
DFPE: Explaining Predictive Models for Disk
Failure Prediction

Yanwen Xie†‡, Dan Feng∗†‡, Fang Wang†‡, Xuehai Tang§, Jizhong Han§, Xinyan Zhang†‡
†Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, China
‡Key Laboratory of Information Storage System, Engineering Research Center of data storage systems and Technology

Ministry of Education of China, Wuhan, China
§Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Corresponding Email: dfeng@hust.edu.cn∗

Abstract—Recent research works on disk failure prediction
achieve a high detection rate and a low false alarm rate with com-
plex models at the cost of explainability. The lack of explainability
is likely to hide bias or overfitting in the models, resulting in bad
performance in real-world applications. To address the problem,
we propose a new explanation method DFPE designed for disk
failure prediction to explain failure predictions made by a model
and infer prediction rules learned by a model. DFPE explains
failure predictions by performing a series of replacement tests to
find out the failure causes while it explains models by aggregating
explanations for the failure predictions. A presented use case on
a real-world dataset shows that compared to current explanation
methods, DFPE can explain more about failure predictions and
models with more accuracy. Thus it helps to target and handle
the hidden bias and overfitting, measures feature importances
from a new perspective and enables intelligent failure handling.

I. INTRODUCTION

Thousands and ten thousands of servers are clustered in
datacenters to store tons of data and provide the services of
Internet, cloud computing, data analysis and so on. Because
of the maturity and high cost-effectiveness of disk technology,
a large number of disks of different ages are serving in
datacenters. As a result, failure occurs frequently [1], [3] and
disk failure is the principal [3]. Disk failure results in data
loss when a storage system does not deploy data redundancy
schemes like disk raid, replication or erasure codes. For a
system with any redundancy schemes, disk failure results in
great overheads for recovering the lost, including storage I/O,
network I/O and CPU burst.

To reduce the impact of disk failure, many works [4]–[13]
are focusing on disk failure prediction. Disk failure prediction
solutions raise alarms on coming disk failures so that the
storage system has ample time to migrate data and services
out of high-risk disks proactively. Thus it helps to keep data
and services available all the time and reduce I/O and CPU
burst caused by passive failure handling.

In general, a predictive model is trustworthy when 1) it
makes correct predictions on most existing cases in tests
and 2) it gives reasonable explanations on why it makes
the predictions. Recent works [7], [9]–[12] on disk failure
prediction tend to focus on the former and ignore the latter.
They propose to employ complex models in disk failure

prediction to improve the detection rate and the false alarm
rate. However, they achieve the improvements at the cost of
explainability. It is hard to understand why the models predict
a disk to fail in the near future. Since tests cannot cover all the
possible cases, a predictive model might perform well in tests
but badly in application because hidden bias or overfitting has
not been exposed in the tests.

Bias, also known as machine learning bias, means a model
produces systematically prejudiced results. For example, the
popular Google News Word2Vec model has the gender bias
because the Google News dataset is inherently bias [14].
Overfitting means a model learns the noise of the training
data and corresponds too exactly to the training data. Bias
and overfitting result in low prediction accuracy in application
of predictive models. They can be caused by unconscious
oversight in data collection and processing. It is difficult
to detect and handle bias and overfitting. However, high
explainability of a model can help to detect bias and overfitting
when the explanations for the predictions made by the model
are presented [15]. Therefore, it is important to improve the
explainability of complex models on disk failure prediction.

In this paper, we propose DFPE, a Disk Failure Prediction
Explanation method to improve the explainability of complex
models on disk failure prediction. DFPE explains failure
predictions made by a model by extracting related features,
and infers predictive rules learned by the model by aggregating
the explanations for the failure predictions and then measuring
feature importances. Moreover, DFPE provides more failure-
related information to enable intelligent failure handling,
which takes different actions in different failure situations
rather than directly discards the high-risk disks.

To sum up, we make the following contributions in this
paper:
• We propose a new explanation method to improve the

explainability of current complex models on disk failure
prediction. To our best knowledge, it is the first to target
the explainability problem of disk failure prediction.

• We provide a case on a real-world dataset to show
that bias might exist in complex models on disk failure
prediction, and our new method helps to detect and handle
the hidden bias.

TABLE I
NOTATION LIST

Symbol Description

I The input of a predictive model. It contains a
number of features describing the running status of
a disk in various aspects. I = I1I2...In.

Ii or Fi The i-th feature of a disk. It is located in the i-th
column of I .

P or P (I) The predictive model on disk failure prediction. It
takes I as input and outputs O.

O The output of a predictive model. It presents
whether a disk is going to fail or not.

T (Ii) The typical value of the i-th feature of normal disks.
C(I, i, v) The modified input: the value of the i-th feature is

modified to v.
CS(I, S) The modified input: for each column i not in the

column set S, the i-th feature is modified to T (Ii).
MFCS Minimum Failure Cause Set.
im(MFCS, Ii) The feature importance of Ii on MFCS (i ∈

MFCS).
E The explanation. It is a set of MFCSs.
TP ,FP ,FN ,TN Confusion matrix of a binary classifier.
FDR Failure Detection Rate.
FAR False Alarm Rate.
imp(Ii, P) The feature importance of Ii on the model P .

• We show that DFPE can be applied to measure feature
importances and discuss how DFPE enables intelligent
failure handling.

The rest of paper will present the details of the proposed
method. Section II presents the background, the problems and
related work. Section III describes the design of our method
and Section IV presents the evaluation. Section V concludes
the paper and presents our future work.

II. BACKGROUND AND RELATED WORK

A. Notation list

The symbols used in the paper are listed in Table I.

B. Disk failure prediction

Disk failure prediction is to predict the future status of a
disk: normal or failed. However, it is more than a classification
problem because it has the following characteristics:

• It is an imbalanced classification problem since disk
failure cases are much rarer than normal cases. Thus,
failure predictions which predict disks to fail are often
much rarer than normal predictions.

• It is a time series analysis problem since the disk status
changes over time.

• It is a multiple-instance learning problem [4]. For a failed
disk, its final status is known, but the exact change point
when the disk turns to fail is unknown.

DFPE is designed for explaining failure predictions and
models on disk failure prediction: 1) DFPE exploits the first
characteristic by focusing on explaining failure predictions; 2)
DFPE can explain models built for time series. 3) DFPE can
find out change points with given models.

C. Abstraction for disk failure predictive models

Let I be the input of a predictive model. I consists of
a number of features which describe the running indicators
of a disk in various aspects: I = I1I2...In. Most of recent
works on disk failure prediction build predictive models based
on SMART attributes. SMART (short for Self-Monitoring,
Analysis and Reporting Technology) is a monitor system to
detect and report various indicators of storage drive reliability.
It is well deployed in hard disk drives (HDDs), solid-state
drives (SSDs) and eMMC drives. For example, the common
SMART attributes of HDDs include SMART 5 (Reallocated
Sectors Count), SMART 7 (Seek Error Rate), SMART 189
(High Fly Writes) and so on. Besides, some works [12] take
system-level metrics into consideration, like filesystem errors,
read rate, write rate, I/O queue size, I/O waiting time and I/O
utilization. As the values of the features change over time, I
can be the current values, or the values during a period of
recent time, or the values from the deployment time to now.

