
Yang Yang, Qiang Cao, Hong Jiang, Li Yang, Jie Yao,
Yuanyuan Dong, Puyuan Yang

Huazhong University of Science and Technology,

University of Texas at Arlington, Alibaba group

1

BFO: Batch-File Operations on Massive 
Files for Consistent Performance 

Improvement



Outline

 Background
 BFO Design
 Evaluation
 Conclusion

2



Background 

 Batch-file Operations
 Accessing a batch of files

 Many applications need batch-file operations 
 Backup applications 
 File-level data replication and archiving
 Big data analytics systems
 Social media and online shopping websites

 Traditional access approaches access files one by one
 Called single-file access pattern
 Inefficient for small files

3



Background

 Small files in file systems
 Desktop file system: more than 80% of accesses are to files smaller than 32B.
 Cloud and HPC cluster: 25%~40% files < 4KB.

 Single-file access pattern for small files
 Accessing metadata
 Fetching file data, and so on

 IO operations dominate batch-file access
 Metadata access contributes 40% time for accessing a small file on disk.
 Random data IOs

4



Overall access performance

 Read performance

5

Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random & Sequential

97
04

22
26

.5

55
1.

3

17
7.

6

65
.1

37
.1

16
7.

9

53
.7

31
.1

29
.4

28
.9

28
.2

4

16

64

256

1024

4096

16384

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

HDD_R

HDD_S

22
7.

8

10
6.

3

30
.5

20
.2

14
.9

10
.4

87
.3

37
.1

21
.1

14
.2

9.
7

8.
5

4

8

16

32

64

128

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

SSD_R

SSD_S



Overall access performance

 Read performance

6

Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random & Sequential

97
04

22
26

.5

55
1.

3

17
7.

6

65
.1

37
.1

16
7.

9

53
.7

31
.1

29
.4

28
.9

28
.2

4

16

64

256

1024

4096

16384

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

HDD_R

HDD_S

22
7.

8

10
6.

3

30
.5

20
.2

14
.9

10
.4

87
.3

37
.1

21
.1

14
.2

9.
7

8.
5

4

8

16

32

64

128

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

SSD_R

SSD_S

Large performance gap between the 
random and sequential, especially for 
small files

57.8X
2.6X



Overall access performance

 Read performance

7

Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random vs Sequential

97
04

22
26

.5

55
1.

3

17
7.

6

65
.1

37
.1

16
7.

9

53
.7

31
.1

29
.4

28
.9

28
.2

4

16

64

256

1024

4096

16384

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

HDD_R

HDD_S

22
7.

8

10
6.

3

30
.5

20
.2

14
.9

10
.4

87
.3

37
.1

21
.1

14
.2

9.
7

8.
5

4

8

16

32

64

128

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

SSD_R

SSD_S

Large performance gap among different 
file sizes



Problem

 Write performance

8

51
38

93
0

22
5.

7

14
6.

5

68
.6

56
.188

.7

43
.5

37 36
.1

35
.3

35
.9

2

8

32

128

512

2048

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

HDD_R

HDD_S

92
.4

37
.8

20
.8

16
.5

12
.9

12
.4

58
.8

22
.2

12
.5

11
.6

11
.3

11

4

8

16

32

64

128

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

SSD_R

SSD_S

Setup:
 File sets: 4GB data with different file sizes (i.e., from 4KB to 4MB)
 Devices: HDD & SSD
 Orders: Random vs Sequential

Observation: the single-file access approach is very inefficient 
 for small files (below 1MB);
 in a random manner .



Related Works

 Application-level optimization (Fastcopy)
 Multi-threading, large buffer

 Prefetching mechanism (Diskseen, ATC’07)
 Depending on the future access behaviors

 Block-level I/O scheduler (split-level I/O scheduling, SOSP’15)
 Serializing the file accesses

 Packing metadata and data together (CFFS, FAST’16)
 Redesigning new file systems

9



Problem Analysis 

 File Access behaviors
 Reading a file set with three representative file systems

10



Problem Analysis 

 File Access behaviors
 Reading a file set with three representative file systems

11



Problem Analysis

 File Access behaviors
 Reading a file set with three representative file systems
 Writing a file set with three representative file systems

12

Insufficiency #1: The single-file access approach leads to
the back and forth seek operations between the metadata
area and data area, resulting in many non-sequential I/Os.



Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)

13

Expected access order

Disk Blocks

A B
C D
E

App

A C E D B



Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)

14

Actual access order (alphabetic)

Disk Blocks

File A File BFile C File DFile E

A B
C D
E

Disk Blocks

A B
C D
E

App

A C E D B



135

135.5

136

136.5

137

234 234.1 234.2 234.3 234.4 234.5 234.6 234.7 234.8 234.9 235

Lo
gi

ca
l B

lo
ck

 A
dd

re
ss

 (X
10

6 )

Time (Secs)

Problem Analysis

 File Access behaviors
 Data Access behaviors (excluding the metadata)

15

Insufficiency #2: The single-file access approach is unaware
of the underlying data layout, and may read these files in
any order, also leading to random I/Os.



