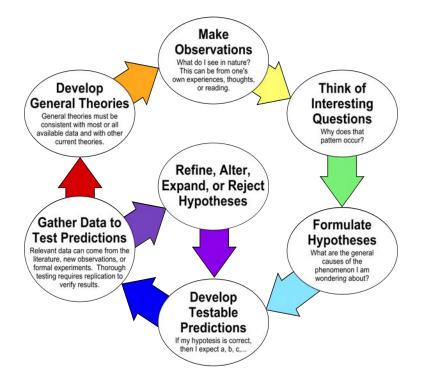
OS Alamos NATIONAL LABORATORY EST.1943

Understanding Storage System Challenges for Parallel Scientific Simulations

Brad Settlemyer

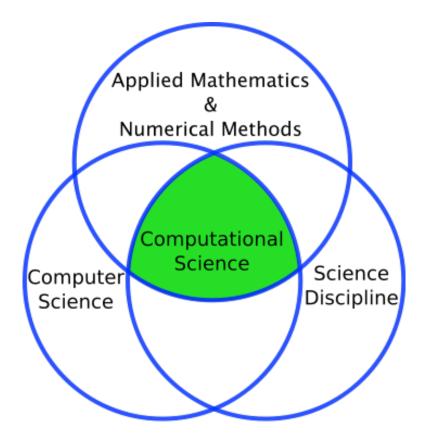
Los Alamos National Laboratory



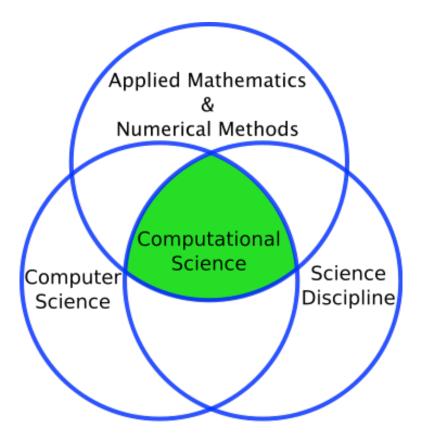
Outline

- Intro to Computational Science
- VPIC Overview
 - PIC Introduction
 - VPIC Scientific Workflow
 - VPIC I/O Workloads
- Real VPIC I/O Challenges

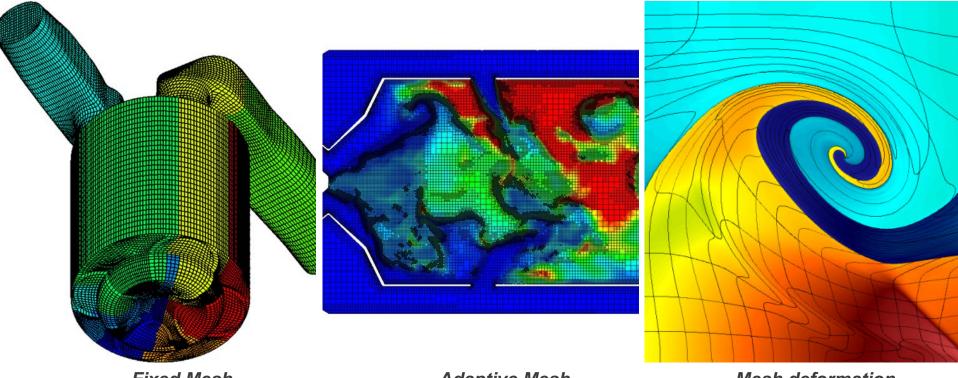
A Brief Introduction to Computational Science


The Traditional Scientific Method

- A method for understanding the physical world
- Begins with observation
- Some parts of the physical world are not well suited to observation
 - Galaxy formations/collisions
 - Climate models
 - Asteroid collisions
 - Fluid dynamics