Let P be the predictive model on disk failure prediction. P
takes I as input and outputs whether a disk is going to fail
or not: P : I → O. It is complicated to build a predictive
model. Many algorithms, methods and tools are proposed to
address the modeling problem, like sampling, value scaling,
learning, voting and so on. In this paper, we focus on the
learning models. Popular learning models deployed in disk
failure prediction include SVM (Support Vector Machines) [7],
Decision Tree [8], and ensemble models like Random Forest
[11], [12], [16], GBDT (Gradient Boosting Decision Tree)
[17], and artificial neural networks like MLP (MultiLayer
Perceptron) [7], RNN (Recurrent Neural Network) [9], [17]
and LSTM (Long short-term memory) [16].

Let O be the output of a predictive model. It infers whether
a disk is going to fail or not in the near future. It can be a
Boolean value (fail or not), a float value (how close to failure)
[8] or an integer value (different levels of urgency) [9]. In this
paper, O is default to a Boolean value and the other types of
O can be converted to Boolean easily.

D. Explainability

With the rapid development of artificial intelligence, more
and more complex models are proposed to improve the accu-
racy. The proposed models often have hundreds and thousands
of parameters. It is really impossible for human to understand
what exactly each parameter means and how the model infers
the result from the input. In other words, explainability is
sacrificed to improve the accuracy.

However, as the requirements for security and believability
have grown stronger, more and more research works [15],
[18]–[21] are focusing on improving the explainability of
complex models. Explainability requires the model does not
only output the result, but also explains why it infers the result
and what rules it has learned. Although it is unrealistic to
understand what exactly all the parameters inside a complex
model mean, explainability just requires the model to qualita-
tively explain the relationship between the input and the output
or to quantify how much each feature of the input contributes

to the output. Such explanations provide insights into the
model so that one can decide whether the output and the model
are trustworthy or not. The advantages of the emphasis of
explainability are that 1) it helps to improve the believability
of a model; 2) it helps to detect bias or overfitting in a model
when the model gives out an unbelievable explanation; 3) it
gives more detail about the result to support more intelligent
decisions subsequently.

There are two popular methods to achieve high explainabil-
ity: 1) Employ an explainable model. For example, decision
tree models are easy to understand by checking the parameters
to infer the rules. Complex explainable models with a high
level of learning capacity have been being developed [18]. 2)
Employ an explanation method to improve the explainability
of complex models. The explanation method does a series of
tests on the model, like random permutation tests [22], to infer
the relationship between the input and the output and conclude
the learned rules. Its advantage is that it works well with
existing learning models which often achieve better learning
performance than explainable models.

Recently, more and more complex models are deployed in
disk failure prediction and they achieve really good learning
performance (high detection rate and low false alarm rate),
like Random Forest [11], [12], [16], GBDT [17], MLP [7],
RNN [9], [17] and LSTM [16]. Therefore, we propose a new
explanation method to improve the explainability of existing
models on disk failure prediction without any degradation of
the prediction accuracy.

E. Related work

1) Disk failure prediction: Disk failure prediction is well
studied in recent years. Many machine learning methods are
deployed to build high-quality predictive models with both a
high detection rate and a low false alarm rate.

On one hand, some works build simple predictive models
of high explainability. For example, Murray et al. [4] employ
Naive Bayes. Pitakrat et al. [5] find out that Nearest Neighbors
Classifiers get the best prediction quality among 21 classifi-
cation algorithms. Li et al. [8] employ Decision Tree. Ma et
al. [23] shows that the accumulation of reallocated sectors
indicates the deterioration degree of a disk, so a predictive
model can be built from the metric. For these models, how a
prediction is made and what prediction rules are learned can
be easily traced by checking the parameters inside the models.
The simple models make predictions so fast that they are well
deployed in the scenarios that emphasize low overheads.

On the other hand, some works achieve better prediction
accuracy at the cost of explainability. The built models are
complex. First, the models contain so many parameters that it
is difficult to understand every parameter. For example, Zhu et
al. [7] explore the ability of Backpropagation neural network
(MLP models) and develop an improved SVM. Xu et al. [9]
deploy RNN to measure the health levels of hard disks. Sec-
ond, ensemble learning methods combine many basic models
together to get a better performance. The more basic models
an ensemble model contains, the lower explainability it has.

For example, Botezatu et al. [10] employ Regularized Greedy
Forests. Mahdisoltani et al. [12] find out that classifiers based
on Random Forests can predict sector errors accurately. Xiao
et al. [11] employ Online Random Forests which can update
the predictive model online over time.

Our paper is targeted to improve the explainability of
current complex models on disk failure prediction. With our
new method, current complex models cannot only keep their
high prediction accuracy, but also get the advantages of high
explainability.

2) Explainability: With the development of artificial in-
telligence, more and more complex modeling methods are
proposed and the demand of explainability is increasing
steadily. Many explanation methods are proposed to improve
the explainability of current complex models. According to
explanation targets, explanation methods can be classified to
local and global explanation methods.

Local explanation methods attempt to explain predictions
made by models. Robnik-Šikonja et al. [21] propose to mea-
sure the importance of each feature on the prediction by
calculating the difference between the original prediction and
the one made with omitting the feature. Baehrens et al. [20]
propose to explain the prediction result by measuring the local
gradients that characterize how the input has to be adjusted
to change the prediction result. Ribeiro et al. [15] propose
LIME to explain the predictions of any classifier by learning
the model locally around the prediction.

Global explanation methods attempt to explain models.
Mean Decrease in Impurity (MDI) and Mean Decrease in
Accuracy (MDA) [22], [24] are two popular methods to
explain tree models by measuring the importances of features.
MDI counts the number of node splits including the feature,
weighted by the number of samples it splits while MDA
calculates the mean increase error of the model when the
values of the feature are randomly permuted. Lakkaraju et al.
[19] propose BETA, a model agnostic framework to produce
global explanations by optimizing for fidelity to the original
model and interpretability of the explanation.

These above explanation methods are designed for any
applications while our new method is designed for disk failure
prediction. Because of the listed characteristics of disk failure
prediction, our new method can explain more and better than
current explanation methods.

Besides, explainable models with high learning capacity are
being developed [18]. It is an another solution to provide
models on disk failure prediction with both high prediction
accuracy and high explainability.

III. THE PROPOSED EXPLANATION METHOD

Learning from previous works [20], [21], we develop DFPE,
a new explanation method which performs a series of replace-
ment tests to make explanations for disk failure prediction.

A. Replacement tests

For the input I of a disk, replace the i-th feature with the
value v and we get the modified input C(I, i, v). Let T (Ii)

be the typical value of the i-th feature of normal disks. It can
be the mean or median value of the feature of normal disks.
Thus C(I, i, T (Ii)) means to omit the i-th feature. For each
column i not in the column set S, replace the i-th feature
with T (Ii) and finally we get the modified input CS(I, S).
CS(I, S) means to omit all features except those in S.

For disk failure prediction, a predictive model is supposed to
make many more normal predictions than failure predictions.
However, the failure predictions are much more important than
the normal predictions. Thus the purpose of replacement tests
is to test whether a failure prediction is caused by a given
feature set. For a feature set S, a replacement test will test
whether both P (I) and P (C(I, S)) predict a disk to fail. If
so, that means the model makes the same failure prediction on
the disk even when all of the features outside S are omitted.
Thus, the features in the set S cause the failure prediction for
the disk.

