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Background: Disks

• Disks are widely deployed in datacenters
• Why?

• Low cost per bit stored
• Large storage capacity
• Mature technology

• For?
• Cold data
• Backup
• Archiving
• Long-term
• et al.
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Background: Disk failure prediction

• Disk failures are ordinary 
events

• A large number of disks
• Many disks have been serving for 

several years
• Advantages of disk failure 

prediction
• Keep high reliability
• Lower the impact of the failure 

and the overheads of the recover
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Background: Building a model and deploying

• Collect logs and failures
• S.M.A.R.T. attributes

• Build machine learning models 
offline

• Meet the requirements
• Fault detection rate (FDR): the higher 

the better
• False alarm rate (FAR): the lower the 

better

• Deploy to online
• Predict the failure online
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Background: Explainability of a model

• Improve the believability of a model
• Pass the test: work well for existing cases
• High explainability: give out reasonable explanations

• Explainability/Interpretability: 
• Not only a result, 
• But also explain how it gets the result from the input

• Which features are important?
• How important?

• Advantages of high explainability
• Expose the bias and over-fitting when unreasonable explanations are presented
• Improve the believability of a model
• Output more information related to the result to enable intelligent handling 

subsequently
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Background: Building a model and deploying

• Collect logs and failures
• Build machine learning models 

offline
• Meet the requirements
• Explain the model

• Deploy to online
• Predict the failure online
• Explain the failure prediction
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Background: Models for disk failure prediction

• Simple models
• Decision Trees, Decision Rules, 

Naïve Bayes, …
• Ensemble models

• Random Forests, GBDT, 
XGBoost, …

• Complex models
• Neural Networks: MLP, RNN, 

LSTM, …
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Background: Explanation methods

• Apply explanation methods
• Keep the high learning capacity and accuracy of the model
• Improve the explainability of ensemble/complex models

• Global explanation methods
• Explain the model
• Like: MDA(Mean Decrease Accuracy), MDI (Mean Decrease Impurity), …

• Measure the feature importances

• Local explanation methods
• Explain the output results of the model
• Like: LIME(KDD’16), …

• Measure the feature importances
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Motivation: The problem

• Complex models are applied to improve the accuracy but with the cost 
of explainability.

• Current explanation methods can help but the improvement is limited
• Characteristics of disk failure prediction

• Time series analysis problem 
• Multiple-instance learning problem

• Unknown failure symptom / time series change point 
• Imbalanced classification problem 

• Failed disks, failure samples and failure predictions are much rarer
• Only interested in the failure

• Failure predictions can be caused by multiple causes.
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Motivation: The problem

• Global explanation methods (MDA, MDI, …)
• Not handle the imbalanced

• The explanation is dominated by the normal disks and normal samples

• Local explanation methods (LIME, …)
• Not handle the imbalanced and the multiple-instance

• Extra explanations

• Only the feature importances without considering multiple causes
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Motivation: How to solve the problem?

• DFPE: Disk Failure Prediction Explainer
• Time series analysis problem

• Support models for time series analysis

• Multiple-instance learning problem
• Find the failure symptom / time series change point with the given model 

• Imbalanced classification problem
• Explain failure predictions ONLY

• Observe that failure predictions can be caused by multiple causes.
• Define Minimum Failure Cause Set (MFCS)  and find out as many MFCSs as possible
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Design: Replacement test

• Only explain failure predictions

• Replacement Test
• How to omit a feature?

• Replace the feature values with the mean/median value of the feature of normal disks

• Failure Cause Set (FCS): omitting the features outside the set does not change 
the result
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Design: Minimum Failure Cause Set (MFCS)

• Minimum Failure Cause Set (MFCS)
• A MFCS is a FCS
• No subset of a MFCS is a FCS

• Every feature in a MFCS is essential to support the failure prediction
• A MFCS can be a predictive rule
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MFCS  =  { F3 , F5 }
Rule: When F3 and F5 meet some 
constraints, the disk would fail in the 
near future.
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Design: Find out MFCSs to explain failure predictions

• Step 1: Test each feature to find out a MFCS
• Omit each feature and test:

• Result not changed: Continue
• Result changed: Add the feature, rollback the feature values, continue
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F1 F2 F3 F4 F5 F6 =>    Failure MFCS  = {}Original :
F1 F2 F3 F4 F5 F6 =>    Failure MFCS  = {}Omit F1 :
F1 F2 F3 F4 F5 F6 =>    Failure MFCS  = {}Omit F2 :
F1 F2 F3 F4 F5 F6 =>    Normal MFCS  = { F3 }Omit F3 :
F1 F2 F3 F4 F5 F6 =>    Failure MFCS  = { F3 }Rollback F3, Omit F4 :
F1 F2 F3 F4 F5 F6 =>    Normal MFCS  = { F3, F5 }Omit F5 :
F1 F2 F3 F4 F5 F6 =>    Failure MFCS  = { F3, F5 }Rollback F5, Omit F6 :
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Design: Find out MFCSs to explain failure predictions

• Continue to find more MFCSs
• Omit features in found MFCSs and test

• Case 1: Normal prediction: Done

• Case 2: Failure prediction: Go on a new round of tests
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F1 F2 F3 F4 F5 F6 =>    Normal

F1 F2 F3 F4 F5 F6 =>    Failure

F1 F2 F3 F4 F5 F6 =>    Failure MFCS2 = { F4 }
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Design: Find out MFCSs to explain failure predictions

• Can only find out MFCSs without common features
• e.g. { F3 , F5 } and { F4 }

• First round

• Second round

• What if the second MFCS is { F2 , F3 } ?
• F3 has been omitted after is { F3, F5 } found
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Design: Find out MFCSs to explain failure predictions

