The 35th International Conference on Massive Storage Systems and Technology

DFPE: Explaining Predictive Models for Disk Failure Prediction

Yanwen Xie, Dan Feng, Fang Wang, Jizhong Han, Xuehai Tang, Xinyan Zhang ywxie@hust.edu.cn

May 24, 2019

Background: Disks

- Disks are widely deployed in datacenters
 - Why?
 - Low cost per bit stored
 - Large storage capacity
 - Mature technology
 - For?
 - Cold data
 - Backup
 - Archiving
 - Long-term
 - et al.

Background: Disk failure prediction

- Disk failures are ordinary events
 - A large number of disks
 - Many disks have been serving for several years
- Advantages of disk failure prediction
 - Keep high reliability
 - Lower the impact of the failure and the overheads of the recover

Background: Building a model and deploying

- Collect logs and failures
 - S.M.A.R.T. attributes
- Build machine learning models offline
 - Meet the requirements
 - Fault detection rate (FDR): the higher the better
 - False alarm rate (FAR): the lower the better
- Deploy to online
 - Predict the failure online

Background: Explainability of a model

- Improve the believability of a model
 - Pass the test: work well for existing cases
 - High explainability: give out reasonable explanations
- Explainability/Interpretability:
 - Not only a result,
 - But also explain how it gets the result from the input
 - Which features are important?
 - How important?
- Advantages of high explainability
 - Expose the bias and over-fitting when unreasonable explanations are presented
 - Improve the believability of a model
 - Output more information related to the result to enable intelligent handling subsequently

Background: Building a model and deploying

- Collect logs and failures
- Build machine learning models offline
 - Meet the requirements
 - Explain the model
- Deploy to online
 - Predict the failure online
 - Explain the failure prediction

Background: Models for disk failure prediction

- Simple models
 - Decision Trees, Decision Rules, Naïve Bayes, ...

Low overheads, Fast, High explainability Limited learning capacity and accuracy

- Ensemble models
 - Random Forests, GBDT, XGBoost, ...

High learning capacity and accuracy More basic models, lower explainability

- Complex models
 - Neural Networks: MLP, RNN, LSTM, ...

High learning capacity and accuracy More complex, lower explainability

Background: Explanation methods

- Apply explanation methods
 - Keep the high learning capacity and accuracy of the model
 - Improve the explainability of ensemble/complex models
- Global explanation methods
 - Explain the model
 - Like: MDA(Mean Decrease Accuracy), MDI (Mean Decrease Impurity), ...
 - Measure the feature importances
- Local explanation methods
 - Explain the output results of the model
 - Like: LIME(KDD'16), ...
 - Measure the feature importances

Motivation: The problem

- Complex models are applied to improve the accuracy but with the cost of explainability.
- Current explanation methods can help but the improvement is limited
- Characteristics of disk failure prediction
 - Time series analysis problem
 - Multiple-instance learning problem
 - Unknown failure symptom / time series change point
 - Imbalanced classification problem
 - Failed disks, failure samples and failure predictions are much rarer
 - Only interested in the failure
 - Failure predictions can be caused by multiple causes.

Motivation: The problem

- Global explanation methods (MDA, MDI, ...)
 - Not handle the imbalanced
 - The explanation is dominated by the normal disks and normal samples
- Local explanation methods (LIME, ...)
 - Not handle the imbalanced and the multiple-instance
 - Extra explanations
- Only the feature importances without considering multiple causes

Motivation: How to solve the problem?

- DFPE: Disk Failure Prediction Explainer
 - Time series analysis problem
 - Support models for time series analysis
 - Multiple-instance learning problem
 - Find the failure symptom / time series change point with the given model
 - Imbalanced classification problem
 - Explain failure predictions ONLY
 - Observe that failure predictions can be caused by multiple causes.
 - Define Minimum Failure Cause Set (MFCS) and find out as many MFCSs as possible

Design: Replacement test

• Only explain failure predictions

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 => Failure

- Replacement Test
 - How to omit a feature?
 - Replace the feature values with the mean/median value of the feature of normal disks

$$F_i => F_i$$

• Failure Cause Set (FCS): omitting the features outside the set does not change the result

Design: Minimum Failure Cause Set (MFCS)

- Minimum Failure Cause Set (MFCS)
 - A MFCS is a FCS
 - No subset of a MFCS is a FCS
- Every feature in a MFCS is essential to support the failure prediction
- A MFCS can be a predictive rule

$$MFCS = \{F_3, F_5\}$$

Rule: When F_3 and F_5 meet some constraints, the disk would fail in the near future.

