
AZ-Code: An Efficient Availability Zone Level Erasure Code to Provide
High Fault Tolerance in Cloud Storage Systems

Xin Xie1, Chentao Wu1∗, Junqing Gu1, Han Qiu1, Jie Li1, Minyi Guo1, Xubin He2, Yuanyuan Dong3, and Yafei Zhao3

1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2Department of Computer and Information Sciences, Temple University, Philadelphia, United States

3Alibaba Group, Hangzhou, China
∗Corresponding Author: wuct@cs.sjtu.edu.cn

Abstract—As data in modern cloud storage system grows
dramatically, it’s a common method to partition data and store
them in different Availability Zones (AZs). Multiple AZs not only
provide high fault tolerance (e.g., rack level tolerance or disaster
tolerance), but also reduce the network latency. Replication and
Erasure Codes (EC) are typical data redundancy methods to
provide high reliability for storage systems. Compared with the
replication approach, erasure codes can achieve much lower
monetary cost with the same fault-tolerance capability. However,
the recovery cost of EC is extremely high in multiple AZ envi-
ronment, especially because of its high bandwidth consumption
in data centers. LRC is a widely used EC to reduce the recovery
cost, but the storage efficiency is sacrificed. MSR code is designed
to decrease the recovery cost with high storage efficiency, but its
computation is too complex.

To address this problem, in this paper, we propose an erasure
code for multiple availability zones (called AZ-Code), which is a
hybrid code by taking advantages of both MSR code and LRC
codes. AZ-Code utilizes a specific MSR code as the local parity
layout, and a typical RS code is used to generate the global
parities. In this way, AZ-Code can keep low recovery cost with
high reliability. To demonstrate the effectiveness of AZ-Code,
we evaluate various erasure codes via mathematical analysis and
experiments in Hadoop systems. The results show that, compared
to the traditional erasure coding methods, AZ-Code saves the
recovery bandwidth by up to 78.24%.

Index Terms—Erasure Codes, Availability zone, Reliability,
Cloud Storage, Performance Evaluation

I. INTRODUCTION

Nowadays in public cloud storage systems [28] such as
Amazon AWS [3], Microsoft Azure [8], Google Cloud [21]
[14] [10] [7], Alibaba Cloud, a large amount of data are stored
in multiple Availability Zones (AZs), where AZ is a general
configuration. Typically, an AZ is a physically isolated area in
data centers, which consists of several racks of servers, or one
floor of a data center, or even a whole data center. By using
multiple AZs, cloud storage systems can have the following
benefits,
• High availability. Typically, data are distributed among

multiple physically isolated storage infrastructures or data
centers. When one AZ fails, the remaining AZs can
provide ordinary cloud services as well.

• High reliability. Redundant data are provided among
different AZs, which can tolerate large scale of failures
such as natural disasters (i.e., earthquakes, tsunamis),
massive power outage, etc.

• Low network latency. The users connect to the nearest
geographical availability zone which can decrease net-
work latency.

Typically, data redundancy methods (i.e., replication and
erasure coding) are widely utilized in availability zones (AZs)
to obtain various capabilities of fault tolerance [8] [33] [23]
[30]. Traditional replication or backup strategies can easily
guarantee high reliability but the storage cost is extremely
high. In cloud storage systems like Microsoft Azure [8],
Google cloud [21], Facebook [1] and Alibaba Cloud, erasure
codes (EC) are chosen to store the cold data in general. In this
use case, erasure codes can support both high reliability with
low monetary cost. In the last decade, popular erasure codes
can be categories into two types, RS-based codes [31] [17] [36]
and XOR-based codes [4] [9] [41] [38] [16] [37] [34] [5] [40]
[27] [44] [12] [45]. Traditionally, RS-based codes (e.g., RS
[31], LRC [17]) are generated via Galois Field computations,
and XOR-based calculations are operated in XOR-based codes
(e.g., STAR code [16], TIP-Code [44], Butterfly codes [24]
[13]).

However, existing erasure codes have several drawbacks
in availability zone (AZ) environment. First, for XOR-based
codes, most XOR-based erasure codes [9] [4] only tolerate two
or three node failures, which cannot meet the requirements
of tolerating AZ level node errors. Some XOR-based codes
can tolerate more than three nodes, but the scalability is
rather poor [44] [16]. Second, For RS-based codes, although
they can provide high scalability, the recovery cost (e.g.,
the reconstruction I/Os, the recovery bandwidth) is extremely
high, which attracts many researchers to propose new solutions
[22] [17] [29]. Third, Minimal Storage Regenerating code
[36] [42] is efficient to reduce recovery overhead, but the
computational complexity is much higher than RS-based and
XOR-based codes.

To avoid the above drawbacks, in this paper, we propose
a novel erasure code called AZ-Code, which is an efficient
code for multiple availability zones environment. AZ-Code
take advantages of both RS and MSR codes, which can provide
both high reliability and scalability with low monetary and
recovery cost.

The contribution of our work includes:
1) We propose AZ-Code to provide low recovery cost with

high reliability for AZ environment.

2) A series of experiments show that comparing with the
traditional approaches, AZ-Code achieves better perfor-
mance of recovery in AZ environment.

The rest of the paper is organized as follows. In Section
II, we introduce related work and our motivation. In Section
III, the design of AZ-Code and corresponding encoding and
decoding techniques are illustrated in detail. The evaluation is
presented in Section IV and the conclusion of our work is in
Section V.

II. RELATED WORK AND MOTIVATION

In this section, we discuss the requirements of erasure codes
for AZ environment in cloud storage systems and give a brief
introduction about the existing erasure codes. To facilitate our
discussion, we summarize the symbols used in this paper in
Table I.

TABLE I
SYMBOLS USED IN THIS PAPER

Symbols Description
n the number of nodes in a node array
r the number of parity nodes
k the number of data nodes (k = n− r)
l code group length
s a parameter of MSR code (n = sm)
m a parameter of MSR code (n = sm)
z the number of AZs(the group of AZ-Code)
p the number of local parity nodes
g the number of global parity nodes
d the number of helper nodes
α bits stored on a node
β bits downloaded from one node in recovery process
τ the total recovery bits
δ the radio form of recovery cost
Θ an MSR code
Ci the nodes of MSR code
Ai a l*l coefficient matrix
D a vector consists of all data
DL a vector consists of lost data
DS a vector consists of surviving data
H a parity-check matrix
H′ a decoding matrix of MSR code
HL a sub-matrix of H (columns corresponds to the lost data)
HS a sub-matrix of H (columns corresponds to the surviving data)
P a local parity node of AZ-Code
G a global parity node of AZ-Code
J a decoding matrix of AZ-Code

A. Requirements of Erasure Codes in Multiple Availability
Zones (AZs)

In modern large-scale cloud storage systems, large datasets
are normally divided into several parts and then stored in
different AZs. In general, the following aspects of erasure
codes are desired in multiple AZs environment,
• High Reliability: Erasure codes can provide high reliabil-

ity, which can tolerate concurrent AZ level failures (e.g.,
lost a whole AZ). In this paper Fault Tolerance is defined
as the maximum number of r node failures that a code
can tolerate to evaluate reliability.

• High Storage Efficiency: Typically, a node array consists
of k data nodes and r parity nodes, the storage efficiency

is k/(k + r). In AZ environment, we need to make the
storage efficiency as high as possible.

• Low Recovery Cost: In data centers, node failure is
common and recovery cost is a significant problem [33].
As we know, the recovery cost include the computation
cost, network bandwidth, and the total number of I/Os.
An erasure code with low recovery cost is a popular
choice in cloud storage systems [17]. In this paper we
use Reconstruction Cost defined as the number of nodes
required to reconstruct the lost nodes to evaluate the
network bandwidth of recovery cost.

• High Scalability: Erasure codes can provide fast scaling
processes when scale up or scale out [39].

B. Existing Erasure Codes in Cloud Storage Systems

1) RS Code: Reed Solomon Code (RS Code) [26] was
proposed by Irving S. Reed and Gustave Solomon in 1960. RS
code is a kind of Maximum Distance Separable (MDS) Codes,
which have the optimal storage efficiency. The encoding and
decoding operations of RS code are based on Galois Field,
which leads to a higher computational complexity comparing
to XOR-based codes. However, due to its high scalability,
RS code has been widely applied in traditional cloud storage
systems. In a RS code which is delegated by RS(k, r),
n = k+ r denotes the total number of nodes1 participating in
the erasure coding schema, k stands for the number of data
nodes, and r is the number of parity nodes. Generally data is
organized and encoded/decoded with the minimum coding unit
block2. RS(k, r) can tolerate at most r failures at the same
time, and single node failure can be recovered from any k
survivors. The encoding process of RS code is given in Fig.1.

11

11

11

11

11

11

A00 A01 A02 A03 A04 A05A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25A20 A21 A22 A23 A24 A25

*

D0

D1

D2

D3

D4

D5

D0

D1

D2

D3

D4

D5

=

D0

D1

D2

D3

D4

D5

P0

P1

P2

D0

D1

D2

D3

D4

D5

P0

P1

P2

Encoding Matrix Codeword

D
a

ta
 b

lo
cks

Parity blocks

Fig. 1. The encoding process of RS(6, 3). The leftmost matrix is called En-
coding Matrix, which encodes data nodes (D0, D1, · · · , D5) into Codeword
(D0, D1, · · · , D5, P0, P1, P2).

