

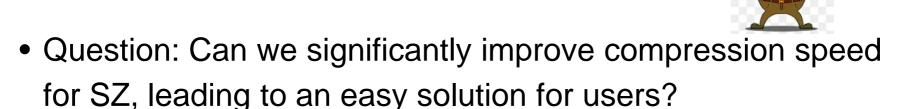
Accelerating Relative-error Bounded Lossy Compression for HPC datasets with Precomputation-Based Mechanisms

Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang, Sheng Di, Dingwen Tao and Franck Cappello

Harbin Institute of Technology, Shenzhen & Peng Cheng Laboratory & Marvell Technology Group & Argonne National Laboratory & University of Alabama & University of Illinois at Urbana-Champaign

Outline

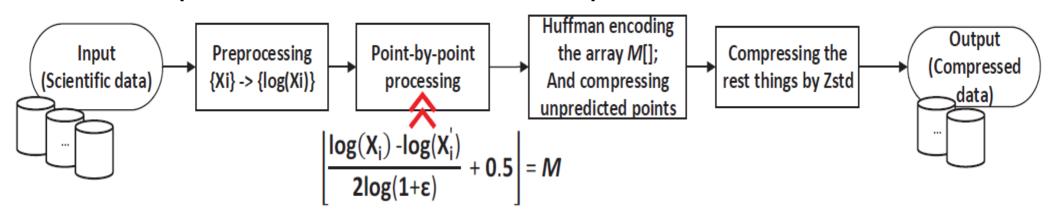
- Background of research
- Our design
- Evaluation
- Conclusion


Background

- Scientific simulations
 - Climate scientists need to run large ensembles of high-fidelity 1kmX1km simulations. Estimating even one ensemble member per simulated day may generate 260 TB of data every 16s across the ensemble.
 - Cosmologically simulation may produce 40PB of data when simulating 1 trillion of particles in hundreds of snapshots.
- Data reduction is required
 - Lossless compression
 - Simulation data often exhibit high entropy
 - Reduction ratio usually around 2:1
 - Lossy compression
 - More aggressive data reduction scheme
 - High reduction ratio

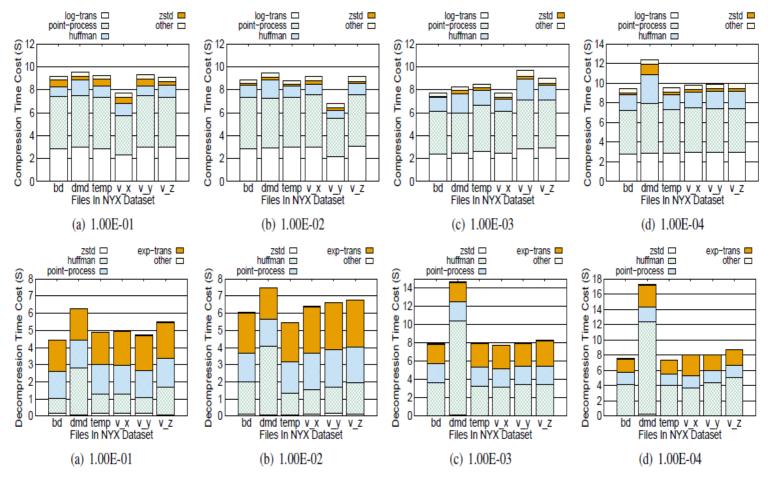
Background - Lossy compressors

- ZFP
 - follow the classic texture compression for image data
 - Data transformation + embedded coding
 - Low compression ratio , High compression speed
- SZ
 - Prediction + quantization + Huffman encoding + Zstd
 - High compression ratio, Low compression speed
- A dilemma: which compressor should I use?