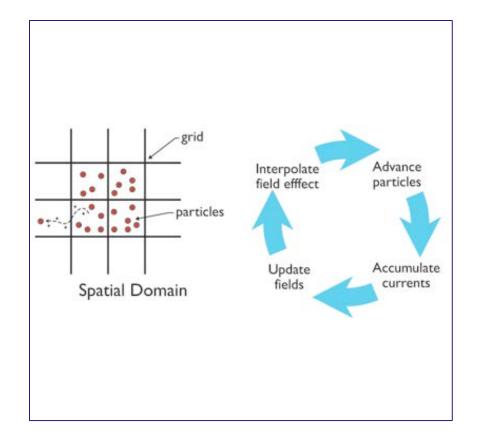

Incorporating Simulation into The Scientific Method

- Computer-based simulation enables new scientific inquiry
 - Long time-scales
 - Complex interactions
 - Dangerous interactions
- Computational Challenges

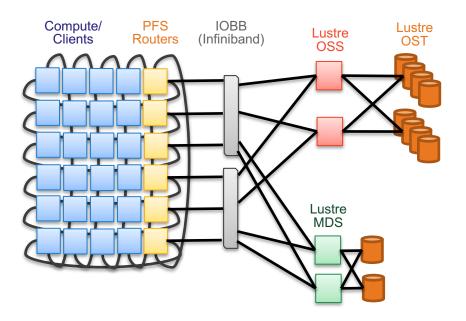


Incorporating Simulation into The Scientific Method

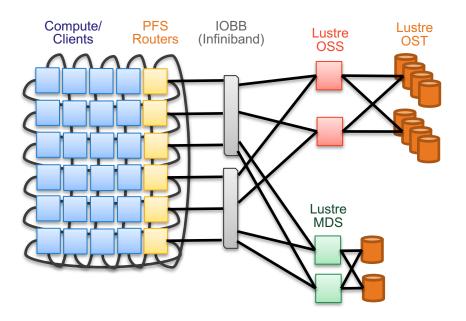
- Computer-based simulation
 enables new scientific inquiry
 - Long time-scales
 - Complex interactions
 - Dangerous interactions
- Computational Challenges
 - Tightly-coupled simulations
 imply bulk-synchronous I/O
 - A single job may require months of compute time


1. Create Mesh (Computational Science Workflow)

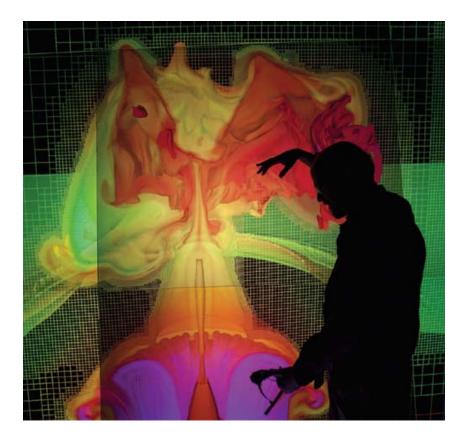
Fixed Mesh (Valves, cylinders)


Adaptive Mesh (Turbulent combustion) *Mesh deformation* (Shock propagating in fluid)

2. Calculate Physics (Computational Science Workflow)


- Often takes weeks or months
- Figure shows particle-in-cell (PIC) method
 - Many other methods
 - Finite Element Methods
 - Finite Difference Methods
 - Monte Carlo Methods
- The actual scientific question being answered typically favors one method or another

3. Generate Data (Computational Science Workflow)


- Simulation pauses when all processes reach some interesting point in the simulation
 - Save state to protect against a failure (checkpoint/restart)
 - Save state for later analysis
 - Machine failures and scientific insight occur at different frequencies ⁽²⁾
- Once I/O is complete, simulation resumes

3. Generate Data (Computational Science Workflow)

- Simulation pauses when all processes reach some interesting point in the simulation
 - Save state to protect against a failure (checkpoint/restart)
 - Save state for later analysis
 - Machine failures and scientific insight occur at different frequencies ⁽²⁾
- Once I/O is complete, simulation resumes

4. Analyze Data (Computational Science Workflow)

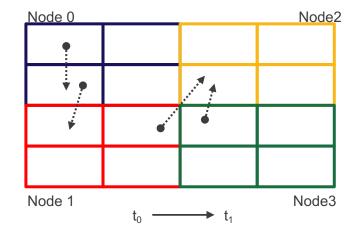
- Scientists analyze/visualize simulation output
 - Test and validate hypotheses
 - Source of new phenomena observations!
- Automatic and in-situ analysis emerging as relevant to some scientific fields

What makes HPC computing unique and difficult?