RS Code can be applied in multiple AZs. In general, all
nodes are evenly distributed among all AZs. An example
shows in Fig.2, where RS(6, 6) can be applied in 3AZ en-
vironment, and RS(4, 4) can be applied in 2AZ environment.

The reconstruction process of RS code is shown in Fig.3.
In this figure, k surviving data nodes are used to recover the

1In this paper, a node represents a storage medium which is physically
isolated from other storage mediums.

2In this paper, a block is used to represent a data element or chunk which
is the basic access unit in erasure codes [6] [32].

2

D0 D1 D2 D3

P0 P1 P2 P3

AZ 0 AZ 1

(a) A case of two AZs

D0 D1 D2 D3 D4 D5

P0 P1 P2 P3 P4 P5

AZ 0 AZ 1 AZ 2

(b) A case of three AZs

Fig. 2. Two examples show an RS(6, 6) applied in 3AZ environment and
an RS(4, 4) in 2AZ environment.

dest0 1 2 3 4 5

Survivals

Fig. 3. The reconstruction of single node failure in RS(6, 3). Data of 6
surviving nodes should be transmitted to the failure node named dest.

lost data, which causes great latency and seriously affects the
performance of cloud storage systems. To solve this problem,
many methods have been proposed (introduced in Section
II-C).

2) LRC Code: Local Reconstruction Codes (LRC) [17] and
Locally Repairable Codes [25] are similar codes, and applied
in Windows Azure Storage and Facebook cloud, respectively.
Since both of them are based on a similar idea, here we mainly
discuss Local Reconstruction Codes, and the abbreviation LRC
is used to refer to it. LRC is a kind of non-MDS code.

A LRC can be represented by LRC(k, z, r), where k, z ,
r are denoted by the number of data nodes, the number of
local parity nodes, the number of parity nodes, respectively.
Besides, k data nodes are divided into z groups, and one local
parity node is added to each group. Fig.4 shows an example.

D0 D1 D2 D3 D4 D5

Pa Pb

P0 P1 P2

Pc

Fig. 4. An example of LRC(6, 3, 3). P0,P1 and P2 are global parities
of data nodes (D0, D1, · · · , D5). Pa, Pb and Pc are local parities, which
are generated via data node groups (D0, D1), (D2, D3) and (D4, D5)
respectively.

D0 D1 D2 D3 D4 D5

Pa Pb

P0 P1 P2

Pc

Fig. 5. The reconstruction of single failure in LRC(6, 3, 3). The failure
node D0 is marked as brown. Only data of (D1, Pa) in green box need to
be transmitted to D0.

It is obvious that LRC sacrifices more storage redundancy
than RS Code for extra local parities, which completes single
failure recovery in the local group and improves the perfor-
mance of failure recovery. Specially, when LRC is applied in
multiple AZs (shown in Fig.6), each group is equivalent to an

AZ, and global parity nodes are uniformly assigned to each
AZ.

For reconstruction of a lost data node, the failure node
only need to obtain the data of nodes in the same group. An
example shows in Fig.5.

D0 D1 D2 D3

Pa Pb

P0 P1

AZ 0 AZ 1

(a) A case of two AZs

D0 D1 D2 D3 D4 D5

Pa Pb

P0 P1 P2

Pc

AZ 0 AZ 1 AZ 2

(b) A case of three AZs

Fig. 6. Two examples show an LRC(6, 3, 3) applied in 3AZ environment
and an LRC(4, 2, 2) applied in 2AZ environment.

3) XOR-based Codes: In the last two decades, several
XOR-based codes are proposed for cloud storage systems,
typical XOR-based codes include STAR [16], Triple-STAR
[37], HDD code [35], TIP-Code [44], which can tolerate
concurrent node failures of any triple nodes. Under multiple
AZ environment, GRID code [19] is a feasible solution for a
large amount of node failures. However, due to the limitation
of multi-dimensional XOR-based parity generation, the scala-
bility issue [18] is a big obstacle in cloud storage systems.

C. Optimization Methods for Reconstruction

In recent years, a number of methods to improve the per-
formance of Erasure Code have been proposed. For example,
Partial-Parallel-Repair [22] and Pipeline-Repair [20] reduce
the network latency, but do not reduce the total amount of
data transmitted in cloud storage system. Other methods like
Parity-Check Matrix [43] reduce the complexity of decoding,
but do not improve the network transmission.

Minimum-Storage Regenerating (MSR) code [11] [15] [36]
[42] [24] [13] is one special case of regenerating code with the
property of Maximum Distance Separable (MDS) codes. It is
expressed as the tuple(n, k, l) which means n data nodes and
parity nodes, k data nodes and sub-packetization with size l.
MSR code is sufficient for reducing the recovery cost, but its
construction is too complex and the computation cost is high
in AZ environment.

D. Our Motivation

We summarize existing erasure codes in AZ environment
in Table II which shows that the existing erasure codes are
insufficient for AZ environment. RS code can provide high
reliability but its recovery cost is also high which has been
the major issue in AZ environment. LRC code can reduce
the recovery cost to some extent but increase the storage
cost. MSR code can achieve optimal recovery cost without
increasing the storage cost but its complexity is too high.

In summary, existing erasure codes are insufficient in AZ
environment, which motivates us to propose a new code
construction called AZ-Code.

3

TABLE II
SUMMARY ON VARIOUS ERASURE CODES IN AZ ENVIRONMENT

Name Reliability Scalability Storage Recovery Computational
Efficiency Cost Complexity

RS Code high high high high high
LRC Code high high low high medium
MSR Code high medium high low very high
GRID Code high low high medium low

AZ-Code high high low low medium

III. AZ-CODE

In this section, we first give the construction of the Avail-
ability Zone Level Erasure Code (AZ-Code) and then intro-
duce the construction of local parities and global parities,
encoding and decoding processes of AZ-Code. We also sum-
marize the properties of AZ-Code at the end of the section.

A. Overview of AZ-Code

Generally we present AZ-Code as AZ(k, z, p, g) where k
means the number of data nodes, z means the number of AZ.
AZ-Code divides k data nodes into z AZs with k/z data nodes
in each AZ. It generates p local parity nodes by MSR code
method for each AZ to reduce the recovery cost, and computes
g global parity nodes from all k data nodes by RS code to
provide high reliability. Let n be the total number of nodes
(data + parity), thus n = k + z ∗ p+ g.

The Figure 7 shows an example of AZ-Code with multiple
AZs.

AZ 0

AZ 1D2 D3 G1

P12P11

D0 D1

P01

G0

P02

Global parity

D2n-2 D2n-1

P(n-1)1

Gn-1

P(n-1)2

AZ N-1

…
…

……

Fig. 7. The construction of AZ-Code. Local parities are stored in the
corresponding AZ and global parities are evenly distributed among multiple
AZs.

1) Local Parity: We use MSR codes [24] [13] [11] [15] [36]
[42] (MSR code is defined in a matrix form and introduced
in Section III-C) to generate the local parity nodes. Typically,
the local parity nodes are generated from the local data nodes
and stored in a same AZ area.

2) Global Parity: We use RS code [26] to generate the
global parities which are generated from all data nodes and
evenly distributed among all AZs.

B. Case Studies of Multiple AZs

1) AZ-Code for Two AZs (2AZ-Code): We show an example
of AZ(4, 2, 2, 2) with 2AZs in Figure 8(a). Each AZ has one
global parity node, two local parity nodes and two data nodes.

AZ 0

AZ 1D2 D3

P11

G1

P12

D0 D1

P01

G0

P02

Global parity

(a) Two AZ Case

D4 D5

P21

G2

P22

AZ 0

AZ 1

AZ 2

D2 D3

P11

G1

P12

D0 D1

P01

G0

P02

Global parity

(b) Three AZ Case

Fig. 8. Two cases of AZ-Code.

• Encoding Process: local parity nodes are encoded by
MSR(4, 2, 4) and global parity nodes are encoded by
RS(4, 2).

• Decoding Process: 1) We prefer to use the local parity
nodes to recover the lost data when the number of failure
nodes is small. For example, when D0 in Fig.8(a) fails,
we use D1, P01 and P02 to recover it. 2) When the
number of failure nodes is large, we use both local and
global parities to decode data. For example, when D0,
D1, P01 fail, we use one local parity node P02 , two
global parity nodes G0, G1 and two data nodes D2 and
D3 to recover them . The recovery algorithm is shown in
Section III-F.

2) AZ-Code for Three AZs (3AZ-Code): We show an ex-
ample of AZ(6, 3, 2, 2) with 3AZs in Figure 8(b). Here each
AZ has one global parity node, two local parity nodes and two
data nodes.
• Encoding Process: the local parities are encoded by
MSR(4, 2, 4) and the global parities are encoded by
RS(6, 3).

• Decoding Process: the same as two AZ case.

C. Construction of Local Parities

In this section, we introduce one kind of MSR codes [42]
which is used to generate the local parity nodes. First we give
the mathematical construction and then use one special case
to explain the encoding/decoding process.

