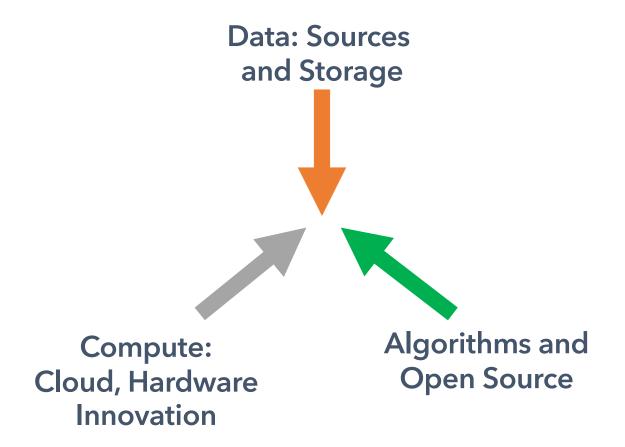


Storage and Data Challenges for Production Machine Learning

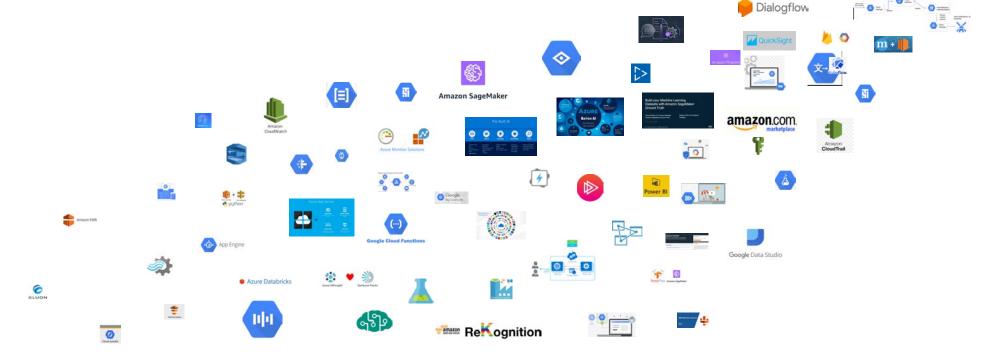
Nisha Talagala CEO, Pyxeda Al



Pyxeda

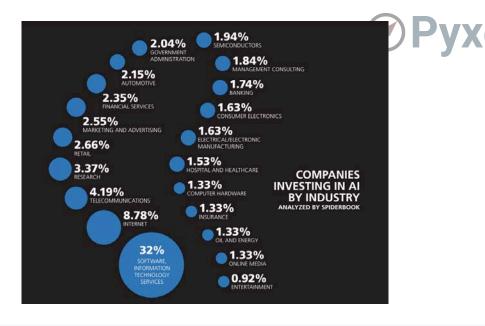
H2O in AWS

Growth of AI/ML technologies/products



Each logo is a (separate) service offered by GCP, AWS or Azure for part of an AI workflow

Realities of Production Use



There are only 1,500 companies in North America that are doing anything related to Al today, even using its narrow, task-based definition. That means less than one percent of all medium-to-large companies across all industries are adopting Al.

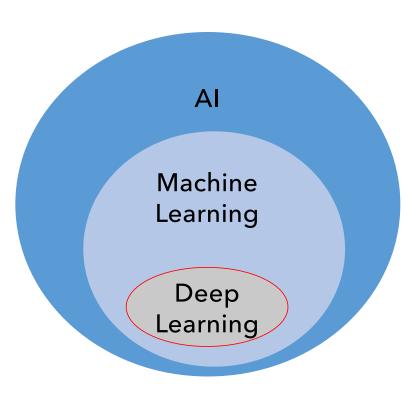
Despite the advanced services available, AI usage still minimal

https://www.oreilly.com/library/view/the-new-artificial/9781492048978/ https://emerj.com/ai-sector-overviews/valuing-the-artificial-intelligence-market-graphs-and-predictions/

In This Talk:

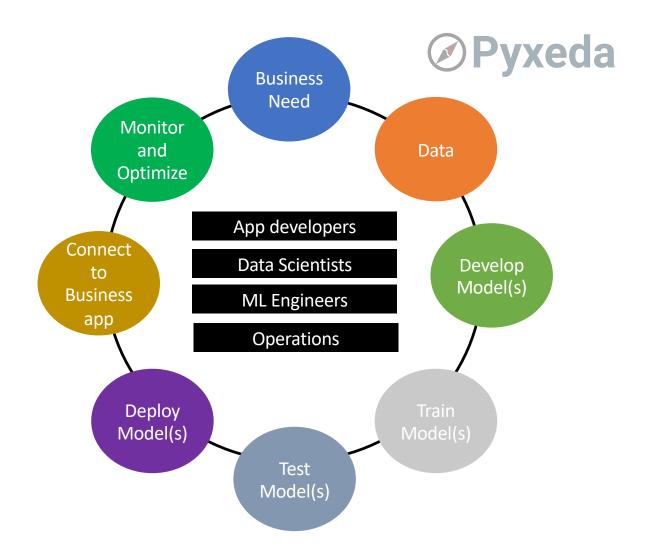
- Al and ML: A quick overview
- Trends as relevant for Storage
 - Workloads
 - Trust, Governance and Data Management
 - Edge
 - The users

- AI: Natural Language Processing, Image Recognition, Anomaly Detection, etc.
- Machine Learning: Supervised, Unsupervised, Reinforcement, Transfer, etc.
- Deep Learning: CNNs, RNNs etc.
- Common Threads
 - Training
 - Inference (aka Scoring, Model Serving, Prediction)

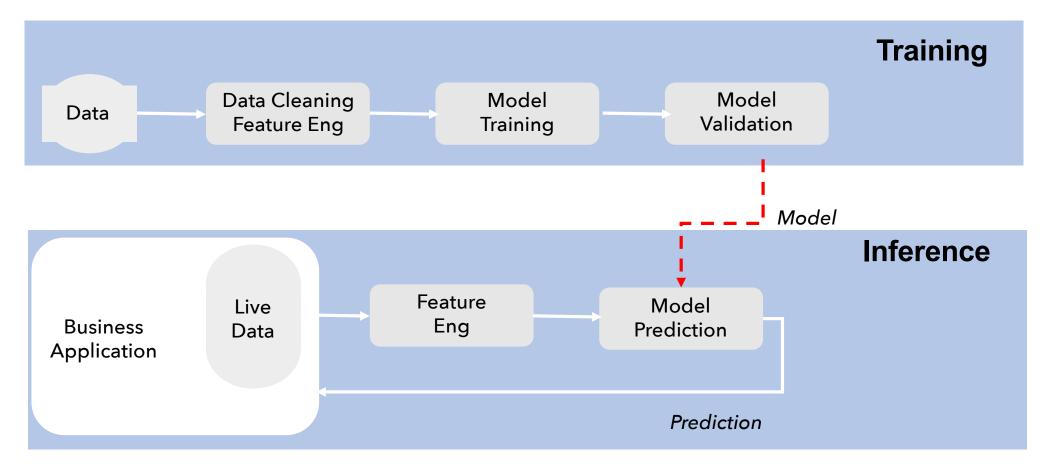


A typical flow

- Use case definition
- Data prep
- Modeling
- Training
- Deploy
- Integrate
- Monitor/Optimize
- Iterate



A Typical ML Operational Pipeline



Trend 1: How ML/DL Workloads Think About Data Pyxeda

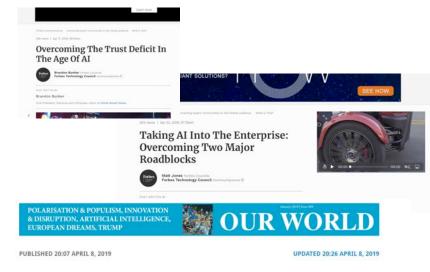
- Data Sizes
 - Incoming datasets can range from MB to TB
 - Statistical ML Models are typically small. Largest models tend to be in deep neural networks (DL) and range from 10s MB to GBs
- Common Structured Data Types
 - Time series and Streams
 - Multi-dimensional Arrays, Matrices and Vectors
- Common distributed patterns
 - Data Parallel, periodic synchronization
 - Model Parallel
 - Straggler performance issues can be significant

Trend 1: How ML/DL Workloads Think About Data Pyxeda

- The older data gets the more its "role" changes
 - · Older data for batch- historical analytics and model reboots
 - Used for model training (sort of), not for inference
- Guarantees can be "flexible" on older data
 - Availability can be reduced (most algorithms can deal with some data loss)
 - A few data corruptions don't really hurt ☺
 - Data is evaluated in aggregate and algorithms are tolerant of outliers
 - Holes are a fact of real life data algorithms deal with it
- Quality of service exists but is different
 - Random access is very rare
 - Heavily patterned access (most operations are some form of array/matrix)
 - Shuffle phase in some analytic engines