B. Definition of MFCS

Definition 1: For the input I of a disk which is predicted to
fail P (I) = true, when a column set S meets the following
conditions, S is defined to be a Minimum Failure Cause Set
(MFCS) of the disk:

1) P (CS(I, S)) = true
2) @S′ ⊂ S : P (CS(I, S′)) = true

The first condition shows that even when all of the features
not in the MFCS are omitted from the input I , the predictive
model P still predict the disk to fail. In other words, for the
disk, the features in the MFCS convince the model P that
the disk would fail in the near future. The second condition
shows the minimality. There are no proper subsets of MFCS
that will convince P that the disk would fail. Any feature in
the MFCS is essential to support the failure prediction.

MFCS is defined to explain failure predictions. An
MFCS tells which features get the model to make the failure
prediction. Moreover, a learned rule can be inferred from an
MFCS as the model has learned the relationship between the
failure and the features in the MFCS.

Let im(MFCS, Ii) be the importance of the feature Ii
for the MFCS (i ∈ MFCS). Learning from [20], DFPE
measures im(MFCS, Ii) by measuring how the feature can
be adjusted to change the prediction result as shown in
Algorithm 1. Since most features about disk reliability have
the increasing or decreasing trends [4], DFPE calculates the
change point for the feature by Binary Search with limited
steps (Stepmax). Then DFPE normalizes the distance between
the change point and the value of the feature. To be noticed,
Ii can be a single value or a time series, but Algorithm 1 can
work for both cases.

As a disk may be predicted to fail because of more
than one rule, there may be more than one MFCS for a
failure prediction. Let E be the explanation for a failure
prediction on a disk. E is a set of MFCSs and E =
{MFCS1,MFCS2...MFCSm}.

Algorithm 1: Measuring im(MFCS, Ii), the impor-
tance of the feature Ii on the MFCS.

Input: I: the input of a disk, Ii: the i-th feature, P :
the predictive model, MFCS, and T (Ii): the
typical value of the i-th feature of normal disks.

Output: impact: the importance value.
1 curI = CS(I,MFCS);
2 left = T (Ii), right = Ii;
3 for k = 1 to Stepmax do
4 cur = 0.5 (left + right);
5 if P (C(curI, i, cur)) then
6 right = cur;
7 else
8 left = cur;
9 end

10 end
11 changepoint = 0.5 (left + right);
12 impact = |changepoint− left| / |right− left|;
13 return impact;

C. Explaining a failure prediction

To explain a failure prediction on a disk is now transformed
to find out all MFCSs or E for the disk. For a disk with n
features, the complexity of testing all possible MFCSs is
O(2n). It will cost so much time. Therefore, rather than tests
all possible MFCSs, DFPE employs a two-step method to
find out as many MFCSs as possible.

In the first step, DFPE does some replacement tests to look
for potential MFCSs as shown in Algorithm 2. Algorithm 2
contains two nested loops. The inner loop (line 5 ∼ 15)
attempts to find out an MFCS by replacing the features one
by one to test whether the feature influences the prediction
result. If so, DFPE will roll back the replacement and add
the feature to the current MFCS. If not, DFPE will keep
the replacement and continue the iteration. After finding an
MFCS, DFPE omits all features in the MFCS and tests
whether there are more MFCSs in the outer loop. If so, DFPE
attempts to find out more MFCSs with the inner loop again.
If not, DFPE returns all the found MFCSs.

Algorithm 2 can only find out MFCSs without overlaps.
For example, it can find out {1, 3} and {2, 4}. However, it
cannot find out all MFCSs when there are overlaps. For ex-
ample, when the MFCSs are {1, 3} and {2, 3}, Algorithm 2
can only find out {2, 3} because the feature I3 is omitted after
{2, 3} is found. In order to find out more MFCSs for a failure
prediction, DFPE takes the second step.

In the second step, DFPE maintains an MFCS set, called
knownMFCSs, for a predictive model. knownMFCSs
contains all known MFCSs found by Algorithm 2 for
historical failure predictions. In general, DFPE builds
knownMFCSs with the training data. As Algorithm 3 shows,
DFPE checks every element in knownMFCSs to find out
more MFCSs for a failure prediction. In order to reduce
the number of checks, DFPE first sorts the elements in

Algorithm 2: Step 1: Looking for potential MFCSs.
Input: I: the input with n features of a disk, and P :

the predictive model
Output: E: the explanation

1 E = ∅;
2 curI = I;
3 curS = fullS = {1, 2..., n};
4 while P (curI) do
5 MFCS = ∅;
6 foreach i ∈ curS do
7 if P (C(curI, i, T (Ii))) then
8 curI = C(curI, i, T (Ii));
9 else

10 MFCS = MFCS ∪ {i};
11 curS = curS − {i};
12 end
13 end
14 E = E ∪ {MFCS};
15 curI = CS(I, fullS −MFCS);
16 end
17 return E;

knownMFCSs in ascending order of size. Then for each
element KS in knownMFCSs, DFPE checks whether there
is any element in E which is a subset of KS or a superset
of KS (See Line 3). If so, KS cannot be an MFCS of
the disk because either of the conditions in the definition of
MFCS cannot be met. If KS is a subset of an element in E,
P (CS(I,KS)) equals to false, so the first condition cannot
be met. If KS is a superset of an element in E, the second
condition cannot be met. If the test at Line 3 is passed, DFPE
further tests whether there is any found MFCS that shares
features with KS (See Line 4). Because Algorithm 2 has
found all MFCSs without overlaps, Algorithm 3 can only find
out MFCSs overlapping with found MFCSs. Finally, if the
check cannot rule out KS, DFPE will perform a replacement
test to check whether KS is really an MFCS of the disk.

DFPE makes no guarantee that it will find out all MFCSs.
Suppose an MFCS does exist and hides from the above two
steps. According to the first step, the MFCS appears together
with another MFCS′. According to the second step, there
are two cases. First, the MFCS has never appeared before.
In this case, it is hard to find it out heuristically without
traversing through all possibilities. Second, the MFCS has
never appeared alone before. In this case, it probably implies
that there are redundant features that just cause redundant
explanations. Therefore, DFPE has not employed more steps
to dig hidden MFCSs out.

D. Explaining a predictive model

To explain a predictive model, DFPE aggregates all histori-
cal explanations for failure predictions to infer prediction rules
a predictive model has learned. In general, DFPE explains
models with the training data or validation data. DFPE treats

Algorithm 3: Step 2: Checking known MFCSs.
Input: I: the input with n features of a disk, P : the

predictive model, knownMFCSs: known
MFCSs, and E: the explanation

Output: E: the explanation
1 Sort knownMFCSs;
2 foreach KS ∈ knownMFCSs do
3 if @S ∈ E : (S ⊆ KS) ∨ (KS ⊆ S) then
4 if ∃S ∈ E : S ∩KS 6= ∅ then
5 if P(CS(I, KS)) then
6 E = E ∪ {KS};
7 end
8 end
9 end

10 end
11 return E;

an MFCS as a prediction rule. For each MFCS, DFPE
counts how many failure predictions caused by the MFCS
are correct and incorrect respectively (labeled as TPMFCS

and FPMFCS). Let FNMFCS be the number of failed disks
that do not have the MFCS. Let TNMFCS be the number of
normal disks that do not have the MFCS. Then DFPE further
calculates how many percent of correct failure predictions
are caused by the MFCS and how much its false alarm
rate is (labeled as FDRMFCS and FARMFCS) according
to Equations (1) and (2) respectively.