- Step 1: Test each feature to find out a MFCS
 - Omit each feature and test:
 - Result not changed: Continue
 - Result changed: Add the feature, rollback the feature values, continue

```
Original: F_1 F_2 F_3 F_4 F_5 F_6 => Failure MFCS = \{\}

Omit F_1: F_4 F_2 F_3 F_4 F_5 F_6 => Failure MFCS = \{\}

Omit F_2: F_4 F_2 F_3 F_4 F_5 F_6 => Failure MFCS = \{\}

Omit F_3: F_4 F_2 F_3 F_4 F_5 F_6 => Normal FCS = \{F_3\}

Rollback F_3, Omit F_4: F_4 F_2 F_3 F_4 F_5 F_6 => Failure FCS = \{F_3\}

Omit F_5: F_4 F_5 F_6 => Normal FCS = \{F_3, F_5\}

Rollback F_5, Omit F_6: F_4 F_5 F_6 => Failure FCS = \{F_3, F_5\}
```

- Continue to find more MFCSs
 - Omit features in found MFCSs and test
 - Case 1: Normal prediction: Done

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 => Normal

• Case 2: Failure prediction: Go on a new round of tests

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 => Failure

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 => Failure

 $MFCS_2 = \{ F_4 \}$

- Can only find out MFCSs without common features
 - e.g. $\{F_3, F_5\}$ and $\{F_4\}$
 - First round

$$F_1 \quad F_2 \quad F_3 \quad F_4 \quad F_5 \quad F_6 \quad \Rightarrow \quad Failure$$

$$F_1 \quad F_2 \quad F_3 \quad F_4 \quad F_5 \quad F_6 \quad \Rightarrow \quad Failure$$

$$F_1 \quad F_2 \quad F_3 \quad F_4 \quad F_5 \quad F_6 \quad \Rightarrow \quad Failure$$

Second round

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 => Failure $MFCS_2 = \{F_4\}$

- What if the second MFCS is $\{F_2, F_3\}$?
 - F_3 has been omitted after is $\{F_3, F_5\}$ found

- Step 2: Validate known MFCSs (Optional)
 - Known MFCSs: the MFCSs found from the explanations for existing failure predictions.
 - {km₁, km₂, km₃, km₄, ...}
 - Found MFCSs from the previous step
 - {fm₁, fm₂, fm₃, fm₄, ...}
 - Filters to reduce the validation times
 - Not subset

```
\exists fm_i : km_i \subset fm_i \implies km_i \text{ is not a FCS} \implies km_i \text{ is not a MFCS}
```

• Not superset

```
\exists f m_j : f m_j \subset k m_i \implies k m_i \text{ is not the minimal } \Rightarrow k m_i \text{ is not a MFCS}
```

• Should have common features

```
\exists fm_i : fm_i \cap km_i \neq \emptyset
```

Design: Measure feature importances on MFCSs

- Calculate feature importances for each MFCS individually
 - Measure how much a feature has to be changed to change the prediction.
 - e.g. $MFCS = \{F_3, F_5\}$, to measure the importance of F_3

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 => Failure F_4 F_2 F_3 F_4 F_5 F_6 => Normal