1) Overview of MSR Code: MSR code is expressed as a
tuple(n, k, l), where n denotes the total number of data and
parity nodes, k denotes the number of data nodes, and l means
the minimum coding unit or sub-packetization [42]. Suppose
that each node has α bits and when a node fails, the storage
system attempts to repair their content by contacting d helper
nodes3 and downloading β bits from each helper node. The
total recovery bits τ satisfies the equation τ = d ∗ β. It shows
that [11] the recovery cost δ has the following equation,

δ =
τ

α
=
d ∗ β
α

=
d

d− k + 1
(k ≤ d ≤ n− 1) (1)

δ is inversely proportional to d in Equation 1, so we can reduce
the recovery cost by allowing more helper nodes to repair the

3helper nodes are the nodes which provide the data to reconstruct the lost
data

4

lost nodes. When one node fails, d is set to n − 1 and δ
achieves the maximum value n−1

n−k . When multiple nodes fail,
d is usually set to k and δ reaches the minimum value of k.
At this time MSR code is equivalent to any MDS code like
RS code. We show this relationship in the following formula,

k ≤ δ ≤ n− 1

n− k
(2)

2) MSR Code Construction: Let Θ be a (n, k, l) MSR code
with nodes Ci ∈ F ln, i = 1, 2, ..., n (data nodes and parity
nodes are unified by Ci), where each Ci is a column vector
with coordinates Ci = {ci1, ci2, ..., cil}T . To further reduce the
construction cost, we use the Parity Check Matrix (PCM) [43]
to construct the MSR part of the AZ-Code. The construction
of code Θ is defined by the following r parity check equations,

Θ = {(C1, C2, ...Cn)|
n∑

i=1

Ati ∗Ci = 0, t = 0, 1, 2, ..., r−1}

(3)
In Equation 3, At,i ∈ F is a l ∗ l matrix corresponding to
l ∗ 1 column vector Ci. The whole coefficient matrix H with
the size of (r ∗ l) ∗ (n ∗ l) consists of the r ∗ n submatrix
At,i. A(a, b) is defined as the element in row a, column b of
submatrix A, where 0 ≤ a, b ≤ l − 1. The specific structure
of At,i is shown as below.

Construction via Local Parities Let s,m ∈ F be positive
integers with the constraint,

s ≤ r ≤ sm, n = sm, l = sm

We rewrite a to S-ary form, a = (a1, a2, ..., am) and define an
equation a(v, u) := (a1, ..., av−1, av = u, av+1, ..., am). Let
F be a finite field with the size |F | ≥ n. The parameter λi
and γ follow the constraints,

λi ∈ F, i = 1, 2, ..., n.

λi 6= λj if i 6= j.

γ ∈ F, γ 6= 0, 1.

At,i(0 ≤ t ≤ r − 1, 1 ≤ i ≤ n) can be transformed to
At,(v−1)s+u+1(0 ≤ v ≤ m − 1, 0 ≤ u ≤ s − 1). And then,
the elements At,(v−1)s+u+1(a, b) are constructed by following
function,

At,(v−1)s+u+1(a, b) =
λt(v−1)s+u+1 if av < u, a = b

γλt(v−1)s+u+1 if av > u, a = b

λt(v−1)s+w+1

if av = u, a(v, w) = b
with w = 0, 1, ..., s− 1

0 otherwise

For each submatrix At,i which is well defined, we can get the
whole coefficient matrix H .

The coefficient matrix H has a property that any r ∗ r
sub-matrix of H is invertible (Here each submatrix At,i is
treated as a single element.). Due to space limitations, we don’t
provide the detailed proof, which can be found in the literature

[42]. This property guarantees that MSR code can tolerate any
r nodes failure. Here we show the detailed construction of an
MSR code in Fig.9 with the following configuration,

n = 4, k = 2, r = s = 2, m = 2, l = 4.

We use this configuration to demonstrate the encoding and
recovery processes of MSR code in the next sections.

0 10

0

0

0

1

0 0 γ

1 0

γ 0

1

0

0 10

0

0

0

0

0 1 1

0 0

1 0

1

1

0 γ0

0

1

0

0

0 0 γ

0 1

1 0

1

0

0 11

0

0

1

0

0 0 1

0 0

1 0

1

0

0 λ10

0

0

0

λ2

0 0 γλ1

λ2 0

γλ1 0

λ1

0

0 λ20

0

0

0

0

0 λ1 λ2

0 0

λ2 0

λ2

λ1

0 γλ30

0

λ4

0

0

0 0 γλ3

0 λ4

λ3 0

λ3

0

0 λ4λ3

0

0

λ3

0

0 0 λ4

0 0

λ4 0

λ4

0

*

D0,1

D0,2

D0,3

D0,4

D1,1

D1,2

D1,3

D1,4

P0,1

P0,2

P0,3

P0,4

P1,1

P1,2

P1,3

P1,4

D1

D0

P1

P1

= 0

H Data

Fig. 9. The detailed construction of MSR code with (n = 4, k = 2, s =
m = 2, l = 4). H is a coefficient matrix based on finite field F . According to
Equation 3, the MSR code is defined by total r∗l = 8 parity check equations.

3) The Encoding Process of MSR Code: We demonstrate a
brief construction in Fig.10, where each element Ai,j is a 2∗2
matrix. In this condition we ignore the details in the matrix
Ai,j , so there are total two parity check equations.

The encoding process of MSR code is based on PCM
method and shown in Fig.11. According to the two parity
check equations, we split the coefficient matrix A into HL and
HS , which corresponds to the lost and surviving data nodes,
respectively. Because HL is invertible, we get the following
equation,

HL ∗DL = HS ∗DS (4)

We can change Equation 4 to Equation 5 as below via matrix
transformation (multiply H−1L on the both sides of Equation
4),

DL = H−1L ∗HS ∗DS (5)

Therefore, we can reconstruct the lost parity nodes via Equa-
tion 5.

A01 A03A02 A04

A11 A12

D0

A13 A14

D1

P0

P1

0

H

Data

* =

Fig. 10. The brief construction of MSR code with (n = 4, k = 2, s = m =
2, l = 4) following Equation 3. G is a coefficient matrix based on the finite
field F . Each element Ai,j is a 2 ∗ 2 matrix. The dot product of the data
vector the corresponding row in G is equal to zero.

D. Construction of Global Parities
We use RS code [31] to generate the global parities,

Construction via Global Parities Let H be the parity check
matrix, data node is (D0, D1, ..., Dk−1) and parity node is
(G0, G1, ..., Gr−1). Then we define the code equation,

H ∗ (D0, ..., Dk−1, G0, ..., Gr−1)T = 0

5

A01A03 A02A04

A11 A12

D0

A13 A14 D1

P0

P1

A01A03 A02A04

A11 A12

D0

A13 A14 D1

P1

P2

-1

HL HSDL DS

DL HL
-1 HS DS

*

=

*=

* *

Fig. 11. The encoding process of MSR code (n = 4, k = 2, s = m = 2, l =
4). DL represents the lost data vector and DS represents the surviving data
vector. HL and HS are the coefficient matrix of DL and DS respectively.

With each r ∗ r sub-matrix H ′ of H is invertible.

E. Encoding with AZ-Code

The encoding process of AZ-Code is simple. We summarize
it into the following steps,

1) Use the data nodes in the same AZ to calculate the local
parity with MSR code and store them in corresponding
AZ.

2) Use the whole data nodes in all AZs to calculate the
global parity with RS code.

3) Store global parity evenly across multiple AZs.

F. Decoding with AZ-Code

1) Decoding with Local Parities: MSR code using different
decoding methods for various numbers of node failures.

When single node fails, MSR code contacts with the other
d = n − 1 help nodes to recover the lost data together.
Recovery method is described as below,

Assume that data Cq of the code Θ fail. And Cq can be
regarded as C(vq−1)s+uq+1.

Step1: We construct a new coefficient matrix H ′ based on
the original coefficient matrix H by taking a part of elements
from each submatrix At,i(0 ≤ t ≤ r− 1, 1 ≤ i ≤ n). The new
submatrix A′t,i is constructed by the following function,

A′t,i ={
At,i(a, b)|a, b ∈ {avk = uk} if i 6= q
At,i(a, b)|a ∈ {avk

= uk}, b ∈ {0, 1, ..., l} if i = q

Step2: The data obtained from other n− 1 data nodes (Ci)
to recover the lost data is defined as C ′i. The data set C ′i has
the following format,

C ′i = {ci,a|avk = uk, a = 0, 1, ..., l − 1}
(i = 0, 1, ..., n− 1 and i 6= q.)

For the convenience of representation we define that C ′q = Cq .
Step3: We get the new decoding equation, A0,1 · · · A0,n

...
. . .

...
Ar−1,1 · · · Ar−1,n

 ∗ [C ′0, C ′1, ..., C ′n−1]T = 0 (6)

And the lost data Cq can be recovered via Equation 6.

We show the detailed recovery process under single node
failure case in Fig.12 and Fig.13. And assume that data
node D0 fails. According to the recovery method for single
node failure, we choose the 1, 3, 5, 7 rows from the original
coefficient matrix A to construct a new matrix A′. The data
nodes D1, P0, P1 only need to provide their first and third
sub-nodes in a sub-packetization. Then we get the decoding
equation shown in Fig.13. At last we use the PCM method,
which is the same as the encoding process, to recover the lost
data node D0.

0 10

0

0

0

1

0 0 γ

1 0

γ 0

1

0

0 10

0

0

0

0

0 1 1

0 0

1 0

1

1

0 γ0

0

1

0

0

0 0 γ

0 1

1 0

1

0

0 11

0

0

1

0

0 0 1

0 0

1 0

1

0

0 λ10

0

0

0

λ2

0 0 γλ1

λ2 0

γλ1 0

1

0

0 λ20

0

0

0

0

0 λ1 λ2

0 0

λ2 0

λ2

λ1

0 γλ30

0

λ4

0

0

0 0 γλ3

0 λ4

λ3 0

λ3

0

0 λ4λ3

0

0

λ3

0

0 0 λ4

0 0

λ4 0

λ4

0

*

D0,1

D0,2

D0,3

D0,4

D1,1

D1,2

D1,3

D1,4

P0,1

P0,2

P0,3

P0,4

P1,1

P1,2

P1,3

P1,4

D0

D1

P0

P1

= 0

H Data

Fig. 12. The decoding process of MSR code (n = 4, k = 2, s = m = 2, l =
4). H is the new coefficient matrix. And D0 is the lost data node. The rows
1, 3, 5, 7 of coefficient matrix A and the sub-nodes 1, 3 of sub-packetization
in the data node D0, P1, P2 are selected to recover D0, which are marked
as brown.