FDRMFCS =
TPMFCS

TPMFCS + FNMFCS
(1)

FARMFCS =
FPMFCS

FPMFCS + TNMFCS
(2)

For an MFCS, FDRMFCS describes its popularity and
importance while FARMFCS describes its believability.
DFPE sorts all the MFCSs according to their FDRMFCSs
to present the most popular failure causes. Meanwhile, DFPE
sorts all the MFCSs according to their FARMFCSs to
present the most suspected rules which alarm the administrator
to handle related failure predictions carefully.

At last, DFPE measures the importance of every feature
on the predictive model (labeled as imp(Ii, P)). For each
feature Ii, DFPE counts how many failed disks are pre-
dicted successfully, for which the explanation contains the
feature. The counter is labeled as TPIi . Then DFPE calculates
imp(Ii, P) by normalizing TPIi according to Equation (3).
The imp(Ii, P) values represent the importances of the fea-
tures in the model. The bigger the value of imp(Ii, P) is, the
more important the feature is. The values are useful in feature
engineering, such as feature selection where the features with
the top imp(Ii, P) values can be selected to build a more
concise model.

imp(Ii, P) =
TPIi∑n
j=1 TPIj

(3)

E. Complexity and overhead analysis

The most time-consuming operation of DFPE is to calculate
P (I) to make a prediction. Thus the time complexity is
measured by the calculation times of P (I). Current methods
for disk failure prediction without explanation need calculate
P (I) just once, so their time complexities are O(1). DFPE
need calculate P (I) many more times so that it can make
explanations on failure predictions and provide more details
about the coming failures. We believe it’s acceptable because
of the advantages of high explainability.

Algorithm 2 attempts to find out all MFCSs without
overlaps. Its complexity is determined by how many MFCSs
can be found. Let n be the number of features in the dataset.
In the best case, there is only one MFCS and DFPE needs
to make replacement tests on every feature, so the tight lower
bound of the complexity is Ω(n). In the worst case, every
feature comes to be an MFCS and DFPE can find out only
one MFCS for a loop of replacement tests on all features.
Therefore, the tight upper bound of the complexity is O(n2).
In the tests, we found that the mean number of MFCSs for
a disk is often much less than the number of features, so the
actual cost will be much less than that in the worst case.

Algorithm 3 attempts to find out more MFCSs by checking
known MFCSs. The complexity is O(|knownMFCSs|). In
the worst case, |knownMFCSs| = 2n. However, the worst
case is rare because the number of |knownMFCSs| is often
much smaller than 2n. Moreover, DFPE skips a large part of
known MFCSs by checking their relationships with found
MFCSs. Thus, the actual cost will be much less than that in
the worst case.

Algorithm 1 performs binary search to measure the im-
portance of a feature in limited steps (Stepmax), so its time
complexity is O(Stepmax). Because Stepmax is a specified
constant parameter, O(Stepmax) = O(1). An explanation for
a failure prediction cannot have more than 2n MFCSs and
an MFCS cannot have more than n features. Therefore, the
upper bound complexity of measuring feature importances for
an explanation is o(n ∗ 2n). However, we found in the eval-
uation that the mean number of MFCSs for an explanation
is often much less than the number of features, so the actual
cost will be much less than that in the worst case.

To explain a failure prediction, DFPE finds out MFCSs
according to Algorithms 2 and 3 and measures the feature
importances of found MFCSs. Therefore, The complexity is
O(n2)+O(2n)+o(n∗2n) = o(n∗2n). It would cost so much
time in the worst case. However, the above description infers
that although the worst case is really bad, the actual cost is
often much less than the cost in the worst case. In Section IV,
we will show that the cost is acceptable.

Finally, DFPE infers predictive rules to explain a predic-
tive model by gathering explanations for failure predictions.
The inference method is simple since it just does some
counting works and calculates FDRMFCS , FARMFCS and
imp(Ii, P) with the counters. Therefore, the dominant cost of
explaining a model lies in explaining failure predictions.

To reduce the overheads, DFPE can be customized by
disabling some functions. For example, Algorithm 3 can be
omitted, which would reduce the number of found MFCSs.
Explaining a model can also be optional. DFPE can just
explain predictions just like other local explanation methods.
Moreover, sampling technology can be employed to reduce
the overheads further. For example, when explaining a model,
DFPE can sample the dataset by limiting the length of time
series for each disk.

IV. EVALUATION

A. Setup

We ran the evaluation in a server with two Intel Xeon E5-
2620 CPUs, 128 GB memory and Ubuntu x86 64 16.04 LTS
with Linux kernel 4.4.0. We implemented DFPE and related
methods based on scikit-learn [25] 0.19.1 and PyTorch [26]
0.4.0. The datasets involved in the evaluation are presented in
Table II. All the datasets in Table II are formed of records of
SMART attributes. Dataset D0 has been used in [7]–[9], [17],
D1, D3, D4 and D8 in [10], and D1 and D2 in [11].

For each disk series, the dataset was split into training set
and test set according to the ratio 7 : 3. The training set is
used to train, tune and then explain the predictive models.
With the training sets, we built models and tuned them by
iterating small ranges of training parameters. The built models
are not guaranteed to be optimal. One may get better models
with further tuning or new modeling methods. How to build a
high-quality model on disk failure prediction is not the main
topic of this paper. The test sets are used to evaluate the
performance of the models and to present the explanations
for failure predictions.

In the evaluation, we first focused on dataset D0 and
compared the explanation made by DFPE and other expla-
nation methods in detail, and then we expanded the eval-
uation over the other datasets to show the usages and the
overheads of DFPE. Stepmax is set to 10, so the precision
of im(MFCS, Ii) equals to 2−10 ≈ 0.001.

B. Evaluation on D0

The SMART attributes selected to build predictive models
for D0 are listed in Table III. The predictive models employed
in this paper were Random Forest models.

1) Explaining a predictive model: MDI and MDA are two
popular methods to explain a Random Forest model by mea-
suring feature importances. Figures 1(a) and 1(b) shows the
explanations made by MDI and MDA respectively. Compared
with them, DFPE not only measures the feature importances
as shown in Figure 1(c), but also infers prediction rules and
calculates the metrics of the rules as shown in Tables IV and V.