- Find out the change point $\widehat{F_3}$ between F_3 and F_3 with binary search
- Measure the feature importance

$$IMP_{F_3, MFCS} = \frac{|F_3 - \widehat{F_3}|}{|F_3 - F_3|}$$

Design: Gather explanations to explain models

- Calculate metrics for each known MFCS
 - TP_{MFCS} : the number of failed disks predicted successfully with the MFCS
 - FP_{MFCS} : the number of normal disks predicted to fail with the MFCS
 - Detection Rate: the importance/popularity of the predictive rule

$$FDR_{MFCS} = \frac{TP_{MFCS}}{\text{the number of failed disks}}$$

• False Alarm Rate: the believability of the predictive rule

$$FAR_{MFCS} = \frac{TF_{MFCS}}{\text{the number of normal disks}}$$

Design: Gather explanations to explain models

- Measure feature importances on a model
 - TP_{F_i} : the number of failed disks predicted successfully with any MFCS including F_i
 - Feature Importance:

$$IMP_{F_i} = \frac{TP_{F_i}}{\text{the number of failed disks}}$$

Evaluation: Datasets

Datasets

Label	Disk Series	Collected From	Download	Normal disks	Failed disks	Sampling Interval	Total time
D0	Seagate ST31000524NS	Baidu Company	[6]	22962	433	1 hour	1 week or 20 days1
D1 D2 D3 D4 D5 D6 D7 D8	Seagate ST4000DM000 Seagate ST3000DM001 Seagate ST31500541AS Hitachi HDS722020ALA330 WDC WD30EFRX HGST HMS5C4040ALE640 HGST HMS5C4040BLE640 Hitachi HDS5C3030ALA630 Seagate ST8000DM002	Backblaze Company	[26]	34295 2898 1679 4535 1161 8569 16181 4512 9882	2502 1006 238 193 152 126 120 116	1 day	Feb 2014 ~ Sep 2017 Feb 2014 ~ Nov 2015 Feb 2014 ~ Sep 2017 Feb 2014 ~ Sep 2017 Feb 2014 ~ Sep 2017 Feb 2014 ~ Sep 2017 Mar 2014 ~ Sep 2017 Mar 2014 ~ Sep 2017 Feb 2014 ~ Sep 2017 May 2016 ~ Sep 2017

¹ For D0, 1 week samples are collected for normal disks and 20 days before the failure for failed disks

- Visualized explanations on a Random Forests model on D0
- Overheads on the 10 datasets.

Evaluation: Procedure

- 1: Split the dataset
- 2: Train a predictive model
- 3: Build knownMFCSs with Step 1

- 4: Perform Step 2 on training data and explain the model
- 5. Explain the failure predictions in test set

Evaluation: Visual explanation for models

Inferred Rule $(MFCS)$	$\mid FDR_{MFCS} \downarrow ^{1}$	FAR_{MFCS}
{5}	0.7822	0.00019
{8}	0.3201	0.00075
$\{3, 9, 11\}$	0.3168	0.00137
{6}	0.1518	0.00000
$\{8, 9, 11\}$	0.0495	0.00006
$\{1, 3, 6\}$	0.0462	0.00000
$\{6, 11\}$	0.0396	0.00000
$\{3, 5\}$	0.0330	0.00093
$\{4, 8, 12\}$	0.0330	0.00006
$\{2, 7, 8, 11\}$	0.0330	0.00006
		•••

Inferred Rule $(MFCS)$	FDR_{MFCS}	$FAR_{MFCS} \downarrow 1$
{3, 9, 11}	0.3168	0.00137
${3,5}$	0.0330	0.00093
{8}	0.3201	0.00075
{5}	0.7822	0.00019
$\{3, 4, 8, 9\}$	0.0198	0.00012
$\{1, 8\}$	0.0033	0.00006
$\{4, 8, 12\}$	0.0330	0.00006
$\{6, 8, 11\}$	0.0231	0.00006
$\{8, 9, 11\}$	0.0495	0.00006
$\{4, 8, 11\}$	0.0099	0.00006
		•••

- MFCSs sorted by detection rates
- MFCSs sorted by false alarm rates
- Feature importances

Feature Importances

Evaluation: Explanations from MDA and MDI

• Feature importances

Evaluation: Comparison

- DFPE Explains more
 - Predictive rules with their detection rates and false alarm rates
 - Can be applied in post-process
 - Remove rules with a low detection rate or a high false alarm rate to improve a model

Inferred Rule $(MFCS)$	$\mid FDR_{MFCS} \downarrow ^{1}$	FAR_{MFCS}
{5}	0.7822	0.00019
{8}	0.3201	0.00075
$\{3, 9, 11\}$	0.3168	0.00137
{6}	0.1518	0.00000
$\{8, 9, 11\}$	0.0495	0.00006
$\{1, 3, 6\}$	0.0462	0.00000
$\{6, 11\}$	0.0396	0.00000
$\{3, 5\}$	0.0330	0.00093
$\{4, 8, 12\}$	0.0330	0.00006
$\{2, 7, 8, 11\}$	0.0330	0.00006