• Step 2: Validate known MFCSs (Optional)
• Known MFCSs: the MFCSs found from the explanations for existing failure 

predictions.
• {km1, km2, km3, km4, …}

• Found MFCSs from the previous step
• {fm1, fm2, fm3, fm4, …}

• Filters to reduce the validation times
• Not subset
∃𝑓𝑓𝑓𝑓𝑗𝑗: 𝑘𝑘𝑘𝑘𝑖𝑖 ⊂ 𝑓𝑓𝑓𝑓𝑗𝑗 ⇒ 𝑘𝑘𝑘𝑘𝑖𝑖 is not a FCS ⇒ 𝑘𝑘𝑘𝑘𝑖𝑖 is not a MFCS
• Not superset
∃𝑓𝑓𝑓𝑓𝑗𝑗: 𝑓𝑓𝑓𝑓𝑗𝑗 ⊂ 𝑘𝑘𝑘𝑘𝑖𝑖 ⇒ 𝑘𝑘𝑘𝑘𝑖𝑖 is not the minimal ⇒ 𝑘𝑘𝑘𝑘𝑖𝑖 is not a MFCS
• Should have common features
∃𝑓𝑓𝑓𝑓𝑗𝑗: 𝑓𝑓𝑓𝑓𝑗𝑗 ∩ 𝑘𝑘𝑘𝑘𝑖𝑖 ≠ ∅

May 24, 201917



MSST 2019

Design: Measure feature importances on MFCSs

• Calculate feature importances for each MFCS individually
• Measure how much a feature has to be changed to change the prediction.
• e.g. MFCS  =  { F3 , F5 }, to measure the importance of F3

• Find out the change point �𝐹𝐹3 between F3 and F3 with binary search
• Measure the feature importance

May 24, 201918

F1 F2 F3 F4 F5 F6 =>   Failure

F1 F2 F3 F4 F5 F6 =>   Normal

𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹3, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = | F3 − �𝐹𝐹3|
| F3 −F3 |
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Design: Gather explanations to explain models

• Calculate metrics for each known MFCS
• 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: the number of failed disks predicted successfully with the MFCS
• 𝐹𝐹𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: the number of normal disks predicted to fail with the MFCS
• Detection Rate: the importance/popularity of the predictive rule

𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
• False Alarm Rate: the believability of the predictive rule

𝐹𝐹𝐴𝐴𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐹𝐹𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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Design: Gather explanations to explain models

• Measure feature importances on a model
• 𝑇𝑇𝑇𝑇𝐹𝐹𝑖𝑖: the number of failed disks predicted successfully 

with any MFCS including 𝐹𝐹𝑖𝑖
• Feature Importance:

𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹i =
𝑇𝑇𝑇𝑇𝐹𝐹𝑖𝑖

tℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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Evaluation: Datasets

• Datasets

• Visualized explanations on a Random Forests model on D0
• Overheads on the 10 datasets.

May 24, 201921



MSST 2019

Evaluation: Procedure

May 24, 201922
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5. Explain the failure predictions in test set
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Evaluation: Visual explanation for models
• MFCSs sorted by detection rates
• MFCSs sorted by false alarm rates
• Feature importances
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Evaluation: Explanations from MDA and MDI

• Feature importances
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Evaluation: Comparison

• DFPE Explains more
• Predictive rules with their detection rates and false alarm rates
• Can be applied in post-process

• Remove rules with a low detection rate or a high false alarm rate to improve a model
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Evaluation: Comparison

• Feature importances
• Distribute more evenly: easier for feature comparison
• Better for the imbalanced learning problem
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Evaluation: Visual explanation for failure predictions

• Found MFCSs
• Detection rates and false alarm rates for the MFCSs
• Feature importances on the MFCSs
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Evaluation: Explanation from LIME

• Feature importances
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Evaluation: Comparison

• DFPE can 
• Find out multiple causes
• Measure the feature importances individually
• Provides detection rates and false alarm rates
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Evaluation: Detect the hidden bias

• F5: the power-on time
• F5 is important observed from the explanations of MDA, MDI and 

LIME
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Evaluation: Detect the hidden bias

• F5 is a determining factor observed from the explanation of DFPE

• The predictive rule: When the power-on time of a disk exceeds a 
threshold, the disk will fail.

• Age bias?
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Evaluation: Detect the hidden bias

• The values are normalized to [-1, 1]
• The smaller, the more power-on time

• The bias is caused by the data bias in the 
dataset.

• Normal disks: [-0.08, 1]
• Failed disks:   [-1, 1]
• No normal samples with large power-on 

time values
• Maybe the dataset was collected by:

• Export records of all disks at a time
• Update records of failed disks afterwards
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Evaluation: Handle the hidden bias

• Two methods:
• Predict a disk to fail only when there are other MFCSs except {F5} in its 

explanation.
• Remove F5 and rebuild the model

• After handling the hidden bias
• Prediction accuracy on the test set decreases
• More applicable because it does not have the unsound rule.
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Evaluation: The overheads

• DFPE needs more time than MDA and LIME, but
• Compared to the overheads of failure handling
• Given the advantages of high explainability

• The extra overheads are acceptable
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Summary

• Emphasize the importance of explainability
• Point out the data bias in a popular dataset
• Propose an explanation method for complex models in disk failure 

prediction
• Present a case on how the new method helps to detect and handle bias
• Provide a new perspective of measuring feature importances
• Enable intelligent failure handling by providing the failure causes.

• Future work
• Seek more applications for the new explanation method
• Lower the overheads
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Q&A

• Thank you very much!
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