Figure 1 shows the comparison among the three methods on
measuring feature importances. On one hand, some differences
are observed. It shows that the three methods have large
differences in the importances of F11, F9, F7 and F3. For
example, MDI and MDA believe F9 is not important while
DFPE believes F9 is important. On the other hand, there
are more similarities. For example, F5 is the most important

TABLE II
DATASETS OF SEVERAL DISK SERIES

Label Disk Series Collected From Download Normal disks Failed disks Sampling Interval Total time

D0 Seagate ST31000524NS Baidu Company [7] 22962 433 1 hour 1 week or 20 days1

D1 Seagate ST4000DM000 Backblaze Company [27] 34295 2502 1 day Feb 2014 ∼ Sep 2017
D2 Seagate ST3000DM001 2898 1006 Feb 2014 ∼ Nov 2015
D3 Seagate ST31500541AS 1679 238 Feb 2014 ∼ Sep 2017
D4 Hitachi HDS722020ALA330 4535 193 Feb 2014 ∼ Sep 2017
D5 WDC WD30EFRX 1161 152 Feb 2014 ∼ Sep 2017
D6 HGST HMS5C4040ALE640 8569 126 Feb 2014 ∼ Sep 2017
D7 HGST HMS5C4040BLE640 16181 120 Mar 2014 ∼ Sep 2017
D8 Hitachi HDS5C3030ALA630 4512 116 Feb 2014 ∼ Sep 2017
D9 Seagate ST8000DM002 9882 110 May 2016 ∼ Sep 2017

1 For D0, 1 week samples are collected for normal disks and 20 days before the failure for failed disks

0 . 0 0 2 2
0 . 0 4 1 8

0 . 1 1 7 8
0 . 0 6 4 4

0 . 4 6 3 8
0 . 0 6 6 6

0 . 0 0 4 9
0 . 0 9 4 1

0 . 0 1 4 1
0 . 0 0 0 3

0 . 1 2 3 9
0 . 0 0 6 2

F 1
F 2
F 3
F 4
F 5
F 6
F 7
F 8
F 9

F 1 0
F 1 1
F 1 2

F e a t u r e I m p o r t a n c e s

Fea
tur

es

(a) MDI

0 . 0 0 0 5
0 . 0 8 0 5

0 . 0 0 0 7
0 . 0 1 4 4

0 . 5 0 6 9
0 . 0 5 3 8

0 . 0 0 0 9
0 . 3 3 2 7

0 . 0 0 0 3
0 . 0 0 0 0
0 . 0 0 2 4
0 . 0 0 7 0

F 1
F 2
F 3
F 4
F 5
F 6
F 7
F 8
F 9

F 1 0
F 1 1
F 1 2

F e a t u r e I m p o r t a n c e s

Fea
tur

es

(b) MDA

0 . 0 2 4 7
0 . 0 1 8 8

0 . 1 1 7 7
0 . 0 2 8 7

0 . 2 5 0 2
0 . 0 7 7 2

0 . 0 3 0 7
0 . 1 4 7 4

0 . 1 3 9 5
0 . 0 0 3 0

0 . 1 4 1 4
0 . 0 2 0 8

F 1
F 2
F 3
F 4
F 5
F 6
F 7
F 8
F 9

F 1 0
F 1 1
F 1 2

F e a t u r e I m p o r t a n c e s

Fea
tur

es
(c) DFPE

Fig. 1. Feature importances measured by MDI, MDA and DFPE respectively. Similarities can be observed in the features F5, F6, F8 and F10 while
differences in F3, F7, F9 and F11.

TABLE III
SELECTED SMART ATTRIBUTES AND THEIR LABELS IN THIS PAPER

ID Attribute Name Value1 Raw Value2

1 Read Error Rate F1
3 Spin Up Time F2
5 Reallocated Sectors Count F3 F11
7 Seek Error Rate F4
9 Power On Hours F5

187 Reported Uncorrectable Errors F6
189 High Fly Writes F7
194 Temperature Celsius F8
195 Hardware ECC Recovered F9
197 Current Pending Sector Count F10 F12

1 Value: Normalized value of the raw counter ranging from 0 to 255. The
normalization methods are defined by the vendors.
2 Raw Value: Raw counter.

feature, F8 and F6 are somewhat important, and F10 is the
least important. DFPE is designed for disk failure prediction.
Since disk failure prediction is an imbalanced classification
problem, DFPE only analyzes the failure predictions. It is
the key difference between DFPE and the other two methods.
Thus the results from DFPE is supposed to be more accurate
than those from the other two methods. Moreover, due to the

difference, the importance values measured by DFPE distribute
more evenly, which allows better comparison between features.

Feature selection can be done after measuring feature im-
portances. We built models for the 10 datasets after employing
feature selection based on the three methods respectively. Be-
cause of the similarities, many common features were selected
by the three methods. As a result, no obvious improvements
made by DFPE were observed. Therefore, DFPE just provides
another perspective for measuring feature importances in a
model and another option for feature selection.

Compared to MDI and MDA, DFPE can explain more about
a predictive model by inferring prediction rules. DFPE sorts
the rules according to their detection rates to show the most
popular and important rules intuitively. Table IV shows the top
10 important rules the Random Forest model had learned. It
can be seen that most failures can be detected by only a few
of rules. Moreover, DFPE sorts the rules according to their
false alarm rates to show the most suspected rules intuitively.
Table V shows the top 10 suspected rules the Random Forest
model had learned. It can be seen that most false alarms are
caused by only a few of rules. It also shows that the false
alarm rates of the rules are really small, which means the
Random Forest model had corresponded to the training data

TABLE IV
INFERRED RULES BY DFPE SORTED BY THEIR FDRMFCSS

Inferred Rule (MFCS) FDRMFCS ↓ 1 FARMFCS

{5} 0.7822 0.00019
{8} 0.3201 0.00075

{3, 9, 11} 0.3168 0.00137
{6} 0.1518 0.00000

{8, 9, 11} 0.0495 0.00006
{1, 3, 6} 0.0462 0.00000
{6, 11} 0.0396 0.00000
{3, 5} 0.0330 0.00093
{4, 8, 12} 0.0330 0.00006
{2, 7, 8, 11} 0.0330 0.00006

...
1 A failure prediction may be cause by several MFCSs, so the sum of
FDRMFCS is larger than 1.

TABLE V
INFERRED RULES BY DFPE SORTED BY THEIR FARMFCSS

Inferred Rule (MFCS) FDRMFCS FARMFCS ↓ 1

{3, 9, 11} 0.3168 0.00137
{3, 5} 0.0330 0.00093
{8} 0.3201 0.00075
{5} 0.7822 0.00019

{3, 4, 8, 9} 0.0198 0.00012
{1, 8} 0.0033 0.00006
{4, 8, 12} 0.0330 0.00006
{6, 8, 11} 0.0231 0.00006
{8, 9, 11} 0.0495 0.00006
{4, 8, 11} 0.0099 0.00006

...
1 A false alarm may be cause by several MFCSs, so the sum of
FARMFCS is often larger than the false alarm rate of the model.

very well. In general, rules with high false alarm rates or low
detection rates can be excluded without rebuilding to improve
the quality of a model.

2) Explaining a failure prediction: We randomly selected
a failed disk in the test set to show the explanation made by
DFPE. For comparison, we also employed LIME to explain the
same failure prediction. The explanation of LIME in Figure 2
shows that F5, F2, F12, F11, F7, F9 and F1 attempts to
convince the model that the disk would fail in different degrees
while F4 and F8 attempts to convince the model that the disk
is working normally. It also shows that F5 is the dominant
factor resulting in the failure prediction.