Inferred Rule $(MFCS)$	FDR_{MFCS}	$FAR_{MFCS} \downarrow 1$
{3, 9, 11}	0.3168	0.00137
$\{3, 5\}$	0.0330	0.00093
{8}	0.3201	0.00075
{5}	0.7822	0.00019
$\{3, 4, 8, 9\}$	0.0198	0.00012
$\{1, 8\}$	0.0033	0.00006
$\{4, 8, 12\}$	0.0330	0.00006
$\{6, 8, 11\}$	0.0231	0.00006
$\{8, 9, 11\}$	0.0495	0.00006
$\{4, 8, 11\}$	0.0099	0.00006
•••		

Evaluation: Comparison

- Feature importances
 - Distribute more evenly: easier for feature comparison
 - Better for the imbalanced learning problem

(a) MDI

Evaluation: Visual explanation for failure predictions

- Found MFCSs
- Detection rates and false alarm rates for the MFCSs
- Feature importances on the MFCSs

MFCS	FDR_{MFCS}	FAR_{MFCS}
{6}	0.1518	0.00000
{5}	0.7822	0.00019
$\{3, 9, 11\}$	0.3168	0.00137

Evaluation: Explanation from LIME

• Feature importances

Evaluation: Comparison

• DFPE can

- Find out multiple causes
- Measure the feature importances individually
- Provides detection rates and false alarm rates

MFCS	FDR_{MFCS}	FAR_{MFCS}
{6 }	0.1518	0.00000
$\{5\}$ $\{3, 9, 11\}$	0.7822 0.3168	0.00019 0.00137

Evaluation: Detect the hidden bias

- F_5 : the power-on time
- *F*₅ *is important* observed from the explanations of MDA, MDI and LIME

30

Evaluation: Detect the hidden bias

• F_5 is a determining factor observed from the explanation of DFPE

Inferred Rule (MFCS)	$FDR_{MFCS}\downarrow ^{1}$	FAR_{MFCS}
{5}	0.7822	0.00019
{8}	0.3201	0.00075
$\{3, 9, 11\}$	0.3168	0.00137
(6)	0.1510	0.00000

MFCS	FDR _{MFCS}	FAR_{MFCS}
{6}	0.1518	0.00000
{5}	0.7822	0.00019
$\{3, 9, 11\}$	0.3168	0.00137

- The predictive rule: When the power-on time of a disk exceeds a threshold, the disk will fail.
 - Age bias?

Evaluation: Detect the hidden bias

- The values are normalized to [-1, 1]
 - The smaller, the more power-on time
- The bias is caused by the data bias in the dataset.
 - Normal disks: [-0.08, 1]
 - Failed disks: [-1, 1]
 - No normal samples with large power-on time values
- Maybe the dataset was collected by:
 - Export records of all disks at a time
 - Update records of failed disks afterwards

Evaluation: Handle the hidden bias

- Two methods:
 - Predict a disk to fail only when there are other MFCSs except $\{F_5\}$ in its explanation.
 - Remove F₅ and rebuild the model
- After handling the hidden bias
 - Prediction accuracy on the test set decreases
 - More applicable because it does not have the unsound rule.

Method	FDR	FAR
Original	0.8769	0.0033
1	0.6385	0.0029
2	0.6769	0.0109

Evaluation: The overheads

- DFPE needs more time than MDA and LIME, but
 - Compared to the overheads of failure handling
 - Given the advantages of high explainability
- The extra overheads are acceptable

Summary

- Emphasize the importance of explainability
- Point out the data bias in a popular dataset
- Propose an explanation method for complex models in disk failure prediction
- Present a case on how the new method helps to detect and handle bias
- Provide a new perspective of measuring feature importances
- Enable intelligent failure handling by providing the failure causes.
- Future work
 - Seek more applications for the new explanation method
 - Lower the overheads

Q&A

• Thank you very much!