Al Trust

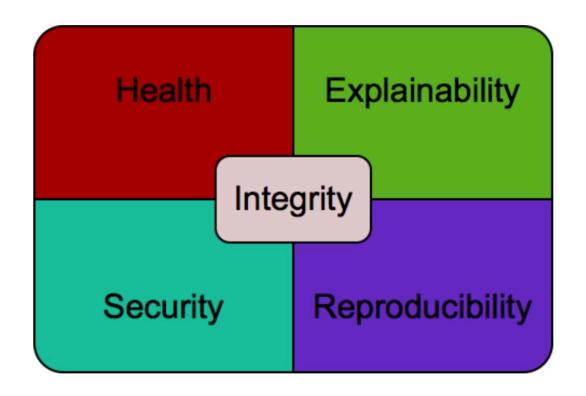
- Publicized "mistakes" that damage corporate brands and generate business risk
 - Example Racism in Microsoft
 Tay bot and Bias in Amazon HR
 hiring tool
- Intersection of AI decisions and human social values



EU unveils 7-step strategy to build trust in Artificial Intelligence

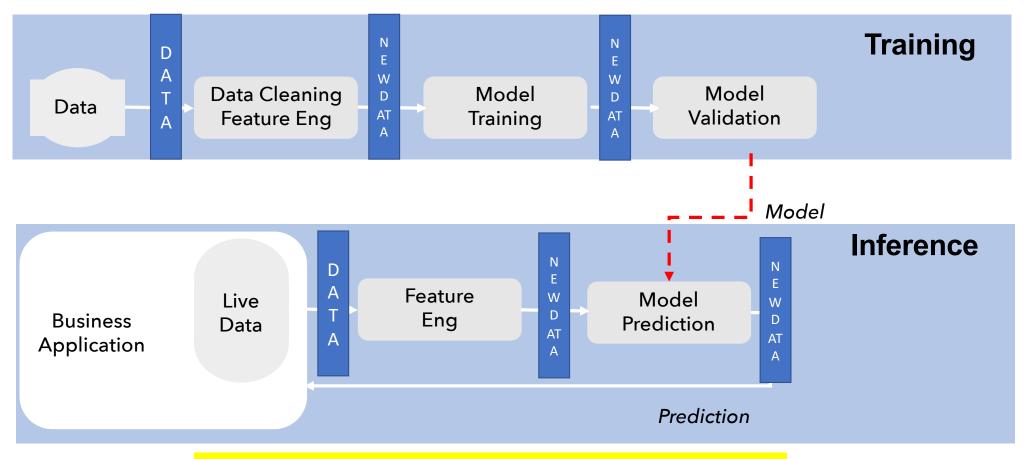
Pillars for Al Trust

- Together ensure that the ML is operating correctly and free from intrusion
- Details about how and why predictions and made
- Reproduce cases if needed



Pyxeda

What does this mean for data?



Access control, Lineage, Tracking of all data artifacts is critical for AI Trust

Trend 2: Need for Governance

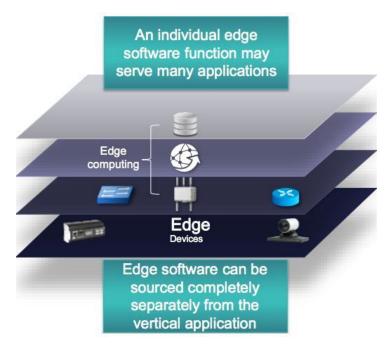
- ML is only as good as its data
- Managing ML requires understanding data provenance
 - How was it created? Where did it come from? When was it valid?
 - Who can access it? (all or subsets)? Which features were used for what?
 - How was it transformed?
 - What ML was it used for and when?
- Solutions require both storage management and ML management

Trend 2: Need for Governance

- Examples
 - Established: Example: Model Risk Management in Financial Services
 - https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf
- Example GDPR/CCPA on Data, Reproducing and Explaining ML Decisions
 - https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-inthe-gdpr/
- Example: New York City Algorithm Fairness Monitoring
 - https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-algorithm-monitoring-task-force/

Trend 3: The Growing Role of the Edge

- Closest to data ingest, lowest latency.
 - Benefits to real time ML inference and (maybe later) training
- Varied hardware architectures and resource constraints
- Differs from geographically distributed data center architecture
- Creates need for cross cloud/edge data storage and management strategies