Simulation Scale

- Frequently billions or trillions of mesh cells (1.5PB simulations on Trinity)
- Simulations run for weeks or months
 - Longest simulation on Trinity: 7 months
 - Longest I've heard of: 18 months
- Universe tends toward disorder (entropy increases)
 - As simulation progresses, high % of memory is frequently modified
 - Tight-coupling, frequent communication due to boundary condition exchanges and load balancing over time
- Large storage system requirements
 - Checkpoint/restart bursts to support long running jobs
 - Capacity to store large quantities of restart dumps and analysis data

An Overview of VPIC


Quick Particle-In-Cell (PIC) Overview

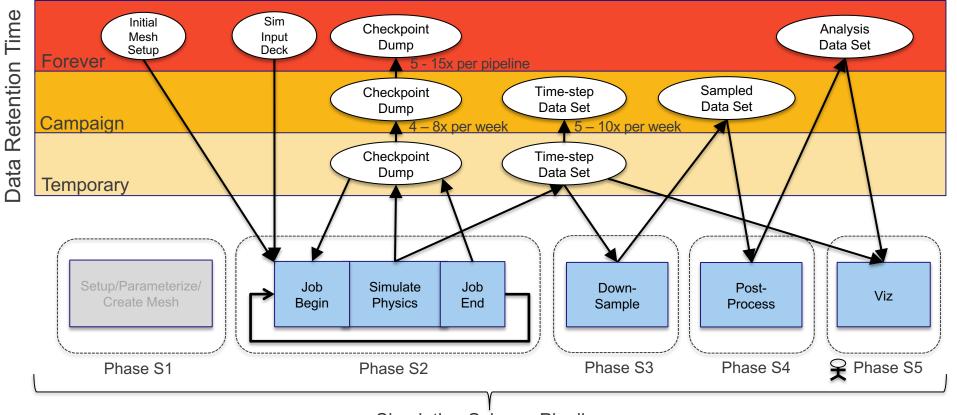
Particles model material

- Millions of particles per process
- Trillions of particles per simulation

Fixed Mesh

- Method extends to 3D well
- Each process maintains a contiguous chunk of the mesh
- Updates fields and materials
- Solves the Maxwell-Boltzmann kinetic equations
 - Applications in astrophysics, fusion, plasma interactions

PIC Introduction: https://www.youtube.com/watch?v=CmhSWPpa_6w

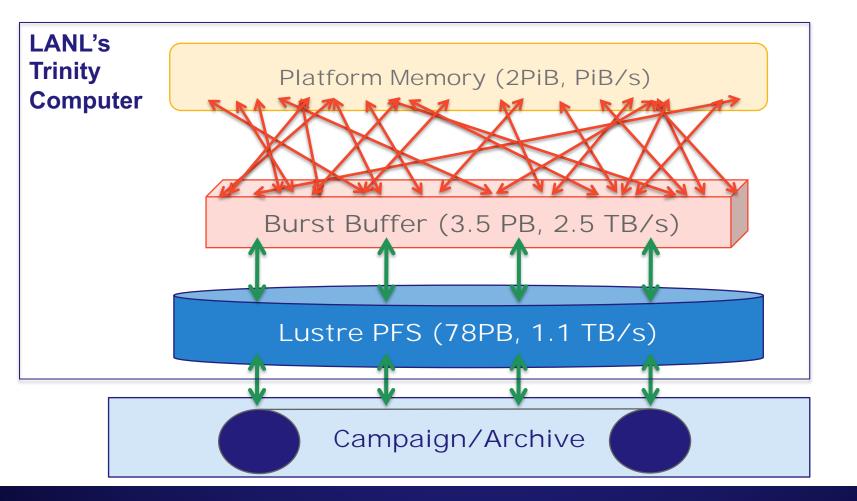

4/23/19 | 15

Why do I/O researchers use VPIC?

