
Yang Yang, Qiang Cao, Hong Jiang, Li Yang, Jie Yao,
Yuanyuan Dong, Puyuan Yang

Huazhong University of Science and Technology,

University of Texas at Arlington, Alibaba group

1

BFO: Batch-File Operations on Massive 
Files for Consistent Performance 

Improvement



Outline

 Background
 BFO Design
 Evaluation
 Conclusion

2



Background 

 Batch-file Operations
 Accessing a batch of files

 Many applications need batch-file operations 
 Backup applications 
 File-level data replication and archiving
 Big data analytics systems
 Social media and online shopping websites

 Traditional access approaches access files one by one
 Called single-file access pattern
 Inefficient for small files

3



Background

 Small files in file systems
 Desktop file system: more than 80% of accesses are to files smaller than 32B.
 Cloud and HPC cluster: 25%~40% files < 4KB.

 Single-file access pattern for small files
 Accessing metadata
 Fetching file data, and so on

 IO operations dominate batch-file access
 Metadata access contributes 40% time for accessing a small file on disk.
 Random data IOs

4



Overall access performance

 Read performance

5

Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random & Sequential

97
04

22
26

.5

55
1.

3

17
7.

6

65
.1

37
.1

16
7.

9

53
.7

31
.1

29
.4

28
.9

28
.2

4

16

64

256

1024

4096

16384

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

HDD_R

HDD_S

22
7.

8

10
6.

3

30
.5

20
.2

14
.9

10
.4

87
.3

37
.1

21
.1

14
.2

9.
7

8.
5

4

8

16

32

64

128

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

SSD_R

SSD_S



Overall access performance

 Read performance

6

Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random & Sequential

97
04

22
26

.5

55
1.

3

17
7.

6

65
.1

37
.1

16
7.

9

53
.7

31
.1

29
.4

28
.9

28
.2

4

16

64

256

1024

4096

16384

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

HDD_R

HDD_S

22
7.

8

10
6.

3

30
.5

20
.2

14
.9

10
.4

87
.3

37
.1

21
.1

14
.2

9.
7

8.
5

4

8

16

32

64

128

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

SSD_R

SSD_S

Large performance gap between the 
random and sequential, especially for 
small files

57.8X
2.6X



Overall access performance

 Read performance

7

Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random vs Sequential

97
04

22
26

.5

55
1.

3

17
7.

6

65
.1

37
.1

16
7.

9

53
.7

31
.1

29
.4

28
.9

28
.2

4

16

64

256

1024

4096

16384

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

HDD_R

HDD_S

22
7.

8

10
6.

3

30
.5

20
.2

14
.9

10
.4

87
.3

37
.1

21
.1

14
.2

9.
7

8.
5

4

8

16

32

64

128

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

SSD_R

SSD_S

Large performance gap among different 
file sizes



Problem

 Write performance

8

51
38

93
0

22
5.

7

14
6.

5

68
.6

56
.188

.7

43
.5

37 36
.1

35
.3

35
.9

2

8

32

128

512

2048

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

HDD_R

HDD_S

92
.4

37
.8

20
.8

16
.5

12
.9

12
.4

58
.8

22
.2

12
.5

11
.6

11
.3

11

4

8

16

32

64

128

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

SSD_R

SSD_S

Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random vs Sequential

Observation: the single-file access approach is very inefficient 
 for small files (below 1MB);
 in a random manner .



Related Works

 Application-level optimization (Fastcopy)
 Multi-threading, large buffer

 Prefetching mechanism (Diskseen, ATC’07)
 Depending on the future access behaviors

 Block-level I/O scheduler (split-level I/O scheduling, SOSP’15)
 Serializing the file accesses

 Packing metadata and data together (CFFS, FAST’16)
 Redesigning new file systems

9



Problem Analysis 

 File Access behaviors
 Reading a file set with three representative file systems

10



Problem Analysis 

 File Access behaviors
 Reading a file set with three representative file systems

11



Problem Analysis

 File Access behaviors
 Reading a file set with three representative file systems
 Writing a file set with three representative file systems

12

Insufficiency #1: The single-file access approach leads to
the back and forth seek operations between the metadata
area and data area, resulting in many non-sequential I/Os.



Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)

13

Expected access order

Disk Blocks

A B
C D
E

App

A C E D B



Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)

14

Actual access order (alphabetic)

Disk Blocks

File A File BFile C File DFile E

A B
C D
E

Disk Blocks

A B
C D
E

App

A C E D B



135

135.5

136

136.5

137

234 234.1 234.2 234.3 234.4 234.5 234.6 234.7 234.8 234.9 235

Lo
gi

ca
l B

lo
ck

 A
dd

re
ss

 (X
10

6 )

Time (Secs)

Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)

15

Insufficiency #2: The single-file access approach is unaware
of the underlying data layout, and may read these files in
any order, also leading to random I/Os.



