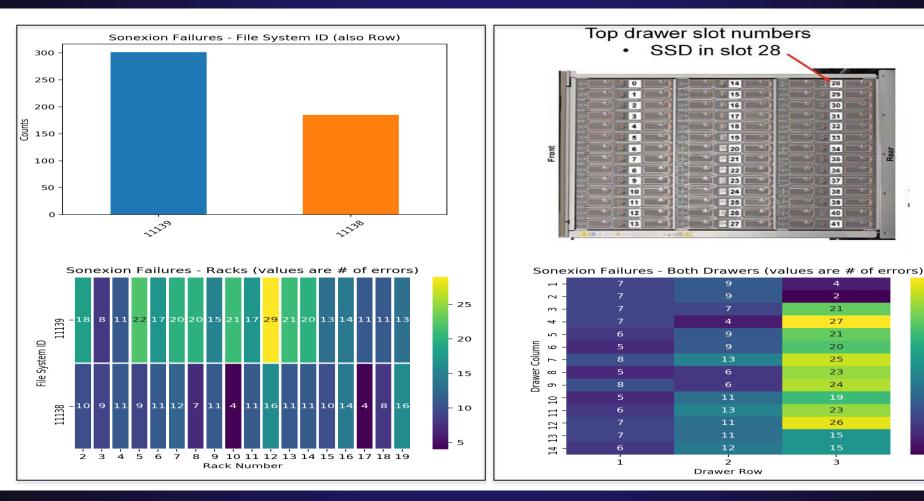
Exascale Failure Modeling with CoFaCTOR

Correlated Failure Consultation Tool for Operational Reliability

Pls:

Dave Bonnie, Dominic Manno, Wendy Poole, Brad Settlemyer May 21, 2019

Autional Nuclear Security Administration


Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-19-24681

BLUF (Bottom line up front)

- We need a tool for Decision Support
 - -Why?
 - We need to be able to do predictive analytics for system failures as well as potential catastrophic disk or filesystem failures.
 - Within the Exascale environment, the filesystems and network will be so complex determining failure causes without the assistance of a tool will be nearly impossible
- We don't believe the failures within the storage environment have been well-identified
 - Traditional assumptions on drive mix and failures no longer hold
 - multi-factor positional considerations (shelf position, rack, row) (vibration...)
- LANL's filesystem environment are very different from the cloud env.
 - A loss of 1MB stripe may invalidate the entire 1PB file
 - We save memory state, not cat pictures and memes

Problem: Correlated disk failures

з

à

.

- 25

- 15

- 10

Problem: Why is LANL hitting this now?

- Large differences between
 hyperscalers and LANL
 - 98.3% of Youtube videos are less than 25MB*
- LANL has very large files, tens of TB is not uncommon
 - Data loss event from failure is orders of magnitude different

Components Available Today

- Data already collected
 - LANL File distributions
 - LANL Failure events
 - Industry failure events also published (e.g. BackBLAZE)
- Industry standard data protection schemes
 - Parity-based data protection (GridRAID, ISA-L, RAIDZ3)
- Existing Statistical Techniques appropriate
 - Monte Carlo simulation
 - Failure modes well studied for disks
- Existing simulation toolkits are sufficient
 - PySIM, LANL's Simian, OmNet++

These techniques are well understood in OR, statistics, reliability community.

We simply need to apply them correctly to our data!

CoFaCTOR Overview

- Model inputs:
 - LANL's empirical file distribution
 - Storage system characteristics
 - Protection strategies
 - Do we need more error protection and at what levels/complexity?
- Evaluate failures via Monte Carlo
 - Generate realistic failure traces
 - Identify probabilities of loss
 - Analyze data loss scenarios
 - Evaluate and analyze distributions of effected files

CoFaCTOR Usage

- Using existing methods will enable:
 - Understanding catastrophic data loss scenarios
 - LANL HPC field's approximately 11 different file systems each with different data protection schemes and data retention times
 - Evaluating new technologies (with respect to data protection capabilities)
 - Improving future storage procurements
- Additional opportunities:
 - Provide further collaboration for environments with similar predictive requirements (anyone here want to share?) :)
 - Provide further collaboration in this space across other federal agencies -DOD