Compared to LIME, DFPE can explain more about the fail-
ure prediction and the explanation is more accurate. Table VI
shows that DFPE found out three MFCSs for the failure
prediction. Each MFCS could convince the model to make
the failure prediction individually. According to Table IV,
the three MFCSs belong to the top 4 important MFCSs,
which means the three rules have worked correctly for many
failed disks. Among them, {6} has the smallest FARMFCS

that equals to 0, which means the failure prediction is highly
believable. DFPE also measured the importances of features
on the failure prediction as shown in Figure 3. It shows that
F6, F5, F9, F3 and F11 are important for the failure prediction,
which is quite different from the explanation of LIME. The

0 . 4 7 1
0 . 0 8 5 3

0 . 0 6 8
0 . 0 3 4 5

0 . 0 2 8 4
- 0 . 0 2 5 3

0 . 0 1 5
- 0 . 0 1 1 2

0 . 0 0 4 8
0
0
0

F 5
F 2

F 1 2
F 1 1
F 7
F 4
F 9
F 8
F 1
F 6

F 1 0
F 3

F e a t u r e I m p o r t a n c e s

Fea
tur

es

Fig. 2. An explanation made by LIME for a failure prediction. LIME
explains a prediction by measuring the feature importances. It shows that for
the failure prediction, F5, F2, F12, F11, F7, F9 and F1 results in the failure
prediction and F5 is the dominant feature.

TABLE VI
AN EXPLANATION MADE BY DFPE FOR A FAILURE PREDICTION

MFCS FDRMFCS FARMFCS

{6} 0.1518 0.00000
{5} 0.7822 0.00019

{3, 9, 11} 0.3168 0.00137

reason is that DFPE, different from LIME, measures the
importances of features in an MFCS by omitting the other
features outside the MFCS. For this example, the model can
make the failure prediction simply because of just F5, but
omitting F5 would not change the failure prediction because
of F6, F3, F9 and F11. Thus the importances of F6, F3, F9
and F11 cannot be exposed without excluding the influence of
F5. Therefore, the explanation of DFPE is more accurate than
that of LIME in the application of disk failure prediction.

3) Detecting and handling bias: From the explanations of
MDA, MDI and LIME as shown in Figures 1(a), 1(b) and 2, it
can be seen that F5, the power-on time of a disk, is the most
important feature in disk failure prediction. It is reasonable
because the longer a disk has run, the more likely it would
be to fail. However, from the explanations of DFPE as shown
in Figures 1(c) and 3 and Tables IV to VI, it can be seen
that the model has learned that F5 can determine the failure
prediction alone. It means that whenever the power-on time
of a disk expires a certain threshold, the model would predict
the disk to fail definitely. The learned rule is unreasonable as
it would cause lots of false alarms after a certain period of
usage of disks. In short, there is bias in the model and DFPE
helps to expose it.

Because the false alarm rate of the rule {5} is really low as
shown in Table V, the bias is likely to be caused by the dataset
rather than the modeling method. To confirm that the bias is
not caused by the modeling method, we built several predictive
models from other learning methods: GBDT, XGBoost [28],
SVM, MLP and LSTM. Table VII shows that all of these

0 . 5 6 3 8

0 . 8 9 7 5

0 . 5 6 7 4
0 . 7 5 6 8

0 . 0 6 5 4F 1 1
F 9
F 3

F 5

F 6
F e a t u r e I m p o r t a n c e s

{ 6 }

{ 5 }

{ 3 , 9 , 1 1 }

M F C S

Fig. 3. An explanation made by DFPE for a failure prediction. It shows
that the explanation contains three MFCSs and DFPE measures the feature
importances for every MFCS separately.

TABLE VII
DIFFERENT LEARNING MODELS LEARNED THE SAME RULE {5} FOR D0

Modeling Rank1 FDRMFCS FARMFCS

Random Forest 1 0.7822 0.00019
GBDT 1 0.7096 0.00000

XGBoost 1 0.6469 0.00000
SVM 1 0.5050 0.00013
MLP 1 0.7657 0.00065

LSTM 1 0.6337 0.00000
1 Ranked by FDRMFCS which indicates the importance of a rule.

models learned the rule {5} and it is the most important rule
with the highest detection rate and a really low false alarm rate.
It means the bias exists no matter which modeling method is
employed. To target the bias in the dataset, Figure 4 shows
the value distribution of F5 of normal disks and failed disks
respectively. The original F5 values range from 0 to 255 and
they are scaled linearly to the range [−1, 1] in pre-process.
The following characteristic remains: the bigger value, the less
power-on time. It can be seen that F5 values of normal disks
range from −0.08 to 1 while F5 values of failed disks range
from −1 to 1. Missing samples of normal disks with F5 values
ranging in [−1,−0.08] leads to a model easily learning the rule
that a disk would fail if its power-on time expires a certain
threshold. It means the dataset has the age bias. The age bias
is probably caused by a data collection method that one-week
samples of all disks are exported at a certain time and after
that time, only samples from failed disks are updated.

There are two simple methods to handle the data bias: 1)
Let the model predict a disk to fail only when there exists
any MFCS not equal to {5} in the explanation. 2) Rebuild
a model without the feature F5. The evaluation results of the
two methods based on the Random Forest model are shown in
Table VIII. It shows that the former method has a better FAR
while the latter has a better FDR. Both methods perform
worse than the original model because they have not exploited
the data bias. However, both methods are supposed to perform
better in the real world than the original model because they
don’t have the unsound rule.

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Cu
mu

lati
ve

Dis
trib

uti
on

Fu
nct

ion

F 5 v a l u e

 N o r m a l d i s k s
 F a i l e d d i s k s

Fig. 4. Cumulative Distribution Function of F5 values. Data bias can be
observed obviously. The F5 values of normal disks distribute in a narrow
range while those of failed disks in a wide range.

TABLE VIII
PREDICTION METRICS AFTER HANDLING THE DATA BIAS FOR D0

Method FDR FAR

Original 0.8769 0.0033
1 0.6385 0.0029
2 0.6769 0.0109

4) Summary: The evaluation on D0 has shown that com-
pared to current methods, DFPE explains more about a model
and more about failure predictions made by the model, and the
explanations of DFPE are more accurate. Thus DFPE helps to
detect and handle the bias intuitively.

C. The overheads

We expanded the evaluation to the ten datasets to show the
overheads of DFPE. For each dataset, a Random Forest model
for evaluation is built on selected 12 most related features.
SMART attributes listed in the Table IX are selected for one
or more datasets beside those listed in Table III. As some
SMART attributes suggest the age of a disk, a model might
have the mentioned age bias, so it is helpful to deploy DFPE
to detect and handle the bias. The overheads are measured by
related time costs. The presented time costs are normalized
by dividing them by the mean time cost of a model making
a prediction and then multiplying them by 10−6 seconds to
exclude the influence of the complexity of a model. The reason
is that the magnitude of the time cost of a model making a
prediction is 10−6 seconds in the evaluation.