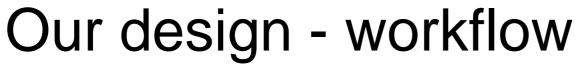

Background - Lossy compression error bound

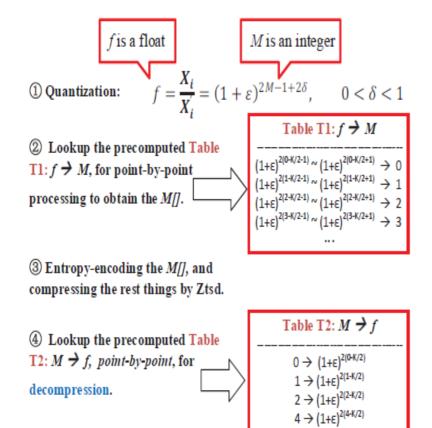
- Absolute error bound
 - For a value f, we get f' ∈(f ε, f + ε) is acceptable
- Pointwise relative error bound
 - For a value f, we get f' ∈(f * (1 ε), f * (1 + ε)) is acceptable
- CLUSTER18: Convert a pointwise relative error bound to an absolute error bound with a logarithmic transformation
 - $\log(f^*(1 \epsilon)) = \log(f) + \log(1 \epsilon)$, $\log(f^*(1 + \epsilon)) = \log(f) + \log(1 + \epsilon)$
 - $\log(f') \in (\log(f) + \log(1 \varepsilon), \log(f) + \log(1 + \varepsilon))$

Background — design of SZ compressor for relative error control

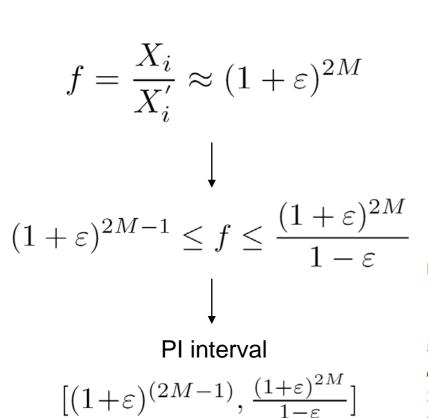

- Preprocess Logarithmic transformation
- Point-by-point processing prediction & quantization
- Huffman encode
- Compression with lossless compressor

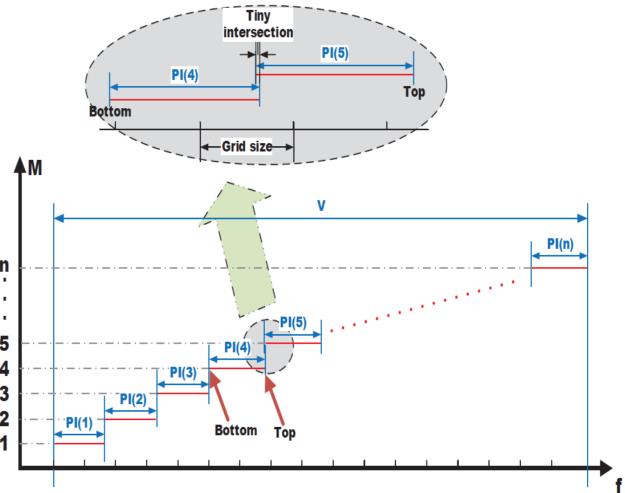
Logarithmic transformation (logX) is too expensive!




Performance breakdown of SZ Compression/Decompression

Time costs on log-trans and exp-trans stages consist about 1/3 of the total

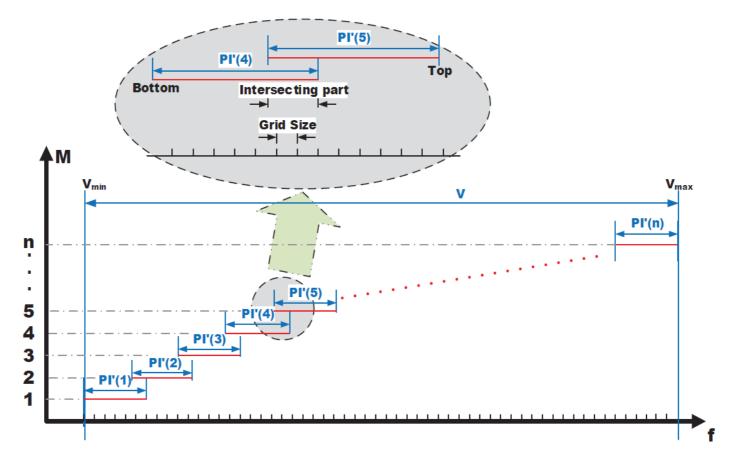

- No longer to calculate the quantization factor, but look up tables.
- Using Table T1 to get quantization factor from f
- Using Table T2 to get a approximate value of f from quantization factor