IoT Reference Model

Trend 4: The Changing Role of Persistence

- For ML functions, most computations today are in-memory
 - Data load and store are primary storage interaction
 - Intermediate data storage sometimes used
 - Tiered memory can be used within engines
- For in-memory databases, persistence is part of the core engine
 - Log based persistence is common
- Loading & cleaning of data is still a very large fraction of the pipeline time
 - Most of this involves manipulating stored data

Trend 5: Who accesses the data

- Multiple ML roles interact with data
 - Data Scientist
 - Decision Scientist, Decision Intelligence
 - Data Engineer / ML Engineer
- ML roles need to collaborate with Operations roles for successful Operational ML.
- Requires data access controls, access management to ensure ML consistency and governance

Storage for ML: Challenges and Opportunities

- Data access Speeds (Particularly for Deep Learning Workloads)
- Data Management
- Reproducibility and Lineage
- Governance and the Challenges of Regulation, Data Access Control and Access Management
- The Edge
- The new data managers

Storage for ML: Example systems

- Databricks Delta
- Apache Atlas
- RDMA data acceleration for Deep Learning (Ex. from Mellanox)
- Time series optimized databases (Ex. BTrDB, GorrillaDB)
- API pushdown techniques and Native RDD Access APIs (Ex. Iguaz.io)
- Lineage: Link data and compute history (Ex. Alluxio/formerly Tachyon)
- Memory expansion (Ex. Many studies on DRAM/Persistent Memory/Flash tiering for analytics)

Takeaways

- The use of ML/DL in enterprise is at its infancy
- The first and most obvious storage challenge is performance
- The larger challenge is likely data management and governance
- Edge and distribution are also emerging challenges
- Opportunities exist to significantly improve storage and memory for these use cases

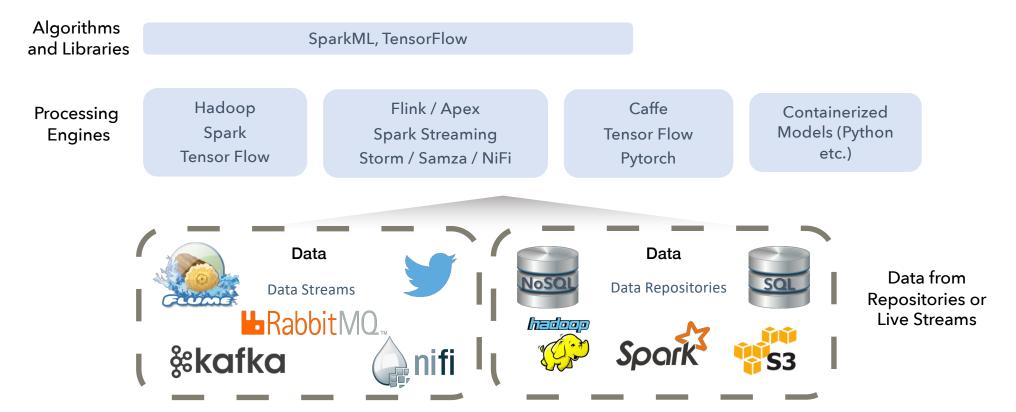
Additional Resources

- NFS Vision report on Storage for 2025
 - See Storage and Al track
- Proceedings/Slides of USENIX OpML 2019
- Research at HotStorage, HotEdge, FAST, USENIX ATC

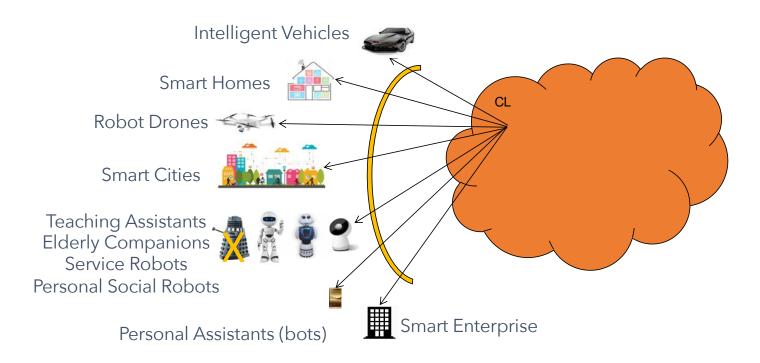
Thank You

Nisha Talagala nisha@pyxeda.ai

A Sample Analytics Stack: (Partial) Ecosystem



Growing Sources of Data



Edge Cloud

Edited version of slide from Balint Fleischer's talk: Flash Memory Summit 2016, Santa Clara, CA