Outline

 Background
 BFO Design

 BFOr
 BFOw

 Evaluation
 Conclusion

16



BFOr

 Two-phase read
 Objective: Separately read the metadata and file data 

of all accessed files in batches
 Phase 1: scanning the inodes
 Phase 2: fetching all files’ data

 Layout-aware scheduler

17

2MB

128MB data group 



BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list

18

Order_node

Inode (2bytes)

Start-point (8bytes)

Length (4bytes)

Num (4bytes)

Order list

Disk blocks

A C E D B



BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list

19

Order_node

Inode (2bytes)

Start-point (8bytes)

Length (4bytes)

Num (4bytes)

Order list

Disk blocks

AOrder_node

Inode->File A

Start-point->3000#

Length->8192bytes

Num->0

B C D E

A C E D B



BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list

20

Order_node

Inode (2bytes)

Start-point (8bytes)

Length (4bytes)

Num (4bytes)

Order list

Disk blocks

AOrder_node

Inode->File A

Start-point->3000#

Length->8192bytes

Num->0

B C D E

A C E D B



BFOr

 Two-phase read
 Layout-aware scheduler

 Extracting the addresses from the inodes
 Sorting the addresses of all files
 Issuing read I/O in the order of the list

21

Order_node

Inode (2bytes)

Start-point (8bytes)

Length (4bytes)

Num (4bytes)

Order list

Disk blocks

AOrder_node

Inode->File A

Start-point->3000#

Length->8192bytes

Num->0

B C D E

A C E D B



BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy

22

Disk Blocks

ABCD E

Global file
G

G



BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy

23

Disk Blocks

ABCD E

G

A B C D E

G



BFOw

 Two-phase write
 Phase 1: creating a global file to store all data once

 Creating G inode for the file
 Creating Order_list to record the order of the written files

 Phase 2: creating all inodes for all files
 Extracting the address from the G inode
 Creating all inodes with the address information and the Order_list

 Current_FileAddr = Previous_FileAddr + FileLength

 Light-weight consistency strategy

24

Disk Blocks

ABCD E

G

A B C D EA B
C D
E

G



BFOw

 Two-phase write
 Light-weight consistency strategy

 writing the Order_list into journal files as an atomic operation
 recreating all inodes with the Order_list and G inode

25

Disk Blocks

ABCD E

G

A B C D EA B
C D
E

G

G



Outline

 Background
 BFO Design
 Evaluation
 Conclusion

28



Experimental setup
 Prototyped BFO on ext4

 Intel Xeon E5 2620 @ 2.40GHz and 16GB RAM

 Storage devices
 RAID0 with 5 Western Digital 7200RPM 4TB SAS HDD
 A Western Digital 4TB SAS HDD
 480GB SAMSUNG 750 EVO SSD

 File sets
 File sets created by Filebench

 4GB data with different file sizes (i.e., from 4KB to 4MB) 
 Linux-kernel source code

29



Read Performance

30

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

9704

1

4

16

64

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

42.1X 22.4X

81.4%



Read Performance

31

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

9704

1

4

16

64

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

1.6X 2X

1.8X



Write Performance

32

4

16

64

256

1024

4096

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ut
io

n 
tim

e 
(s

)

File size in different sets

RAID_RW RAID_SW RAID_BFOw

HDD_RW HDD_SW HDD_BFOw

SSD_RW SSD_SW SSD_BFOw

71.8X

111.4X

2.9X



Access Behaviors

33



Real-world Applications

34

The execution time of copying a file set with different storage devices. SHSP (SSSP): within 
the same partition of the same HDD (SSD), SHDP (SSDP): between the different partitions of 
the same HDD (SSD).

46.6%



Outline

 Background
 BFO Design
 Evaluation
 Conclusion

35



Conclusion
 We experimentally investigate the root cause of the inefficiency of the 

traditional single-file access pattern for batched files.
 Seeking forth and back between metadata area and data area.
 Accessing all files in random order.

 We present BFO, for batch-file access, with optimized batch-file read 
(BFOr) and write (BFOw).

 Two-phase access.
 Layout-aware scheduler.
 Light-weight consistency strategy

 BFO improves the access performance consistently, and removes a 
significant amount of random and non-sequential I/Os.

36



Thank You
Q&A

37


	Slide Number 1
	Outline
	Background 
	Background
	Overall access performance
	Overall access performance
	Overall access performance
	Problem
	Related Works
	Problem Analysis 
	Problem Analysis 
	Problem Analysis
	Problem Analysis
	Problem Analysis
	Problem Analysis
	Outline
	BFOr
	BFOr
	BFOr
	BFOr
	BFOr
	BFOw
	BFOw
	BFOw
	BFOw
	Outline
	Experimental setup
	Read Performance
	Read Performance
	Write Performance
	Access Behaviors
	Real-world Applications
	Outline
	Conclusion
	Slide Number 37