Our design - Model A

- A simple idea
- We call $((1 + \varepsilon)^{2M-1}, (1 + \varepsilon)^{2M+1})$ as PI(M)
- Separate the value field of f in to many grids.
- Each grid maps to a PI(M)

A general description to model A

Our design - Model B

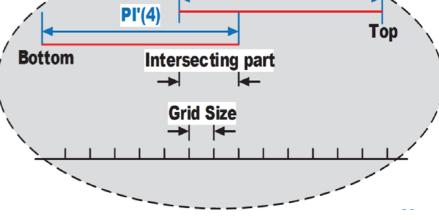

- Improved idea
- Let neighbor Pls have more intersection
- Let the size of grids is smaller than any intersection size
- We call $((1+\epsilon)^{M(2-\theta)-1}, (1+\epsilon)^{M(2-\theta)+1})$ as Pl'(M)
- Each grid maps to a PI'(M)

$$(1+\varepsilon)^{M(2-\theta)-1} \le f' \le \frac{(1+\varepsilon)^{M(2-\theta)}}{1-\varepsilon}, \quad 0 < \theta < 1$$

A general description about model

Lemma 1. If a grid size **G** is smaller than the size of any intersecting part of **PI**', a **PI**' completely including the grid always exists.

Our design - Advantage of Model

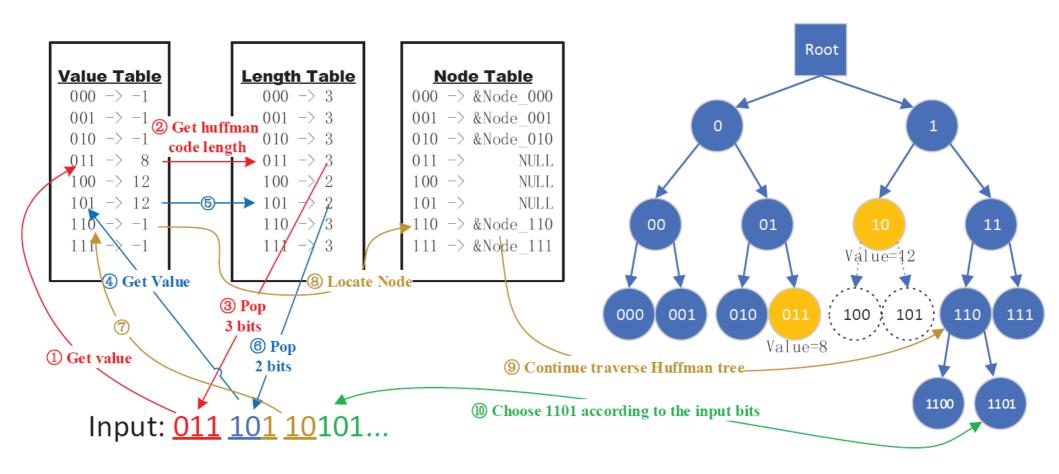

Any grid (i.e., a data point) is always included in a PI'

Grid size is smaller than any intersection size,

therefore any grid is complete

PI'(M)

Effect: Strictly respecting the bound

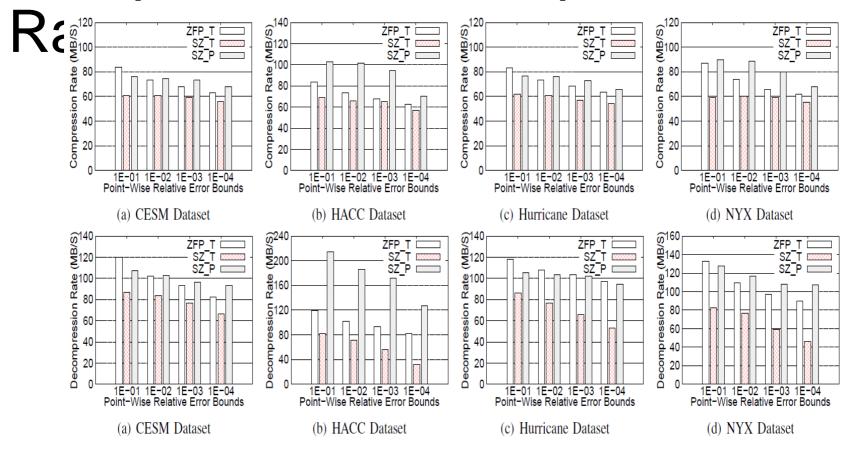


PI'(5)