1

0

1

1 01

10

01

γ0

11

1 1

01

λ1 λ2

λ2λ1

λ20

0λ2

γλ3

λ4λ3

0 λ4λ3

0λ4
*

D0,1

D0,2

D0,3

D0,4

D1,1

D1,3

P0,1

P0,3

P1,1

P1,3

0
00

00

00

D0,1

D0,2

D0,3

D0,4

1

0

1

1 01

λ1 λ2

λ2λ1

00

00

00

-1

10

01

γ0

11

1 1

01

λ20

0λ2

γλ3

λ4λ3

0 λ4λ3

0λ4

=

D1,1

D1,3

P0,1

P0,3

P1,1

P1,3

H’
D

DL

H’L
-1

H’S
DS

=

* *

Fig. 13. The decoding process of MSR code with(n = 4, k = 2, s = m =
2, l = 4). H′ is the new coefficient matrix constructed by original matrix
H . DL represents the lost data vector and DS represents the surviving data
vector. H′L and H′S are the coefficient matrices of DL and DS respectively.

When multiple nodes fail, The decoding process of the MSR
code is the same as the encoding process and shown in Fig.14.
Assume that D0 and D1 are lost data, and P0, P1 are surviving
data nodes. Then we can recover the D0 and D1 by using
Equation 5.

2) Decoding with Global Parities: The global parities re-
covery method is shown as below,

Assume that any r nodes fail, we rewrite the
data set D and parity set G as surviving data set
DS = (DS0, DS1, ..., DSk−1) and lost data set
DL = (DL0, DL1, ..., DLr−1). then we choose the column
corresponding to the surviving data from H and get HS ,
the remaining column make up HL. We use the following
equation to recover the lost data.

DL ∗HL = DS ∗HS

DL = (HL)−1 ∗HS ∗DS .

6

A01A03 A02A04

A11 A12

D0

A13 A14 D1

P0

P1

-1

HL HSDL DS

DLHL
-1HSDS

*

=

*=

* *
P1

P2

P1

P2

D0

D1

D0

D1

A03 A04

A13 A14

A03 A04

A13 A14

A01 A02

A11 A12

A01 A02

A11 A12

Fig. 14. The decoding process of MSR code with(n = 4, k = 2, s =
m = 2, l = 4). DL represents the lost data vector and DS represents the
surviving data vector. HL and HS are the coefficient matrices of DL and
DS respectively.

3) Hybrid Decoding with Global and Local Parities: we
use the hybrid recovery method to decode the lost data in the
condition that local or global parities can’t recover the lost
data independently.

Given an AZ-Code AZ(k, z, p, g), we define that m = k/z+p
(represents the total number of data nodes in one AZ) and
a data set D = (C0, C1, ..., Ck−1) which generate local and
glocal parities. (G0, G1, ..., Gg−1) represents the global parity
nodes with coefficient matrix Rg×n and (P0, P1, ..., Pp−1)
represents the local parity nodes with coefficient matrix Ap×m.
In order to unify the matrix size, we make the following identity
transformation,

Ri,j = diag(ri,j , ri,j , ..., ri,j)l×l

Step1: We choose the local parities belong to the first AZ
as an example (Generally we select an AZ which contains the
most lost data nodes) and get g + p parity check equations,

{
k−1∑
i=0

Rt,i ∗ Ci +

k+g−1∑
i=k

Rt,i ∗Gi−k = 0|t = 0, 1, ..., g − 1},

{
k/z−1∑
i=0

At,i ∗ Ci +

m−1∑
i=k/z

At,i ∗ Pi−k/z = 0|t = 0, 1, ..., p− 1}

Step2: We use a new coefficient matrix J(g+p)×(k+g+p) to
represent these g + p equations,

Ji,j =
Ri,j if 0 ≤ i ≤ g − 1 and 0 ≤ j ≤ k + g − 1
Ai,j if g ≤ i ≤ g + p− 1 and 0 ≤ j ≤ k/z − 1

Ai,j−k−g
if g ≤ i ≤ g + p− 1 and
k + g ≤ j ≤ k + g + p− 1

0 otherwise

Step3: Then we get the equation with the PCM format,

J ∗
[
C ′0, ..., C

′
k−1, G0, ..., Gg−1, P0, ..., Pp−1

]T
= 0 (7)

If any g + p nodes belongs to AZ(k, z, p, g) fails, we can re-
cover them by Equation 7. The parameters should be properly
chosen to guarantee that the corresponding sub-matrices are
invertible.

Algorithm 1 shows the decoding strategy of AZ-Code.
Firstly, we scan all AZs and use the local parities to decode

the lost data. Then the remaining lost data, which cannot be
recovered by the local parities only, are reconstructed through
global parities. Finally, we use a hybrid recovery method to
decode the lost data.

Algorithm 1 Reconstruction Algorithm of AZ-Code
Require:

Configuration of AZ-Code AZ − Code(k, z, p, g);
A lost data position vector F [k];
A lost data number k;
A global parity set G;
A local parity set L;
A surviving data set DS ;
Local Parity Decoding(D): using data set D to recover lost data by local
parities;
Global Parity Decoding(D): using data set D to recover lost data by global
parities;
Combination Decoding(D): using data set D to recover lost data through the
combination decoding method via local and global parities;

Ensure: original lost data set DL

Initial DL = ∅
for all F [i] belongs to the same AZj and F [i] /∈ G do

if size(F [i] ∈ AZj) ≤ p then
Dtemp = DSi ∈ AZj

⋃
Li ∈ AZj ;

DL+ = Local Parity Decoding(Dtemp);
k = k − size(L[i] ∈ AZj).

end if
end for
if p < k ≤ g then

Dtemp = (DSi ∈
⋃
j
AZj)

⋃
G;

DL+ = Global Parity Decoding(Dtemp).
else

if g < k ≤ g + p then
Dtemp = (DSi ∈

⋃
j
AZj)

⋃
G;

DL+ = Combination Decoding(Dtemp).
else {k > g + l}

ERROR: Exceed the capability of fault tolerance.
end if

end if

G. Proof of Correctness

Actually, AZ(k, z, p, g) tolerates up to g+p arbitrary nodes
failures and AZ-Code can recover up to g+p∗z nodes in some
special cases.

We assume that g+ p arbitrary nodes fail. The locations of
failure nodes can be divided into two cases.

1) The total number of lost data/parity nodes are less than
or equal to g. This case is shown in Fig.16(a).

2) The total number of lost data/parity nodes are more than
g. This case is shown in Fig.16(b).

In case 1, we can recover all data nodes by the global
parities and then we can reconstruct the local parity nodes.

In case 2, we use the combination decoding method to
recover the lost data because local or global parities cannot
recover the lost data independently. Note that we should
choose the AZ which has the most number of failure nodes
when we use the combination decoding method. We take
AZ(6, 3, 2, 3) as an simple example, which is shown in Fig.16.

According to Fig.16(a), we use G0, G1, G2 to recover
D0, D1, D2, and use D0, D1 to reconstruct the P0, P1.

According to Fig.16(b), we use the the hybrid decoding
method to recover the lost data and the recovery process is
shown in Fig.17 and Fig.18. Columns 1, 2, 7, 10, 11 are utilized
to establish the matrix HL and the remaining columns to build
up HS . Then we can use the equation DL = H−1L ∗HS ∗DS

7

TABLE III
COMPARISONS AMONG AZ-CODE, RS CODE, LRC CODES IN TERMS OF

STORAGE EFFICIENCY, CAPABILITY OF FAULT TOLERANCE AND
RECONSTRUCTION COST

EC Storage Fault Reconstruction Cost
Efficiency Tolerance (single data node failure)

AZ(k, z, p, g) k
k+z∗p+g

g + p
k/z+p−1

p

RS(k, r) k
k+r

r k

LRC(k, z, g) k
k+z+g

g + 1 k/z

which is introduced in Section III-F to recover the lost data
nodes.

D3

P3P2

G0

P1

G1

D1 D2D0

P0

G2

P5

D5D4

P4

Fig. 15. The construction of AZ-Code (k = 6, z = 3, p = 2, g = 3). Data
nodes are marked gray, local parities are marked blue and global parities are
marked brown. Local parities are stored in their corresponding AZs and global
parities are evenly distributed among the three AZs.

H. Properties of AZ-Code

We analyze the properties of AZ(k, z, p, g) from the fol-
lowing aspects and show the formulation in table.III.
• High Reliability: Fault tolerance is the quantification of

the reliability abilities. The fault tolerance capabilities of
AZ-Code is g + p, so we can increase the number of
global and local parities to provide high reliability in AZ
environment.

• Low Storage Efficiency: Storage efficiency of AZ-Code
is k/(k + z ∗ p + g), so we can increase k (or reduce
g/p/z) to get better storage efficiency. For MDS code the
optimal storage efficiency is k/(k+ p+ g), so AZ-Code
is near optimal.

