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Background
• Scientific simulations

• Climate scientists need to run large ensembles of high-fidelity 
1kmX1km simulations. Estimating even one ensemble member 
per simulated day may generate 260 TB of data every 16s across 
the ensemble.

• Cosmologicaly simulation may produce 40PB of data when 
simulating 1 trillion of particles in hundreds of snapshots.

• Data reduction is required
• Lossless compression

• Simulation data often exhibit high entropy
• Reduction ratio usually around 2:1 

• Lossy compression
• More aggressive data reduction scheme
• High reduction ratio
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Background - Lossy compressors
• ZFP

• follow the classic texture compression for image data
• Data transformation + embedded coding
• Low compression ratio , High compression speed

• SZ
• Prediction + quantization + Huffman encodng + Zstd
• High compression ratio, Low compression speed

• A dilemma: which compressor should I use? 

• Question: Can we significantly improve compression speed 
for SZ, leading to an easy solution for users?
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Background - Lossy compression 
error bound
• Absolute error bound 

• For a value f, we get f’ ∈( f - ε, f + ε ) is acceptable
• Pointwise relative error bound

• For a value f, we get f’ ∈( f * (1 - ε), f * (1 + ε) ) is 
acceptable

• CLUSTER18: Convert a pointwise relative error 
bound to an absolute error bound with a logarithmic 
transformation

• log(f*(1 - ε))=log(f)+log(1 - ε), log(f*(1 + ε))=log(f)+log(1 + 
ε)

• log(f’) ∈( log(f) + log(1 - ε ), log(f) + log(1 + ε))
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Background – design of SZ 
compressor for relative error 
control
• Preprocess - Logarithmic transformation
• Point-by-point processing – prediction & quantization
• Huffman encode
• Compression with lossless compressor

Logarithmic transformation (logX) is too expensive!
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Performance breakdown of SZ 
Compression/Decompression

Time costs on log-trans and exp-trans stages consist about 
1/3 of the total
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Our design - workflow
• No longer to calculate the 

quantization factor, but 
look up tables. 

• Using Table T1 to get 
quantization factor from f

• Using Table T2 to get a 
approximate value of f 
from quantization factor
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Our design - Model A



10 / 21

A general description to model A

PI interval
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Our design - Model B
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A general description about model 
B
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Our design - Advantage of Model 
B• Any grid (i.e., a data point) is always included in a PI’
• Grid size is smaller than any intersection size, 

therefore any grid is completely included in one 
PI’(M)

• Effect: Strictly respecting the use-specified error 
bound
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Accelerating Huffman decoding
Idea: building precomputed table to accelerate Huffman decoding
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Performance Evaluation

• Environment
• 2.4GHz Intel Xeon E5-2640 v4 

processors
• 256GB memory

• Datasets
• NYX (3D, 3.1GB)
• CESM (2D, 2.0GB)
• Hurrican (3D, 1.9GB)
• HACC (1D, 6.3GB)
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Compression/Decompression 
Rate

Our Approach is about 1.2x ~ 1.5x than original SZ on 
compression rate and 1.3x ~ 3.0x on decompression rate。
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Compression/Decompression 
breakdown

No time cost on log-trans and exp-trans. Time cost on 
build-table stage is very small.
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Compression Ratio

We can observe that our solution (SZ_T) has 
very similar compression ratios with SZ_T.
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Data quality

Comparable compression ratios with related works 
(SZ_T and ZFP_T)
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Data quality (Cont’d)
Visualization of decompressed dark matter density dataset 
(slice 200) at the compression ratio of 2.75.

SZ series has a better visual quality than ZFP does.
SZ_P (both mode A and B) lead to satisfied visual quality!
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Conclusion
• We accelerate the SZ compressor for point-wise 

relative error bound control by designing a table-
lookup method. 

• We control the error bound strictly by an in-depth 
analysis of mapping relation between predicted 
value and quantization factor.

• Experiments show that 1.2x ~ 1.5x on 
compression speed and 1.3x ~ 3.0x on 
decompression speed, compared with SZ 2.1. 
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Thank you
Contact: Sheng Di (sdi1@anl.gov)
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