Accelerating Huffman decoding

Idea: building precomputed table to accelerate Huffman decoding

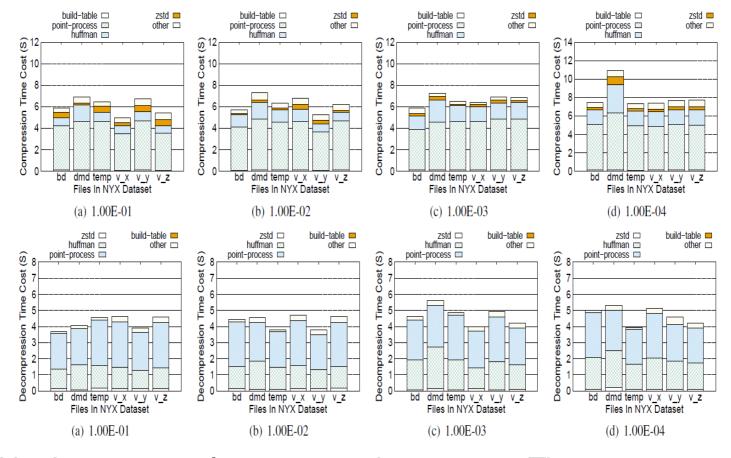
Output: <u>8</u> <u>12</u>



Performance Evaluation

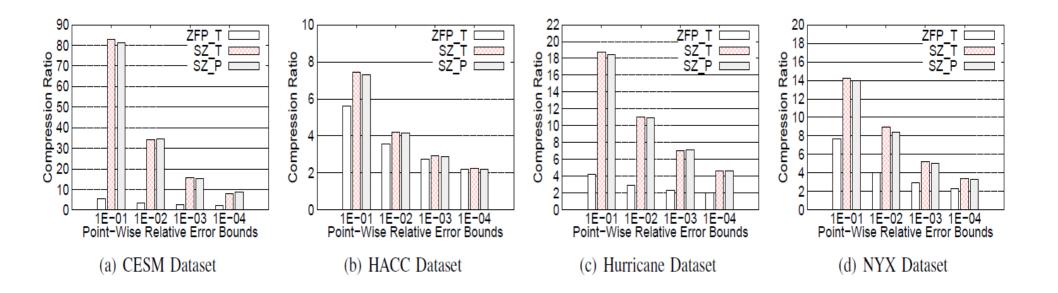
- Environment
 - 2.4GHz Intel Xeon E5-2640YX (3D, 3.1GB) processors
 - 256GB memory

- Datasets
 - CESM (2D, 2.0GB)
 - Hurrican (3D, 1.9GB)
 - HACC (1D, 6.3GB)


Compression/Decompression

Our Approach is about 1.2x ~ 1.5x than original SZ on compression rate and 1.3x ~ 3.0x on decompression rate.

Compression/Decompression breakdown



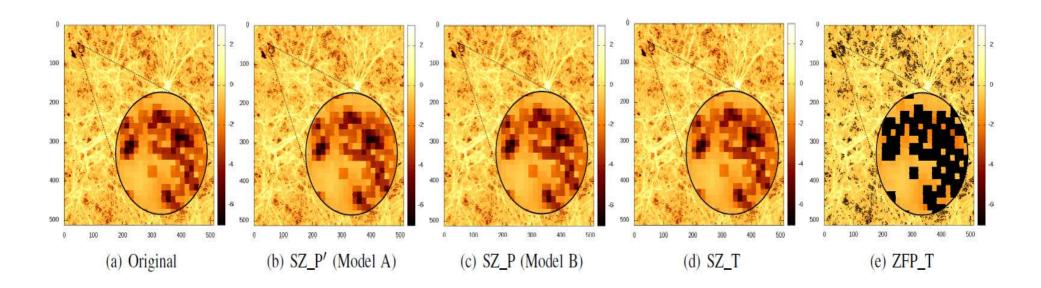
No time cost on log-trans and exp-trans. Time cost on build-table stage is very small.