The overheads of explaining a model are measured by the
time cost of explaining the model with the training set. MDI
measures feature importances in the modeling period, so it
requires no more costs. Thus we only compare the time costs
of MDA and DFPE as shown in Figure 5. Compared to MDA,
DFPE requires 89X time for D2 and 1.2X ∼ 12X time for
the other datasets. The overheads of DFPE is much more
than those of MDA because DFPE explains every failure
prediction in detail by a lot of replacement tests to extract

TABLE IX
ADDITIONAL SELECTED SMART ATTRIBUTES FOR D1∼D9

ID Attribute Name

2 Throughput Performance
4 Start/Stop Count
10 Spin Retry Count
12 Power Cycle Count

188 Command Timeout
191 G-sense Error Rate
192 Power-off Retract Count
193 Load Cycle Count
196 Reallocation Event Count
198 Uncorrectable Sector Count
241 Total LBAs Written
242 Total LBAs Read

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9

4 0

4 0 0

4 0 0 0

1 0

1 0 0

1 0 0 0

1 0 0 0 0

No
rm

aliz
ed

tim
e c

ost
 in

 se
con

ds

D a t a s e t

 M D A D F P E

Fig. 5. The normalized time cost of explaining a model. It shows that
DFPE requires much more time than MDA because DFPE attempts to make
an explanation in more details.

more information about the model. Besides, given the same
number of features, the time cost of MDA is determined by
the size of the training set while that of DFPE is determined
mostly by the number of failure predictions for the training
set. The dataset D2 is relatively small but it has many failure
predictions, so DFPE requires much more time than MDA.
Explaining a model is an offline task of data analysis, so the
time cost of DFPE is acceptable considering the benefits of
high explainability.

The overheads of explaining predictions are measured by
the mean time cost of explaining a prediction for a disk in the
test set. Let LIME and DFPE only explain failure predictions.
Figure 6 shows the time cost of LIME and DFPE respectively.
It shows that compared to LIME, DFPE requires 1.1X ∼
8.0X time for the ten datasets. The overheads of DFPE are
more than those of LIME because DFPE attempts to explain
more by looking for more failure causes and measuring feature
importances separately. Explaining a prediction is an online
task following after making a prediction online. The faster the
better. However, when a model makes a failure prediction, it
can’t be too cautious to make an explanation because failure
handling would cost much more than making an explanation.

We further look into the cost of DFPE. Figure 7 shows
that the mean numbers of MFCSs per explanation for the
ten datasets range from 1.3 to 8.2. They are less than 12,
the number of features, so the actual costs of looking up

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9

0 . 0 2
0 . 0 4
0 . 0 6

0 . 2
0 . 4
0 . 6

0 . 0 1

0 . 1

No
rm

aliz
ed

tim
e c

ost
 in

 se
con

ds

D a t a s e t

 L I M E D F P E

Fig. 6. The mean time cost of explaining a failure prediction. It shows
that DFPE requires 1.1X ∼ 8.0X time compared to LIME because DFPE
attempts to find out more causes while LIME is focusing on the main cause.

2 . 4 2
3 . 6 1

8 . 2 6

4 . 5 7

1 . 6 5 1 . 5 1

3 . 0 7

1 . 3 4

2 . 8 9 2 . 8 6

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9
0
1
2
3
4
5
6
7
8
9

Th
e m

ean
 nu

mb
er

of
MF

CS
s

per
 ex

pla
nat

ion
D a t a s e t

Fig. 7. The mean number of MFCSs per explanation. It shows that the
values are less than 12, the number of features. Therefore, the actual costs
are much less than the theoretical costs in the worst case.

MFCSs according to Algorithm 2 and measuring feature
importances according to Algorithm 1 are much less than the
theoretical costs in the worst case. Figure 8 shows that the
|knownMFCSs| values for the ten datasets range from 11 to
192. They are much less than 212, the theoretical maximum
size of knownMFCSs, so the actual costs of checking known
MFCSs according to Algorithm 3 are much less than the
theoretical costs in the worst case. Figure 8 also shows that the
mean numbers of checking known MFCSs per explanation
are about 8% ∼ 46% of the size values. That means the filter
in Algorithm 3 helps to reduce 54% ∼ 92% of the overheads
of Algorithm 3.

To show the relationship between the overheads of DFPE
and the number of selected features, models over the dataset
D4 with different numbers of features were built and ex-
plained. To save time, only D4 was chosen since the models
on D4 were explained quickly. Figure 9 shows that with the
increasing number of selected features, the overheads tend to
grow slowly with considerable oscillations. The reason of the
slow growth is that only a small part of features are related to
disk failure and most failures can be predicted with even less
features. Due to the slow growth, DFPE would have a great
scalability in application. The reason of the oscillations is that
a model might learn the noise in the training data when too
few features or unrelated features are involved, which results
in uncertainly increasing time costs of making explanations.

6 2

1 1 2

1 9 2

6 4

2 7
1 2 2 1 1 1

3 7
2 0

8 . 3 4

5 2 . 0 0
7 8 . 9 9

1 5 . 7 3 1 2 . 2 2 1 . 0 2 3 . 4 9 1 . 7 0 6 . 7 2 3 . 9 0
D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0 T h e n u m b e r o f k n o w n M F C S s

 T h e m e a n n u m b e r o f c h e c k i n g
Th

e n
um

ber

D a t a s e t

Fig. 8. The number of known MFCSs and the mean number of checking.
It shows the mean number of checking is less than half of the number of
known MFCSs.

0 4 8 1 2 1 6 2 0 2 4 2 8
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

No
rm

aliz
ed

tim
e c

ost
 in

 se
con

ds

T h e n u m b e r o f f e a t u r e s
(a) Explaining a model

0 4 8 1 2 1 6 2 0 2 4 2 8
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

No
rm

aliz
ed

tim
e c

ost
 in

 se
con

ds

T h e n u m b e r o f f e a t u r e s
(b) Explaining a prediction

Fig. 9. The relationship between the overheads and the number of
features. It shows that with the increasing number of features, the normalized
time costs increase slowly with considerable oscillations.

To sum up, DFPE requires more overheads to explain
more about the models and failure predictions compared to
current explanation methods. Because of the benefits of high
explainability and the high costs of failure handling, we argue
that the overheads are acceptable.

D. Discuss: intelligent disk failure handling

Currently, proactive disk failure handling is to migrate the
data and replace the disks predicted to fail. Discarding the
disks would result in a huge waste of storage resources when
the disks can be fixed or deployed in another application
scenario. For example, when a disk is predicted to fail because
of its temperature (SMART 194), the disk might be fixed by
cleaning the dirt. When a disk is predicted to fail because
of its Reallocated Sectors Count (SMART 5), the data in the
disk still can serve normally with a relatively high error rate.
In this case, the disk can be employed in the application
scenario that is not sensitive to tail latency and the storage
systems can employ disk scrubbing to find the error and store
redundant data to recover the lost. The handling action is
also known as degrading the usage. To reduce the waste of
storage resources, it is important to employ intelligent disk
failure handling which means to handle predicted disk failures
intelligently according to failure causes.

DFPE enables intelligent disk failure handling by providing
failure causes in the form of MFCSs. Here, we introduce
a simple intelligent disk failure solution, called SIDF. For
every feature, SIDF provides a corresponding action to handle
predicted failures caused by the feature. When an MFCS is
in an explanation for a failure prediction, one of the handling
actions corresponding to the features in the MFCS must be
taken to handle the failure. SIDF can choose the action which
can allow the best use of the disk rather than discard the disk.
When an explanation has several MFCSs, the same number
of corresponding handling actions must be taken. When one
handling action can handle several MFCSs, SIDF takes the
action with high priority. However, when one of the action is
to discard the disk, it is unnecessary to take the other actions.

