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Background 

 Batch-file Operations
 Accessing a batch of files

 Many applications need batch-file operations 
 Backup applications 
 File-level data replication and archiving
 Big data analytics systems
 Social media and online shopping websites

 Traditional access approaches access files one by one
 Called single-file access pattern
 Inefficient for small files
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Background

 Small files in file systems
 Desktop file system: more than 80% of accesses are to files smaller than 32B.
 Cloud and HPC cluster: 25%~40% files < 4KB.

 Single-file access pattern for small files
 Accessing metadata
 Fetching file data, and so on

 IO operations dominate batch-file access
 Metadata access contributes 40% time for accessing a small file on disk.
 Random data IOs
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Overall access performance

 Read performance
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Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random & Sequential
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Overall access performance

 Read performance
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Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random & Sequential
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Overall access performance

 Read performance
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Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random vs Sequential
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Problem

 Write performance
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Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random vs Sequential

Observation: the single-file access approach is very inefficient 
 for small files (below 1MB);
 in a random manner .



Related Works

 Application-level optimization (Fastcopy)
 Multi-threading, large buffer

 Prefetching mechanism (Diskseen, ATC’07)
 Depending on the future access behaviors

 Block-level I/O scheduler (split-level I/O scheduling, SOSP’15)
 Serializing the file accesses

 Packing metadata and data together (CFFS, FAST’16)
 Redesigning new file systems
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Problem Analysis 

 File Access behaviors
 Reading a file set with three representative file systems

10



Problem Analysis 

 File Access behaviors
 Reading a file set with three representative file systems
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Problem Analysis

 File Access behaviors
 Reading a file set with three representative file systems
 Writing a file set with three representative file systems
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Insufficiency #1: The single-file access approach leads to
the back and forth seek operations between the metadata
area and data area, resulting in many non-sequential I/Os.



Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)
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Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)
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Actual access order (alphabetic)
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Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)
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Insufficiency #2: The single-file access approach is unaware
of the underlying data layout, and may read these files in
any order, also leading to random I/Os.
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BFOr

 Two-phase read
 Objective: Separately read the metadata and file data 

of all accessed files in batches
 Phase 1: scanning the inodes
 Phase 2: fetching all files’ data

 Layout-aware scheduler
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BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list
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BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list
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BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list
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BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list
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BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy

22

Disk Blocks

ABCD E

Global file
G

G



BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy
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BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy
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BFOw

 Two-phase write
 Light-weight consistency strategy

 writing the Order_list into journal files as an atomic operation
 recreating all inodes with the Order_list and G inode
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Experimental setup
 Prototyped BFO on ext4

 Intel Xeon E5 2620 @ 2.40GHz and 16GB RAM

 Storage devices
 RAID0 with 5 Western Digital 7200RPM 4TB SAS HDD
 A Western Digital 4TB SAS HDD
 480GB SAMSUNG 750 EVO SSD

 File sets
 File sets created by Filebench

 4GB data with different file sizes (i.e., from 4KB to 4MB) 
 Linux-kernel source code
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Read Performance
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Read Performance
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Write Performance
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Access Behaviors
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Real-world Applications
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The execution time of copying a file set with different storage devices. SHSP (SSSP): within 
the same partition of the same HDD (SSD), SHDP (SSDP): between the different partitions of 
the same HDD (SSD).

46.6%
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Conclusion
 We experimentally investigate the root cause of the inefficiency of the 

traditional single-file access pattern for batched files.
 Seeking forth and back between metadata area and data area.
 Accessing all files in random order.

 We present BFO, for batch-file access, with optimized batch-file read 
(BFOr) and write (BFOw).

 Two-phase access.
 Layout-aware scheduler.
 Light-weight consistency strategy

 BFO improves the access performance consistently, and removes a 
significant amount of random and non-sequential I/Os.
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Thank You
Q&A
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