• Low Recovery Cost via Local Parities: Recovery cost
include the computation cost, network bandwidth, total
number of I/Os. the reconstruction cost is equivalent to
network bandwidth here and also affects total number of
I/Os. Usually the reconstruction cost should be as low
as possible. According to the equation in Table III, the
reconstruction cost of AZ-Code is lower than RS Code

D3

P3P2

G0

P1

G1

D1 D2D0

P0

D5

P5P4

D4

G1

Lost Data

(a) Multiple AZ fail

D3

P3P2

G0

P1

G1

D1 D2D0

P0

D5

P5P4

D4

G1

Lost Data

(b) One AZ fails

Fig. 16. Two cases of total 5 nodes failure in AZ-Code (k = 6, z = 3, p =
2, g = 3).

A01 A03A02 A04

A11 A12 A13 A14

0

0

0

0

R01 R02

R11 R12

1

0

0

1

0

0

0

0

0

R03 R04

R13 R14

0

0

0

0

R21 R22 0 00R23 R24 1

0

0

0

0

00

0

R05 R06

R15 R16

R25 R26

0

0

D0

D1

D2

D3

D4

D5

G0

G1

G2

P0
P1

=*

J Data

Fig. 17. The combined recovery process of AZ-Code (k = 6, z = 3, p =
2, g = 3) and RS code (n = 9, k = 6).

A01 A03A02 A04

A11 A12 A13 A14

0

0

0

0

R01 R02

R11 R12

1

0

0

1

0

0

0

0

R03 R04

R13 R14

0

0

0

0

R21 R22 0 0 0R23 R24 1

0

0

0

0

00

0

R05 R06

R15 R16

R25 R26

0

0

D0

D1

D2

D3

D4

D5

G0

G1

G2

P0
P1

=*

DL

*

DS

HL HS

Fig. 18. The combined recovery process of AZ-Code (k = 6, z = 3, p =
2, g = 3) and RS code (n = 9, k = 6).

and LRC with the same code size in single node failure
condition. As the number of failure nodes increases, the
gap between AZ-Code, RS code and LRC decrease and
eventually eliminated.

• High Scalability: AZ-Code has four dimensions k, z, p, g
to adapt to the various configuration of data centers.

The properties of AZ-Code with z = 2 and z = 3 are
summarized in Table IV. AZ-Code generally performs well
on three attributes. We can change the code configuration to
get excellent performance in one properties. For example, if
we choose AZ(6, 3, 2, 3), we can get low reconstruction cost.

IV. EVALUATION

In this section, we conduct a series of experiments to
demonstrate the efficiency of AZ-Code under AZ environment.

TABLE IV
SUMMARY ON VARIOUS CONFIGURATIONS OF AZ-CODE WITH TWO AZS

AND THREE AZS

Configuration Storage Fault Reconstruction Cost
Efficiency Tolerance (single data node failure)

AZ(4, 2, 2, 2) 0.4 4 1.5
AZ(8, 2, 2, 2) 0.57 4 2.5
AZ(8, 2, 2, 4) 0.50 6 2.5
AZ(12, 2, 2, 2) 0.67 4 3.5
AZ(12, 2, 2, 4) 0.60 6 3.5
AZ(12, 2, 4, 6) 0.55 8 3.5
AZ(6, 3, 2, 3) 0.4 5 1.5
AZ(12, 3, 2, 6) 0.5 8 2.5
AZ(12, 3, 2, 9) 0.44 11 2.5
AZ(18, 3, 2, 6) 0.60 8 3.5
AZ(18, 3, 2, 9) 0.55 11 3.5
AZ(18, 3, 2, 12) 0.50 17 3.5

8

A. Evaluation Methodology

We select RS code and LRC codes (which are widely used
in AZ environment), as well as several XOR-based codes to
compare with AZ-Code in our evaluations. Since 3AZ is a
general configuration in cloud storage systems, we set z = 3
in our evaluation. We also use both mathematical analysis and
experiments to demonstrate the efficiency of AZ-Code.

Switch

D0

D1 Pa1

Pa2

G0

D2

D3 Pb1

Pb2

G1

D4

D5 Pc1

Pc2

G2

AZ 0 AZ 1 AZ 2

Switch Switch Switch

Fig. 19. The environment of experiments.

TABLE V
DETAILS OF THE EVALUATION PLATFORM

Description DELL R730 Server
CPU Intel Xeon 3.0GHz
NIC 1Gbps

Memory 32GB
Disk 8TB HDD
OS Linux 3.19

Platform Hadoop HDFS 3.0.3

1) Metrics and Methods for Mathematical Analysis: We
use Storage Efficiency, Fault Tolerance and Reconstruction
Cost which defined in Section II-A as the metrics. The
number of nodes in a cluster limits the total code size of
AZ-Code. Therefore, we make the following constraints for
AZ(k, z, p, g).

k ≤ 18, z = 2 or 3, p = 2 or 3, g ≤ 12

The mathematical analysis is divided into two aspects.
Firstly, we analyze the influence of four parameters on the
three metrics in Section II-A. In this part, we only discuss the
reconstruction cost under the single node failure condition,
and find out the differences of AZ-Code under various values
of parameters. Secondly, we compare the reconstruction cost
of AZ-Code with LRC/RS codes under different faulty con-
ditions. We also compare the reconstruction cost of AZ-Code
with existing coding schemes (RS, LRC, MSR, XOR-based
codes) under three situations, such as single data node failure,
double and multiple data nodes failures.

2) Metrics and Methods for Experiments: We use recovery
time, which consists of computation time, I/O overhead and
transmission time, as the metric in our experiments. Several
code configurations with the same n and k are chosen to
explore the impact of other parameters.

The environment of our experiments is shown in Fig.19
and Table V. We set up a Hadoop system [2] with one

NameNode and three DataNodes (to simulate three availability
zones) to evaluate the performance of the erasure codes.
Four DELL R730 servers based on Linux ext4 filesystem
are deployed as these nodes and connected with a gigabit
Ethernet. Each DataNode stores multiple chunks (to simulate
the nodes in AZs), and the number of chunks is adapted to the
EC configuration and each chunk contains exactly 1GB data.
Each chunk consists of many blocks which is the basic unit
of encoding and decoding processes in our experiments, and
we change the block size to simulate various possible failure
conditions in the real AZ environment.

We implement AZ-Code in Intel ISA-L of HDFS and write
a test program to obtain the recovery time, computation time,
I/O overhead and transmission time. In the test program we
randomly generate some error chunks and retrieve data from
three DataNodes to recover the error chunks.

Our experiments include four parts. In the first three parts,
we evaluate the full recovery time of three ECs with differ-
ent configurations under single, double and multiple failure
node(s) situations. Besides, we evaluate the proportion of three
components in recovery time, which is mentioned above, under
single and multiple failure node(s) situations.

B. Numerical Results of Mathematical Analysis

In this section, we show the mathematical analysis of AZ-
Code and compare it with LRC and RS codes.

1) AZ-Code Analysis: In Fig.20 we summarize the perfor-
mance of AZ(k, z, p, g) in terms of various configurations in
storage efficiency, fault tolerance, and reconstruction cost in
single data node failure situation.
• Storage Efficiency: Storage efficiency (k

k+z∗p+g) is de-
termined by four parameters k, z, p and g. So we vary
k from 4 to 18 and g from 2 to 12. Since z and p
both have only two choices, we can get totally four
conditions. The results are shown in Fig.20. We can
see that storage efficiency is direct proportion to k and
inversely proportional to z, p and g.

• Reconstruction Cost: Reconstruction cost is determined
by k, z and p and defined as (k/z+p−1)/p. We vary k
from 4 to 18, p and z from 2 to 3 and hold g to constant
12. The results are shown in Fig.20(g) and Fig.20(h).

• Fault Tolerance: Fault tolerance, which is defined as g+
p, is determined by g and p. So we vary g from 2 to 12
and p from 2 to 3 with two configuration: z = 2, k = 12
and z = 3, k = 18. The results are shown in Fig.20(e)
and Fig.20(f).

Next we consider how to select the parameters of AZ-Code
for 2AZ and 3AZ environment. We choose storage efficiency
and reconstruction cost as the metrics. We use the storage
efficiency of 0.25 and fault tolerance of 3 as the threshold
which is the value of three replication strategy. We keep those
code sets of parameters that yield equal or higher storage
efficiency and fault tolerance threshold. Then we plot the
storage efficiency and the reconstruction cost of the remaining
code sets in Fig.21(b) (3AZ-Code) and Fig.21(a) (2AZ-Code).
Each individual point represents one set of coding parameters.