Take the disk series of dataset D0 as an example. SIDF
can provide three handling actions: lowering the temperature,
degrading the usage and discarding the disk. Lowering the
temperature is the handling action for the feature F8. Degrad-
ing the usage of the disk is to handle failures caused by F1, F3,
F6, F9, F10, F11 or F12 because abnormality of these features
may only result in a high data error rate. Discarding the disk is
for F2, F4 and F7 because abnormality of these features may
be caused by the damage of some mechanical parts. When
a disk is predicted to fail with an explanation {{8, 9, 11}},
SIDF should take one of the handling actions: lowering the
temperature or degrading the usage. When the explanation is
{{4, 8, 12}, {3, 5}}, SIDF would take the action of degrading
the usage because the action is for both F12 and F3. When the
explanation is {{4}, {1, 3, 6}}, SIDF should take both actions:
degrading the usage and discarding the disk. However, the disk
is supposed to be discarded, so SIDF need not take the action
of degrading the usage.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an explanation method DFPE
to improve the explainability of complex models on disk
failure prediction. The evaluation on the real-work datasets
shows that DFPE can explain failure predictions made by
a model and infer prediction rules learned by the model.
Compared to current explanation methods, DFPE can explain
more about failure predictions and models more accurately.
Thus DFPE helps to detect and handle bias and overfitting in
the models, provides another perspective for measuring feature
importances and enables intelligent disk failure handling.

Our future work is to improve DFPE by reducing the
overheads, to explore more suitable applications of DFPE, and
to test the practicability of intelligent disk failure handling.

ACKNOWLEDGMENT

This work was supported in part by NSFC No.61832020,
National Key R&D Program of China NO.2018YFB10033005,
Hubei Province Technical Innovation Special Project
(2017AAA129), Wuhan Application Basic Research Project
(2017010201010103), Fundamental Research Funds for the
Central Universities.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, Oct. 2003.

[2] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the facebook
warehouse cluster,” in Proceedings of the 5th USENIX Conference on
Hot Topics in Storage and File Systems, ser. HotStorage’13. Berkeley,
CA, USA: USENIX Association, 2013, pp. 8–8.

[3] G. Wang, L. Zhang, and W. Xu, “What can we learn from four years of
data center hardware failures?” in 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, ser. DSN’17, June
2017, pp. 25–36.

[4] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado, “Machine learning
methods for predicting failures in hard drives: A multiple-instance
application,” Journal of Machine Learning Research, vol. 6, pp. 783–
816, Dec. 2005.

[5] T. Pitakrat, A. van Hoorn, and L. Grunske, “A comparison of machine
learning algorithms for proactive hard disk drive failure detection,”
in Proceedings of the 4th International ACM Sigsoft Symposium on
Architecting Critical Systems, ser. ISARCS ’13. New York, NY, USA:
ACM, 2013, pp. 1–10.

[6] L. P. Queiroz, F. C. M. Rodrigues, J. P. P. Gomes, F. T. Brito, I. C.
Chaves, M. R. P. Paula, M. R. Salvador, and J. C. Machado, “A fault
detection method for hard disk drives based on mixture of gaussians and
nonparametric statistics,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 2, pp. 542–550, April 2017.

[7] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma, “Proactive
drive failure prediction for large scale storage systems,” in IEEE 29th
Symposium on Mass Storage Systems and Technologies, ser. MSST ’13,
May 2013, pp. 1–5.

[8] J. Li, R. J. Stones, G. Wang, X. Liu, Z. Li, and M. Xu, “Hard drive
failure prediction using decision trees,” Reliability Engineering & System
Safety, vol. 164, pp. 55–65, 2017.

[9] C. Xu, G. Wang, X. Liu, D. Guo, and T.-Y. Liu, “Health status
assessment and failure prediction for hard drives with recurrent neural
networks,” IEEE Transactions on Computers, vol. 65, no. 11, pp. 3502–
3508, Nov. 2016.

[10] M. M. Botezatu, I. Giurgiu, J. Bogojeska, and D. Wiesmann, “Predicting
disk replacement towards reliable data centers,” in Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’16. New York, NY, USA: ACM, 2016,
pp. 39–48.

[11] J. Xiao, Z. Xiong, S. Wu, Y. Yi, H. Jin, and K. Hu, “Disk failure
prediction in data centers via online learning,” in Proceedings of the
47th International Conference on Parallel Processing, ser. ICPP 2018.
New York, NY, USA: ACM, 2018, pp. 35:1–35:10.

[12] F. Mahdisoltani, I. Stefanovici, and B. Schroeder, “Improving storage
system reliability with proactive error prediction,” in Proceedings of the
2017 USENIX Conference on Usenix Annual Technical Conference, ser.
USENIX ATC ’17. Berkeley, CA, USA: USENIX Association, 2017,
pp. 391–402.

[13] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large
disk drive population.” in FAST, vol. 7, no. 1, 2007, pp. 17–23.

[14] T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai, “Man is
to computer programmer as woman is to homemaker? debiasing word
embeddings,” in Proceedings of the 30th International Conference on
Neural Information Processing Systems, ser. NIPS’16. USA: Curran
Associates Inc., 2016, pp. 4356–4364.

[15] M. T. Ribeiro, S. Singh, and C. Guestrin, “’why should i trust you?’:
Explaining the predictions of any classifier,” in Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’16. New York, NY, USA: ACM, 2016, pp.
1135–1144.

[16] P. Anantharaman, M. Qiao, and D. Jadav, “Large scale predictive
analytics for hard disk remaining useful life estimation,” in 2018 IEEE
International Congress on Big Data (BigData Congress), July 2018, pp.
251–254.

[17] J. Li, R. J. Stones, G. Wang, Z. Li, X. Liu, and K. Xiao, “Being accurate
is not enough: New metrics for disk failure prediction,” in 2016 IEEE
35th Symposium on Reliable Distributed Systems (SRDS), Sep. 2016,
pp. 71–80.

[18] D. Gunning, “Explainable artificial intelligence (xai),” Defense Ad-
vanced Research Projects Agency (DARPA), nd Web, 2017.

[19] H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Interpretable
& explorable approximations of black box models,” CoRR, vol.
abs/1707.01154, 2017.

[20] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen,
and K.-R. Müller, “How to explain individual classification decisions,”
J. Mach. Learn. Res., vol. 11, pp. 1803–1831, Aug. 2010.

[21] M. Robnik-Šikonja and I. Kononenko, “Explaining classifications for
individual instances,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 20, no. 5, pp. 589–600, May 2008.

[22] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct 2001.

[23] A. Ma, R. Traylor, F. Douglis, M. Chamness, G. Lu, D. Sawyer,
S. Chandra, and W. Hsu, “Raidshield: Characterizing, monitoring,
and proactively protecting against disk failures,” ACM Trans. Storage,
vol. 11, no. 4, pp. 17:1–17:28, Nov. 2015.

[24] G. Louppe, “Understanding random forests: From theory to practice,”
arXiv preprint arXiv:1407.7502, 2014.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[27] Backblaze, “Hard drive data and stats,” Dec. 2017,
https://www.backblaze.com/b2/hard-drive-test-data.html.

[28] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785–794.

