Adjustable flat layouts for Two-Failure Tolerant Storage Systems

Thomas Schwarz, SJ Marquette University

Motivation

- Storage device batches fail at different rates
 - Example: Backblaze:
 - 1163 Seagate Barracuda 7200.14 disks
 - failed at a rate of 43% per year in 2014,
- Storage devices (sometimes) fail at different rates
 - Bathtub curve seen in about 50% of all HD at Netapp
 - SSD unrecoverable read error rate increases at the end of their lifetime

Motivation

- Large storage systems
 - Currently consists of disks or SSDs organized in racks
 - Individual devices are replaced
 - Erasure coding for files, not devices
- My proposal
 - Organize a large number of devices in a storage pod
 - Level of failure tolerance in pod varies according to prediction of device vulnerability
 - Use a flat layout to increase failure tolerance

Adjustable Raid 6 Example

- Group k devices into a reliability stripe
 - User data devices
- Add two parity devices to each reliability stripe
- If device failure rate appears to be high:
 - Rededicate a user data device as a parity
- Overall:
 - Trade capacity for additional failure tolerance when needed

Adjustable RAID 6 Example

Adjustable RAID 6

Adjustable RAID 6 Example

Alternative to RAID Stripes

- Use a flat layout:
 - Each user data device is in two or three reliability stripes with one additional parity

- Does not use Galois field arithmetic
- Reconstruction can be done using two or three alternatives
 - Can avoid a single hot spot

Results

- Adjustable RAID 6
 - Easy to find configurations
- Adjustable flat layouts
 - Higher reliability
 - No need for Galois field arithmetic
 - Accelerators need extended instruction set
 - Flexibility in reconstruction of lost data

Flat layouts:

- Each user data device is part of two reliability stripes
- Two reliability stripes have one or none data device in common
- Each reliability stripe contains k user data devices

• Therefore:

- Each data device corresponds to an edge of an undirected graph
- Each parity device corresponds to a reliability stripe that corresponds to a vertex

- Use graph view:
 - Edges are user data devices
 - Vertices are parity data devices

Layout and corresponding graph

Densest layouts correspond to a complete graph

 If we want to create additional reliability stripes, we can use a graph factorization

- Each user data device is in three reliability stripes
- Any two stripes intersect in one or none user data devices
- This factorization invented by Lawless 1974

- Can add additional parity devices to an ensemble in case of need
- How about switching some user data devices to parity?
 - Cannot be done instantaneously because those data devices need to emptied
 - But it can be done

Punctured Layouts: Remove the middle edge from each factor

Available only for certain parity - data device numbers

DIMENSIONS OF PUNCTURED LAYOUTS. ON THE LEFT, WE GIVE THE NUMBERS FOR THE TWO-FAILURE TOLERANT AND ON THE RIGHT FOR THE THREE-FAILURE TOLERANT LAYOUT.

d	# Data	# Parity	# Total Disks	Stripe Sizes
3	15/12	6/9	21	5/4
4	28/24	8/12	36	7/6
5	45/40	10/15	55	9/8
6	66/60	12/18	78	11/10
7	91/84	14/21	105	13/12
8	120/112	16/24	136	15/14
9	153/144	18/27	171	17/16
10	190/180	20/30	210	19/18
_11	231/220	22/33	253	21/20

Reliability Evaluation

- We compare with an adjustable RAID Level 6 configuration
- Robustness: Probability that f device failures have let to data loss

Reliability Evaluation

Calculation of five and six year survival probabilities:

Results

- Adjustable RAID 6
 - Easy to find configurations
- Adjustable flat layouts
 - Higher reliability
 - No need for Galois field arithmetic
 - Accelerators need extended instruction set
 - Flexibility in reconstruction of lost data