Compression Ratio

We can observe that our solution (SZ_T) has very similar compression ratios with SZ_T.

Data quality

POINT-WISE RELATIVE ERROR BOUND ON 3 REPRESENTATIVE FIELDS IN NYX.


pwr_eb	type	dark_matter_density				velocity_x				temperature			
		MAX E	NRMSE	PSNR	CR	MAX E	NRMSE	PSNR	CR	MAX E	NRMSE	PSNR	CR
1E-01	SZ_P'	1.52E-01	3.97E-05	88.02	6.25	1.50E-01	2.27E-04	72.88	23.48	1.52E-01	4.70E-03	46.56	18.83
	SZ_T	1.00E-01	3.49E-05	89.13	6.19	1.00E-01	2.05E-04	73.75	24.97	1.00E-01	4.32E-03	47.29	19.85
	SZ_P	9.99E-02	3.26E-05	89.73	6.03	9.97E-02	1.96E-04	74.15	25.99	9.97E-02	4.10E-03	47.75	20.79
	ZFP_T	5.07E-02	4.64E-06	106.66	3.32	4.80E-02	2.89E-04	70.79	18.40	5.17E-02	2.74E-05	91.25	14.00
1E-02	SZ_P'	1.75E-02	4.05E-06	107.84	3.85	1.70E-02	2.36E-05	92.55	13.46	1.70E-02	5.39E-04	65.37	14.37
	SZ_T	1.00E-02	3.55E-06	108.99	3.85	1.00E-02	2.00E-05	93.97	14.06	1.00E-02	4.50E-04	66.93	13.55
	SZ_P	1.00E-02	3.42E-06	109.31	3.80	9.96E-03	1.82E-05	94.78	12.98	9.96E-03	4.23E-04	67.47	11.93
	ZFP_T	3.02E-03	2.75E-07	131.22	2.35	3.33E-03	3.45E-05	89.24	6.59	3.16E-03	1.75E-06	115.15	5.21
1E-03	SZ_P'	1.96E-03	4.30E-07	127.34	2.75	1.95E-03	2.58E-06	111.76	6.75	1.95E-03	6.70E-05	83.48	8.02
	SZ_T	9.97E-04	3.51E-07	129.10	2.74	9.98E-04	1.98E-06	114.08	6.61	9.98E-04	4.51E-05	86.91	7.63
	SZ_P	1.00E-03	3.44E-07	129.27	2.72	9.99E-04	1.79E-06	114.93	6.49	9.99E-04	4.25E-05	87.44	7.12
	ZFP_T	3.90E-04	3.56E-08	148.98	1.92	3.95E-04	4.63E-06	106.69	4.08	3.97E-04	2.23E-07	133.04	3.50
1E-04	SZ_P'	1.60E-04	3.96E-08	148.04	2.12	1.60E-04	2.10E-07	133.55	3.93	1.60E-04	4.98E-06	106.05	4.39
	SZ_T	9.80E-05	3.48E-08	149.16	2.09	9.90E-05	1.98E-07	134.05	3.92	9.90E-05	4.43E-06	107.08	4.38
	SZ_P	1.00E-04	3.38E-08	149.43	2.01	1.00E-04	1.72E-07	135.29	3.88	1.00E-04	4.25E-06	107.43	4.27
	ZFP_T	5.08E-05	4.49E-09	166.96	1.63	4.99E-05	5.81E-07	124.71	2.95	5.33E-05	2.76E-08	151.19	2.63

Comparable compression ratios with related works (SZ_T and ZFP_T)

Data quality (Cont'd)

Visualization of decompressed dark matter density dataset (slice 200) at the compression ratio of 2.75.

SZ series has a better visual quality than ZFP does. SZ_P (both mode A and B) lead to satisfied visual quality!

Conclusion

- We accelerate the SZ compressor for point-wise relative error bound control by designing a tablelookup method.
- We control the error bound strictly by an in-depth analysis of mapping relation between predicted value and quantization factor.
- Experiments show that 1.2x ~ 1.5x on compression speed and 1.3x ~ 3.0x on decompression speed, compared with SZ 2.1.

Thank you

Contact: Sheng Di (sdi1@anl.gov)