9

2 4 6 8 10 12

Number of Global Parity Blocks

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
to

ra
g
e
 E

ff
ic

ie
n
c
y

K = 4

K = 8

K = 12

K = 16

(a) Storage Efficiency (p =
2, z = 2)

2 4 6 8 10 12

Number of Global Parity Blocks

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

S
to

ra
g
e
 E

ff
ic

ie
n
c
y

K = 6

K = 12

K = 18

(b) Storage Efficiency (p =
2, z = 3)

2 4 6 8 10 12

Number of Global Parity Blocks

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

S
to

ra
g
e
 E

ff
ic

ie
n
c
y

K = 6

K = 12

K = 18

(c) Storage Efficiency (p =
3, z = 2)

2 4 6 8 10 12

Number of Global Parity Blocks

0.3

0.35

0.4

0.45

0.5

0.55

0.6

S
to

ra
g
e
 E

ff
ic

ie
n
c
y

K = 9

K = 18

(d) Storage Efficiency (p =
3, z = 3)

2 4 6 8 10 12

Number of Global Parity Blocks

4

6

8

10

12

14

16

F
a
u
lt
 T

o
le

ra
n
c
e

P = 2

P = 3

(e) Fault Tolerance (k = 12, z =
2)

2 4 6 8 10 12

Number of Global Parity Blocks

5

6

7

8

9

10

11

12

13

14

15

F
a
u
lt
 T

o
le

ra
n
c
e

P = 2

P = 3

(f) Fault Tolerance (k = 18, z =
3)

4 6 8 10 12 14 16 18

Number of Data Blocks

1.5

2

2.5

3

3.5

4

4.5

R
e
c
o
n
s
tr

u
c
ti
o
n
 C

o
s
t

P = 2

P = 3

(g) Reconstruction Cost (z =
2, g = 12)

6 8 10 12 14 16 18

Number of Data Blocks

1.5

2

2.5

3

3.5

R
e
c
o
n
s
tr

u
c
ti
o
n
 C

o
s
t

P = 2

P = 3

(h) Reconstruction Cost (z =
3, g = 12)

Fig. 20. The impact of different parameters on storage efficiency, fault tolerance and reconstruction cost.

TABLE VI
IMPROVEMENT OF AZ-CODE OVER RS/LRC CODES UNDER DIFFERENT FAILURE SCENARIOS

Failure Erasure Codes Block Size
Scenarios 1MB 2MB 4MB 8MB 16MB 32MB

LRC(6, 3, 6) 23.94% 23.92% 23.35% 22.08% 24.20% 23.47%

Single RS(6, 9) 74.73% 74.43% 74.68% 74.56% 74.57% 74.27%

Node LRC(12, 3, 6) 34.81% 34.70% 34.72% 34.60% 34.66% 34.56%

Failure RS(12, 9) 78.17% 78.24% 78.16% 78.19% 78.05% 78.14%
LRC(18, 3, 6) 34.38% 33.53% 33.09% 31.11% 30.30% 34.25%
RS(18, 9) 78.13% 77.87% 77.78% 77.02% 76.89% 78.16%
LRC(6, 3, 6) 35.50% 35.43% 35.14% 34.28% 35.58% 34.83%

Double RS(6, 9) 52.92% 52.73% 53.02% 52.86% 52.88% 52.07%

Node LRC(12, 3, 6) 45.34% 45.28% 45.23% 45.10% 45.00% 45.12%

Failures RS(12, 9) 58.72% 58.77% 58.60% 58.58% 58.33% 58.54%
LRC(18, 3, 6) 42.80% 42.31% 42.19% 41.12% 41.56% 43.82%
RS(18, 9) 57.08% 56.79% 56.74% 55.93% 56.39% 57.94%
LRC(6, 3, 6) 5.61% 5.17% 4.76% 5.03% 4.87% 3.94%

Multiple RS(6, 9) 5.94% 5.19% 4.90% 5.04% 4.97% 3.89%

Node LRC(12, 3, 6) 4.28% 4.23% 4.00% 3.77% 3.38% 3.87%

Failures RS(12, 9) 4.28% 4.31% 4.08% 3.81% 3.42% 3.84%
LRC(18, 3, 6) 8.85% 8.36% 8.65% 7.79% 9.77% 10.68%
RS(18, 9) 8.83% 8.36% 8.68% 7.78% 9.71% 10.67%

Each parameter set represents a certain trade-off between the
storage efficiency and the reconstruction cost.

Different parameters can result in different storage effi-
ciency. However, we only pay attention on the one with the
lower reconstruction cost. Therefore, we outline the lower
bound of the trade-off points. The lower bound curve char-
acterizes the fundamental trade-off between storage efficiency
and reconstruction cost for AZ-Code.

2) Comparisons among Different Erasure Codes: We select
the following code sets in our analysis. In these evaluations, we
set k as (6, 12, 18) respectively and z = 3 (3AZ environment).
• RS-based codes:

– AZ-Code: AZ(k, 3, 2, 3) with the best storage effi-
ciency and AZ(k, 3, 2, 6) with high fault tolerance.

– RS code [26]: RS(k, 9) with the same total nodes n
of AZ(k, 3, 2, 3) and RS(k, 8) with the same fault
tolerance of AZ(k, 3, 2, 6).

– LRC [17] [25]: LRC(k, 3, 6) with the same total
nodes n of AZ(k, 3, 2, 3) and LRC(k, 3, 7) with the
same fault tolerance of AZ(k, 3, 2, 6).

– MSR [11] [15] [36] [42] [24] [13]: MSR(k, 6) with
r = 6.

• XOR-based codes:

– EVENODD [4]: A kind of XOR-base code which
can tolerate concurrent failures of any double nodes,
in which the configuration is k + 2.

– STAR [16]: A kind of XOR-base code which can

10

0.3 0.4 0.5 0.6 0.7 0.8

Storage Efficiency

1.5

2

2.5

3

3.5

4

4.5

R
e

c
o

n
s
tr

u
c
ti
o

n
 C

o
s
t

(a) z = 2

0.3 0.4 0.5 0.6 0.7

Storage Efficiency

1.5

2

2.5

3

3.5

R
e

c
o

n
s
tr

u
c
ti
o

n
 C

o
s
t

(b) z = 3

Fig. 21. The impact of different parameters on storage efficiency, fault
tolerance and reconstruction cost.

tolerate concurrent failures of any triple nodes, in
which the configuration is k + 3.

First, we choose the AZ-Code sets which are located in the
lower bound curve in Fig.21(b) (3AZ-Code) to compare RS
and LRC. In this situation, we define the same parameters
k and n of these three codes. For example, AZ(12, 3, 2, 3),
RS(12, 9) and LRC(12, 3, 6) are involved in our Compar-
isons, where k and n are set to the same values (k = 12,
n = 21). Then we choose another code sets with the same
capability of fault tolerance and the same value of k. For
example, LRC(12, 3, 7), AZ(12, 3, 2, 6) and RS(12, 8) have
the same k = 12 as well as the same fault tolerance 8. We use
the reconstruction cost to evaluate the recovery performance.
The results are presented in Fig.22, which illustrate that AZ-
Code have the best performance in all conditions. For example,
AZ(6, 3, 2, 3) saves 75.00% reconstruction cost compared to
RS(6, 6).

Typical erasure codes (including AZ-Code) under faulty
conditions are illustrated in Fig.23. We can see that AZ-Code
has the least reconstruction cost under all three situations
compared with other EC.

C. Experimental Results of Single Node Failure

In this section, we compare the recovery time of RS code,
LRC codes and AZ-Code with the same parameter k under
single data node failure condition. Three different code sets are
chosen to evaluate the performance. In all three experiments,
AZ-Code performs better than RS code and LRC codes under
any block size from 1MB to 32MB.
• AZ(6, 3, 2, 3), RS(6, 9) and LRC(6, 3, 6): Experiment

results are shown in Fig.24(a). We can find out that
AZ(6, 3, 2, 3) is up to 74.73% faster than RS(6, 9) and
24.20% faster than LRC(6, 3, 6).

• AZ(12, 3, 2, 3), RS(12, 9) and LRC(12, 3, 6): Experi-
ment results are shown in Fig.24(b). The figure illustrates
that AZ(12, 3, 2, 3) is up to 78.24% faster than RS(12, 9)
and up to 34.81% faster than LRC(12, 3, 6).

• AZ(18, 3, 2, 3) and RS(18, 9) and LRC(18, 3, 6): Ex-
periment results are shown in Fig.24(c). We can see that
AZ(18, 3, 2, 3) is up to 78.12% faster than RS(18, 9) and
up to 34.38% faster than LRC(18, 3, 9).

The higher reliability of RS code requires a larger amount of
data to be transmitted, and this makes it perform much worse

than AZ-Code. Though the computational complexity of AZ-
Code grows when k increases, the advantage of transmission
overhead for AZ-Code becomes more prominent. Therefore,
AZ-Code can still achieve the best performance.

In the above three experiments, the performance of AZ-
Code is almost the same when the block size changes. The
optimization ratio reaches the peak when the number of data
nodes (k) is 12.

D. Experimental Results of Double Node Failures

In these three experiments, we compare the recovery time
of AZ-Code with RS code and LRC codes in double nodes
failure condition, respectively.
• AZ(6, 3, 2, 3), RS(6, 9) and LRC(6, 3, 6): Experimental

results are shown in Fig.25(a). We find that AZ(6, 3, 2, 3)
is up to 53.02%, 35.58% faster than RS(6, 9) and
LRC(6, 3, 6), respectively. Various block size slightly
affect the performance of three codes.

• AZ(12, 3, 2, 3), RS(12, 9) and LRC(12, 3, 6): Experi-
mental results are shown in Fig.25(b). It illustrates that
AZ(12, 3, 2, 3) is up to 58.76% faster than RS(12, 9) and
up to 45.34% faster than LRC(12, 3, 6). The optimiza-
tion ratio between AZ-Code and LRC codes increases
sharply when k grows. It is because LRC saves the
transmission overhead under faulty conditions.

• AZ(18, 3, 2, 3) and RS(18, 9) and LRC(18, 3, 6): Ex-
periment results are shown in Fig.25(c). We can see that
AZ(18, 3, 2, 3) is up to 57.08% faster than RS(18, 9) and
up to 42.80% faster than LRC(18, 3, 9).