Outline

 Background
 BFO Design

 BFOr
 BFOw

 Evaluation
 Conclusion

16



BFOr

 Two-phase read
 Objective: Separately read the metadata and file data 

of all accessed files in batches
 Phase 1: scanning the inodes
 Phase 2: fetching all files’ data

 Layout-aware scheduler

17

2MB

128MB data group 



BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list

18

Order_node

Inode (2bytes)

Start-point (8bytes)

Length (4bytes)

Num (4bytes)

Order list

Disk blocks

A C E D B



BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list

19

Order_node

Inode (2bytes)

Start-point (8bytes)

Length (4bytes)

Num (4bytes)

Order list

Disk blocks

AOrder_node

Inode->File A

Start-point->3000#

Length->8192bytes

Num->0

B C D E

A C E D B



BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list

20

Order_node

Inode (2bytes)

Start-point (8bytes)

Length (4bytes)

Num (4bytes)

Order list

Disk blocks

AOrder_node

Inode->File A

Start-point->3000#

Length->8192bytes

Num->0

B C D E

A C E D B



BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list

21

Order_node

Inode (2bytes)

Start-point (8bytes)

Length (4bytes)

Num (4bytes)

Order list

Disk blocks

AOrder_node

Inode->File A

Start-point->3000#

Length->8192bytes

Num->0

B C D E

A C E D B



BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy

22

Disk Blocks

ABCD E

Global file
G

G



BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy

23

Disk Blocks

ABCD E

G

A B C D E

G



BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy

24

Disk Blocks

ABCD E

G

A B C D EA B
C D
E

G



BFOw

 Two-phase write
 Light-weight consistency strategy

 writing the Order_list into journal files as an atomic operation
 recreating all inodes with the Order_list and G inode

25

Disk Blocks

ABCD E

G

A B C D EA B
C D
E

G

G



Outline

 Background
 BFO Design
 Evaluation
 Conclusion

28



Experimental setup
 Prototyped BFO on ext4

 Intel Xeon E5 2620 @ 2.40GHz and 16GB RAM

 Storage devices
 RAID0 with 5 Western Digital 7200RPM 4TB SAS HDD
 A Western Digital 4TB SAS HDD
 480GB SAMSUNG 750 EVO SSD

 File sets
 File sets created by Filebench

 4GB data with different file sizes (i.e., from 4KB to 4MB) 
 Linux-kernel source code

29



Read Performance

30

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

9704

1

4

16

64

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

42.1X 22.4X

81.4%



Read Performance

31

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

9704

1

4

16

64

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

1.6X 2X

1.8X



Write Performance

32

4

16

64

256

1024

4096

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different sets

RAID_RW RAID_SW RAID_BFOw

HDD_RW HDD_SW HDD_BFOw

SSD_RW SSD_SW SSD_BFOw

71.8X

111.4X

2.9X



Access Behaviors

33



Real-world Applications

34

The execution time of copying a file set with different storage devices. SHSP (SSSP): within 
the same partition of the same HDD (SSD), SHDP (SSDP): between the different partitions of 
the same HDD (SSD).

46.6%



Outline

 Background
 BFO Design
 Evaluation
 Conclusion

35



Conclusion
 We experimentally investigate the root cause of the inefficiency of the 

traditional single-file access pattern for batched files.
 Seeking forth and back between metadata area and data area.
 Accessing all files in random order.

 We present BFO, for batch-file access, with optimized batch-file read 
(BFOr) and write (BFOw).

 Two-phase access.
 Layout-aware scheduler.
 Light-weight consistency strategy

 BFO improves the access performance consistently, and removes a 
significant amount of random and non-sequential I/Os.

36



Thank You
Q&A

37


	Slide Number 1
	Outline
	Background 
	Background
	Overall access performance
	Overall access performance
	Overall access performance
	Problem
	Related Works
	Problem Analysis 
	Problem Analysis 
	Problem Analysis
	Problem Analysis
	Problem Analysis
	Problem Analysis
	Outline
	BFOr
	BFOr
	BFOr
	BFOr
	BFOr
	BFOw
	BFOw
	BFOw
	BFOw
	Outline
	Experimental setup
	Read Performance
	Read Performance
	Write Performance
	Access Behaviors
	Real-world Applications
	Outline
	Conclusion
	Slide Number 37