Excellent scaling

- Demonstrated across 4096 Trinity nodes (32k processes)
- Flexible code
 - Popular CS languages (engine is 16k sloc C/C++)
 - Supports MPI, OpenMP, and Pthreads
 - Can be field dominant or particle dominant
 - Can be compute/comm/memory intensive

VPIC's Simulation Science Workflow



Simulation Science Pipeline

VPIC Checkpoint/Restart

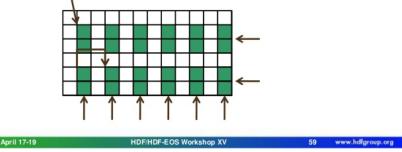
- Essential for simulations running for long duration over thousands of nodes
 - Basic paradigms: N-N, N-M, N-1
 - Typically the largest consumer of bandwidth/capacity
- In general must store both the particles and the fields
 - Why?! Performance!
 - Approximately 80% of system memory
 - VPIC uses N-N file organization for checkpoint/restart

HPC Checkpoint Workload

VPIC Time Step Data Sets

Types of data

- Particles (32 48 bytes each)
- Fields (typically <1k, but could be much more)
- Cell Materials (often 0 bytes)
- 2 primary methods for data reduction
 - Sampling (mean, spatial average, etc.)
 - Decimation
- Scientist typically determines the processing methods needed
 - Frequently not well optimized
 - Bound on bandwidth and performed on front ends


VPIC Visualization

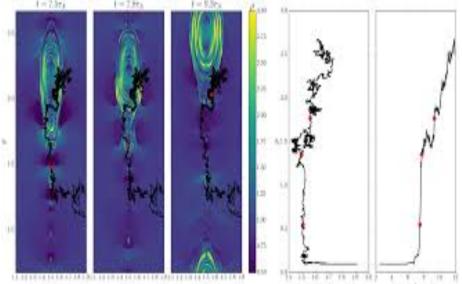
- Format the data into a parallel visualization format
 - Paraview, Ensight, Vislt, etc
- Visualization workflows are typically bound on read performance
 - Interactivity defeats pre-fetching algorithms
 - Viewing doesn't always occur along the contiguous dimension

HF

Hyperslab Description

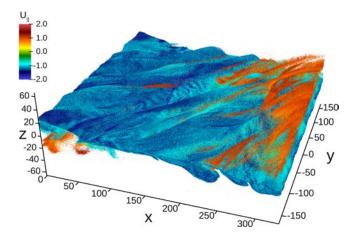
- Start starting location of a hyperslab (1,1)
- Stride number of elements that separate each block (3,2)
- Count number of blocks (2,6)
- Block block size (2,1)
- Everything is "measured" in number of elements

Real VPIC I/O Challenges


Tracking the Trajectory of High Energy particles

Assumptions:

- Simulation has trillions of particles
- Highest energy particles only known at simulation end
- Insufficient memory to track the history of each particle


Goal:

- Determine if the trajectory of the high-energy particles follows Fermi acceleration between magnetic islands
- Highly selective queries

1 1

Spatial distribution of particles within energy band

Assumptions

- Simulation has trillions of particles
- Energy distribution changing
 over time

Goals

- Filter particles by energy band to examine the spatial location of energy bands
- Scan intensive workload

Image and problem from "*Parallel I/O, Analysis, and Visualization of a Trillion Particle Simulation*," Byna, et al.

The tip of the iceberg ...

- Where are the largest clusters of similarly charged particles (i.e. magnetic islands)?
- Which particles have most recently moved between magnetic islands?
- Which particles are moving as groups and how are they moving?
- Is it possible to develop a taxonomy of formations that occur during a magnetic reconnection?
- And more ...

Conclusions

- VPIC is an excellent resource for I/O researchers
 - Open source
 - Popular programming languages (subsets)
 - Doesn't require exotic compilers
 - Highly scalable
 - Important scientific problems
- VPIC scientists have real I/O problems
 - A VPIC researcher has consumed all of the Trinity storage systems inodes
 - Extremely small writes are an unsolved problem
 - Data analysis performance severely limits current insight

Los Alamos National Laboratory

Thanks!