From these experiments, we observe that the performance of
AZ-Code achieves the peak when k = 12. Compared with the
single node failure situation, the optimization ratio between
AZ-Code and RS code decreases under double node failures
situation. And the average optimization ratio between AZ-
Code and LRC codes increases. It is because LRC codes have
one and only one local parity in each group, which can speed
up the decoding process when single node failure occurs, but
cannot speed up the process when two or more node failures
occur.

E. Experimental Results of Multiple Node Failures

In these three experiments, we test the recovery time of AZ-
Code, RS code and LRC codes when five failure nodes need
to be recovered.
• AZ(6, 3, 2, 3), RS(6, 9) and LRC(6, 3, 6): The related

experimental results are shown in Fig.26(a). We can find
out that AZ(6, 3, 2, 3) is up to 5.94% faster than RS(6, 9)
and 5.61% faster than LRC(6, 3, 6). The figure illustrates
that with the increase of block size, the optimization
ratio decrease slowly and the maximum value is produced
when the block size is 1MB.

• AZ(12, 3, 2, 3), RS(12, 9) and LRC(12, 3, 6): Experi-
ment results are shown in Fig.26(b). It illustrates that
AZ(12, 3, 2, 3) is up to 4.28% faster than RS(12, 9) and
up to 4.28% faster than LRC(12, 3, 6).

11

1 2 3 4 5

The number of data block failures

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

R
e
c
o
n
s
tr

u
c
ti
o
n
 C

o
s
t

RS(6,9)

LRC(6,3,6)

AZ(6,3,2,3)

(a) The same total nodes (n =
15, k = 6)

1 2 3 4 5

The number of data block failures

2

3

4

5

6

7

8

9

10

11

12

R
e
c
o
n
s
tr

u
c
ti
o
n
 C

o
s
t

RS(12,9)

LRC(12,3,6)

AZ(12,3,2,3)

(b) The same total nodes (n =
21, k = 12)

1 2 3 4 5

The number of data block failures

2

4

6

8

10

12

14

16

18

R
e
c
o
n
s
tr

u
c
ti
o
n
 C

o
s
t

RS(18,9)

LRC(18,3,6)

AZ(18,3,2,6)

(c) The same total nodes (n =
27, k = 18)

1 2 3 4 5 6 7 8

The number of data block failures

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

R
e
c
o
n
s
tr

u
c
ti
o
n
 C

o
s
t

RS(6,8)

LRC(6,3,7)

AZ(6,3,2,6)

(d) The same fault tolerance (8)
k = 6

1 2 3 4 5 6 7 8

The number of data block failures

2

3

4

5

6

7

8

9

10

11

12

R
e
c
o
n
s
tr

u
c
ti
o
n
 C

o
s
t

RS(12,8)

LRC(12,3,7)

AZ(12,3,2,6)

(e) The Same Fault Tolerance(8)
k = 12

1 2 3 4 5 6 7

The number of data block failures

2

4

6

8

10

12

14

16

18

R
e
c
o
n
s
tr

u
c
ti
o
n
 C

o
s
t

RS(18,9)

LRC(18,3,6)

AZ(18,3,2,6)

(f) The Same Fault Tolerance(8)
k = 18

Fig. 22. Comparisons of reconstruction cost among AZ-Code, LRC and RS code with the same number of nodes (n) and levels of fault tolerance(8)

6 12 18

The number of data block (k)

0

2

4

6

8

10

12

14

16

18

R
e

c
o

n
s
tr

u
c
ti
o

n
 C

o
s
t

AZ(k,3,2,3)

RS(k,9)

LRC(k,3,6)

MSR(k,6)

EVENODD(k,2)

STAR(k,3)

(a) Single Data Node Failure.

6 12 18

The number of data block (k)

0

2

4

6

8

10

12

14

16

18

R
e

c
o

n
s
tr

u
c
ti
o

n
 C

o
s
t

AZ(k,3,2,3)

RS(k,9)

LRC(k,3,6)

MSR(k,6)

EVENODD(k,2)

STAR(k,3)

(b) Double Data Nodes Failure.

6 12 18

The number of data block (k)

0

2

4

6

8

10

12

14

16

18

R
e

c
o

n
s
tr

u
c
ti
o

n
 C

o
s
t

AZ(k,3,2,3)

RS(k,9)

LRC(k,3,6)

MSR(k,6)

STAR(k,3)

(c) Triple Data Nodes Failure (no input
results of EV ENODD(k, 2) due to it
capability of fault tolerance is only 2)

Fig. 23. Comparisons of reconstruction cost among AZ-Code, RS code, LRC and XOR-based code in single data node failure, double data nodes failure and
triple data nodes failure scenarios.

• AZ(18, 3, 2, 3), RS(18, 9) and LRC(18, 3, 6): Experi-
ments results are shown in Fig.26(c). We can see that
AZ(18, 3, 2, 3) is up to 9.71% faster than RS(18, 9) and
up to 9.77% faster than LRC(18, 3, 9).

In these three experiments, we can see that the performance
of the three codes tends to be the same when the number of
node failures grows. It also shows that our AZ-Code always
achieves a better performance under any number of node
failures situations. And the optimization ratio achieves a peak
when k = 18.

F. Experimental Results of Recovery Time

In these two experiments, we separately measure the three
components of recovery time, which are transmission time,
I/O overhead and computation time. Fig.26(b) and Fig.27(b)
illustrate the distribution of three recovery time components.

We can find out that the transmission time is about 8.71× of
computation time and 5.45× of I/O overhead for AZ-Code.
Therefore, transmission time plays a more significant impact
on recovery time, that’s why AZ-Code focus on integrating
MSR code to reduce the recovery network bandwidth.

G. Analysis

The improvements of AZ-Code over RS/LRC codes are
listed in Table VI. From the table, we discover that AZ-Code
can obtain a better decoding performance in all experiments.
There are several reasons to achieve these gains. First, AZ-
Code has less network transmission overhead because of the
usage of MSR code. Secondly we use local parities to recover
the lost data as far as possible, that’s why AZ-Code obtains
a much better recovery performance. Thirdly the calculation
complexity of AZ-Code can be well controlled by adjusting

12

1 2 4 8 16 32

Data Block Size/(MB)

0

1

2

3

4

5

6

7

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
4

AZ(6,3,2,3)

LRC(6,3,6)

RS(6,9)

(a) k = 6

1 2 4 8 16 32

Data Block Size/(MB)

0

2

4

6

8

10

12

14

R
e

c
o

v
e

ry
 T

im
e

10
4

AZ(12,3,2,3)

LRC(12,3,6)

RS(12,9)

(b) k = 12

1 2 4 8 16 32

Data Block Size/(MB)

0

0.5

1

1.5

2

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
5

AZ(18,3,2,3)

LRC(18,3,6)

RS(18,9)

(c) k = 18

Fig. 24. Comparisons of recovery time among AZ-Code, RS code and LRC codes under single node failure.

1 2 4 8 16 32

Data Block Size/(MB)

0

1

2

3

4

5

6

7

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
4

AZ(6,3,2,3)

LRC(6,3,6)

RS(6,9)

(a) k = 6

1 2 4 8 16 32

Data Block Size/(MB)

0

2

4

6

8

10

12

14

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
4

AZ(12,3,2,3)

LRC(12,3,6)

RS(12,9)

(b) k = 12

1 2 4 8 16 32

Data Block Size/(MB)

0

0.5

1

1.5

2

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
5

AZ(18,3,2,3)

LRC(18,3,6)

RS(18,9)

(c) k = 18

Fig. 25. Comparisons of recovery time among AZ-Code, RS code and LRC codes under single node failure.

1 2 4 8 16 32

Data Block Size/(MB)

0

1

2

3

4

5

6

7

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
4

AZ(6,3,2,3)

LRC(6,3,6)

RS(6,9)

(a) k = 6

1 2 4 8 16 32

Data Block Size/(MB)

0

2

4

6

8

10

12

14

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
4

AZ(12,3,2,3)

LRC(12,3,6)

RS(12,9)

(b) k = 12

1 2 4 8 16 32

Data Block Size/(MB)

0

0.5

1

1.5

2

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
5

AZ(18,3,2,3)

LRC(18,3,6)

RS(18,9)

(c) k = 18

Fig. 26. Comparisons of recovery time among AZ-Code, RS code and LRC codes under single node failure.

the parameters to construct short parity chain. Finally, AZ-
Code use RS code to provide high flexibility, so it is well
adapted to the multiple AZs environment.

V. CONCLUSION

In this paper, we propose Availability Zone Level Erasure
Code (AZ-Code) to improve the recovery performance in AZ
environment. Based on MSR code and LRC, we introduce
the construction of AZ-Code and design the encoding and
decoding algorithm. Compared with LRC, AZ-Code use MSR
code to construct the local parities, which results in faster
recovery speed and higher scalability. To demonstrate the
effectiveness of AZ-Code, we conduct experiments in different
conditions. Comparing to LRC and RS codes with similar
reliability and storage efficiency, AZ-Code has the following

advantages: 1) reducing the recovery time up to 78.24%
compared with RS code and 34.81% compared with LRC
when a single node fails; 2) reducing the recovery time up to
58.77% compared with RS code and 45.34% compared with
LRC codes when double nodes fail; 3) better scalability than
RS codes.

VI. ACKNOWLEDGEMENT

We thank our shepherd Cyril Guyot for his patience and
detailed constructive feedback via many rounds of email
communications. This work is partially sponsored by the
National Key R&D Program of China (No.2018YFB0105203),
the National 973 Program of China (No.2015CB352403),
the National Natural Science Foundation of China (NSFC)
(No.61628208), the Natural Science Foundation of Shang-

13

6 12 18

the Number of Data Blocks (k)

0

0.5

1

1.5

2

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
5

Transmission Time of AZ-Code

I/O Time of AZ-Code

Computation Time of AZ-Code

Transmission Time of LRC

I/O Time of LRC

Computation Time of LRC

Transmission Time of RS Code

I/O Time of RS Code

Computation Time of RS Code

(a) Detailed recovery time of full
system recovery in terms of Single
node failure

6 12 18

the Number of Data blocks (k)

0

0.5

1

1.5

2

R
e

c
o

v
e

ry
 T

im
e

/(
m

s
)

10
5

Transmission Time of AZ-Code

I/O Time of AZ-Code

Computation Time of AZ-Code

Transmission Time of LRC

I/O Time of LRC

Computation Time of LRC

Transmission Time of RS Code

I/O Time of RS Code

Computation Time of RS Code

(b) Detailed recovery time of full
system recovery in terms of Multiple
nodes failure

Fig. 27. Detailed recovery time of full system recovery, which includes the
CPU computation time, network transmission time and I/O processing time
in storage devices.

hai (No.18ZR1418500), the Alibaba Group through Alibaba
Innovative Research (AIR) program, and the U.S. National
Science Foundation grants CCF-1717660, CCF-1813081 and
CNS-1702474. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES

[1] “Facebooks erasure coded hadoop distributed file system (hdfs-raid),”
https://github.com/facebook/hadoop-20.

[2] “Hadoop distributed file system (hdfs),” http://hadoop.apache.org.
[3] I. Bermudez, S. Traverso, M. Mellia, and M. Munafo, “Exploring the cloud from

passive measurements: The amazon aws case,” in INFOCOM, 2013 Proceedings
IEEE. IEEE, 2013, pp. 230–234.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient scheme
for tolerating double disk failures in RAID architectures,” IEEE Transactions on
Computers, vol. 44, no. 2, pp. 192–202, 1995.

[5] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman,
“An XOR-based erasure-resilient coding scheme,” International Computer Science
Institute, Tech. Rep. TR-95-048, August 1995.

[6] Y. Cassuto and J. Bruck, “Cyclic lowest density MDS array codes,” IEEE
Transactions on Information Theory, vol. 55, no. 4, pp. 1721–1729, 2009.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system
for structured data,” ACM Transactions on Computer Systems (TOCS), vol. 26,
no. 2, p. 4, 2008.

[8] M. Copeland, J. Soh, A. Puca, M. Manning, and D. Gollob, “Microsoft azure and
cloud computing,” in Microsoft Azure. Springer, 2015, pp. 3–26.

[9] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar,
“Row-Diagonal Parity for double disk failure correction,” in Proc. of the USENIX
FAST’04, San Francisco, CA, March 2004.

[10] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[11] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE transactions on informa-
tion theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[12] Y. Fu and J. Shu, “D-code: An efficient raid-6 code to optimize i/o loads and
read performance,” in Parallel and Distributed Processing Symposium, 2015, pp.
603–612.

[13] E. E. Gad, R. Mateescu, F. Blagojevic, C. Guyot, and Z. Bandic, “Repair-
optimal mds array codes over gf(2),” in 2013 IEEE International Symposium on
Information Theory, July 2013, pp. 887–891.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google file system. ACM, 2003,
vol. 37, no. 5.

[15] Y. Hu, X. Zhang, P. P. Lee, and P. Zhou, “Generalized optimal storage scaling via
network coding,” in 2018 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2018, pp. 956–960.

[16] C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting triple
storage node failures,” IEEE Transactions on Computers, vol. 57, no. 7, pp. 889–
901, 2008.

[17] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, S. Yekhanin
et al., “Erasure coding in windows azure storage.” in Usenix annual technical
conference. Boston, MA, 2012, pp. 15–26.

[18] Y. Jiang, C. Wu, J. Li, and M. Guo, “Bdr: A balanced data redistribution scheme
to accelerate the scaling process of xor-based triple disk failure tolerant arrays,” in
Computer Design (ICCD), 2016 IEEE 34th International Conference on. IEEE,
2016, pp. 72–79.

[19] M. Li et al., “GRID codes: Strip-based erasure code with high fault tolerance for
storage systems,” ACM Trans. on Storage, vol. 4, no. 4, p. Article 15, Jan. 2009.

[20] R. Li, X. Li, P. P. Lee, and Q. Huang, “Repair pipelining for erasure-coded storage,”
in Proceedings of the 2017 USENIX Annual Technical Conference (USENIX
ATC17), 2017, pp. 567–579.

[21] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards characterizing
cloud backend workloads: insights from google compute clusters,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 37, no. 4, pp. 34–41, 2010.

[22] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi, “Partial-parallel-repair (ppr): a
distributed technique for repairing erasure coded storage,” in Proceedings of the
Eleventh European Conference on Computer Systems. ACM, 2016, p. 30.

[23] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang et al., “f4: Facebooks warm blob storage system,” in
Proceedings of the 11th USENIX conference on Operating Systems Design and
Implementation. USENIX Association, 2014, pp. 383–398.

[24] L. Pamies-Juarez, F. Blagojevi, R. Mateescu, C. Gyuot, E. E. Gad, and Z. Bandi,
“Opening the chrysalis: On the real repair performance of MSR codes,” in 14th
USENIX Conference on File and Storage Technologies (FAST 16). Santa Clara,
CA: USENIX Association, 2016, pp. 81–94.

[25] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” IEEE
Transactions on Information Theory, vol. 60, no. 10, pp. 5843–5855, 2014.

[26] J. S. Plank, “A tutorial on reed–solomon coding for fault-tolerance in raid-like
systems,” Software: Practice and Experience, vol. 27, no. 9, pp. 995–1012, 1997.

[27] J. S. Plank, M. Blaum, and J. Hafner, “SD codes: Erasure codes designed for
how storage systems really fail,” in Proc. of the USENIX FAST’13, San Jose, CA,
February 2013.

[28] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An overview,” in IEEE
International Conference on Cloud Computing. Springer, 2009, pp. 626–631.

[29] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran, “Having
your cake and eating it too: Jointly optimal erasure codes for i/o, storage, and
network-bandwidth.” in FAST, 2015, pp. 81–94.

[30] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchandran, “A
hitchhiker’s guide to fast and efficient data reconstruction in erasure-coded data
centers,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp.
331–342, 2015.

[31] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal
of the Society for Industrial & Applied Mathematics, vol. 8, no. 2, pp. 300–304,
1960.

[32] Y. Saito, S. Frolund et al., “FAB: Building distributed enterprise disk arrays from
commodity components,” in Proc. of the ASPLOS’04.

[33] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure codes for big data,”
in Proceedings of the VLDB Endowment, vol. 6, no. 5. VLDB Endowment, 2013,
pp. 325–336.

[34] D. Tang, X. Wang, S. Cao, and Z. Chen, “A new class of highly fault tolerant
erasure code for the disk array,” in Proc. of the PEITS’08, Guang Zhou, China,
August 2008.

[35] C. Tau and T. Wang, “Efficient parity placement schemes for tolerating triple disk
failures in RAID architectures,” in Proc. of the AINA’03, Xi’an, China, March
2003.

[36] M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo, B. Sasidharan, P. V. Kumar,
A. Barg, M. Ye, S. Narayanamurthy et al., “Clay codes: Moulding mds codes
to yield an msr code,” in Proc. 16th USENIX Conference on File and Storage
Technologies, Oakland, CA, USA, vol. 2018, 2018, pp. 139–154.

[37] Y. Wang, G. Li, and X. Zhong, “Triple-Star: A coding scheme with optimal
encoding complexity for tolerating triple disk failures in RAID,” vol. 8, no. 3,
pp. 1731–1472, 2012.

[38] C. Wu et al., “HDP code: A Horizontal-Diagonal parity code to optimize I/O load
balancing in RAID-6,” in Proc. of the DSN’11, 2011.

[39] C. Wu and X. He, “Gsr: A global stripe-based redistribution approach to accelerate
raid-5 scaling,” in 2012 41st International Conference on Parallel Processing, Sep.
2012, pp. 460–469.

[40] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie, “H-Code: A hybrid MDS array code
to optimize partial stripe writes in RAID-6,” in Proc. of the IPDPS’11, Anchorage,
Alaska, May 2011.

[41] L. Xu and J. Bruck, “X-Code: MDS array codes with optimal encoding,” IEEE
Transactions on Information Theory, vol. 45, no. 1, pp. 272–276, 1999.

[42] M. Ye and A. Barg, “Explicit constructions of optimal-access mds codes with
nearly optimal sub-packetization,” IEEE Transactions on Information Theory,
vol. PP, no. 99, pp. 1–1, 2017.

[43] Y. Zhang, C. Wu, J. Li, and M. Guo, “Pcm: A parity-check matrix based approach
to improve decoding performance of xor-based erasure codes,” in 2015 IEEE 34th
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2015, pp. 182–191.

[44] ——, “Tip-code: A three independent parity code to tolerate triple disk failures
with optimal update complextiy,” in Ieee/ifip International Conference on Depend-
able Systems and Networks, 2015, pp. 136–147.

[45] Y. Zhu et al., “On the speedup of single-disk failure recovery in xor-coded storage
systems: Theory and practice,” in Proc. of the MSST’12, San Diego, CA, April
2012.

14

