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Background: Disks

 Disks are widely deployed In datacenters
 Why?
e Low cost per bit stored
* Large storage capacity
e Mature technology
e For?
e Cold data
e Backup
« Archiving
e Long-term
e etal.
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Background: Disk failure prediction

 Disk failures are ordinary
events
A large number of disks

* Many disks have been serving for
several years

« Advantages of disk failure
prediction
« Keep high reliability
 Lower the impact of the failure
and the overheads of the recover

Reliability

Handle
beforehand

Handle
after failure

&

Time
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Background: Building a model and deploying

Collect disk logs
and failures

 Collect logs and failures
« S.M.A.R.T. attributes

e Build machine learning models :
offline Build a model

* Meet the requirements
 Fault detection rate (FDR): the higher

Collect disk logs

A

A 4

Predict by
the model

the better R
 False alarm rate (FAR): the lower the and FAR? ' v
better ' { Failure } [ Normal J
° Deploy to online Meet the requirements prediction prediction

A 4

Deploy the model | Emmmm) Alarm

e Predict the fatlure online

4 MSST 2019 May 24, 2019



Background: Explainability of a model

 Improve the believability of a model
 Pass the test: work well for existing cases
« High explainability: give out reasonable explanations

 Explainability/Interpretability:
* Not only a result,

 But also explain how it gets the result from the input
» Which features are important?
e How important?

« Advantages of high explainability
» Expose the bias and over-fitting when unreasonable explanations are presented

* Improve the believability of a model

 Output more information related to the result to enable intelligent handling
subsequently
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Background: Building a model and deploying

 Collect logs and failures

 Build machine learning models
offline

* Meet the requirements
 Explain the model

 Deploy to online
 Predict the failure online
 Explain the failure prediction

Collect disk logs
and failures

A 4

A

Build a model

Test FDR
and FAR?

Meet the requirements

Explain the model

Reasonable
explanation?

Yes
Deploy the model

MSST 2019

Collect disk logs

Predict by
the model
I

v
Failure Normal
prediction prediction

Explain the failure prediction

I
v v

|

—

Reasonable Unreasonable
explanation explanation
Alarm
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Background: Models for disk failure prediction

e Simple models

Low overheads, Fast, High explainabilit
e Decision Trees, Decision Rules, ‘ g P y

Limited learning capacity and accuracy

Nalve Bayes, ...
* Ensemble models _ _ _
. Random Forests, GBDT, ‘ High Ieammg capacity and accuracy
XGBoost, ... More basic models, lower explainability

o Complex models

. Neural Networks: MLP. RNN. ‘ High learning capacity and accuracy
LSTM More complex, lower explainability
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Background: Explanation methods

» Apply explanation methods
» Keep the high learning capacity and accuracy of the model
 Improve the explainability of ensemble/complex models

 Global explanation methods
e Explain the model
o Like: MDA(Mean Decrease Accuracy), MDI (Mean Decrease Impurity), ...
» Measure the feature importances
 Local explanation methods
 Explain the output results of the model

e Like: LIME(KDD’16), ...
» Measure the feature importances
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Motivation: The problem

o Complex models are applied to improve the accuracy but with the cost
of explainability.

 Current explanation methods can help but the improvement is limited

 Characteristics of disk failure prediction
e Time series analysis problem
« Multiple-instance learning problem
» Unknown failure symptom / time series change point

» Imbalanced classification problem
 Failed disks, failure samples and failure predictions are much rarer
* Only interested in the failure

o Failure predictions can be caused by multiple causes.
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Motivation: The problem

 Global explanation methods (MDA, MDI, ...)

* Not handle the imbalanced
» The explanation is dominated by the normal disks and normal samples

 Local explanation methods (LIME, ...)

* Not handle the imbalanced and the multiple-instance
 Extra explanations

» Only the feature importances without considering multiple causes
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Motivation: How to solve the problem?

 DFPE: Disk Failure Prediction Explainer

* Time series analysis problem
» Support models for time series analysis

« Multiple-instance learning problem
 Find the failure symptom / time series change point with the given model

 Imbalanced classification problem
» Explain failure predictions ONLY

» Observe that failure predictions can be caused by multiple causes.
o Define Minimum Failure Cause Set (MFCS) and find out as many MFCSs as possible
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Design: Replacement test

e Only explain failure predictions
F, F, F; F, F. F, => Failure

* Replacement Test

e How to omit a feature?
» Replace the feature values with the mean/median value of the feature of normal disks
F, = £

 Failure Cause Set (FCS): omitting the features outside the set does not change
the result

F, F, F, F, F, F, => Failure

-GS = {Fy Fy)
£, £, F;, £, F. £, => Failure
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Design: Minimum Fallure Cause Set (MFCS)

e Minimum Failure Cause Set (MFCS)
e AMFCSisaFCS
* No subset of a MFCS i1s a FCS

 Every feature in a MFCS Is essential to support the failure prediction
A MFCS can be a predictive rule

Rule: When F; and F. meet some

MFCS = {F;, Fs} mmmm)  constraints, the disk would fail in the
near future.
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Design: Find out MFCSs to explain failure predictions

o Step 1: Test each feature to find out a MFCS

e Omit each feature and test:
» Result not changed: Continue
* Result changed: Add the feature, rollback the feature values, continue

Original: F, F, F; F, F. F, => Failure MFCS ={}
OmitF,: ¥, F, F; F, F. F, => Failure MFCS ={}
OmitF,: ¥, £, F, F, F. F, => Failure MFCS ={}
OmitF,: ¥, £ £ F, F. F, => Normal  MFCS ={F,)}
Rollback F;, OmitF,: ¥, £, F, £, F. F, => Failure MFCS ={F;}
OmitF.: ¥, £, F; £, E. F, => Normal  MFCS ={F, F.}
Rollback F,, OmitF,: £, £, F, E, F. £, => Failure MFCS ={F, F.}
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Design: Find out MFCSs to explain failure predictions

e Continue to find more MFCSs

o Omit features in found MFCSs and test
» Case 1: Normal prediction: Done
F, F, £, F, £. F, => Normal
o Case 2: Failure prediction: Go on a new round of tests
F, F, £ F, £ F, => Failure

£, E, £, F, £ F, => Failure MFCS, ={F,}
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Design: Find out MFCSs to explain failure predictions

e Can only find out MFCSs without common features
*e9.{F; Fs}and {F,}

e First round

F, F, F; F, F. F, => Failure
_ MFCS ={F, F¢}
£, £, F, £, F. E, => Failure

e Second round
F, F, £ F, £. F, => Failure

MFCS, ={F
E, E, E, F, E. E, => Fallure} 2 =tFe)

» What if the second MFCS is{ F,, F; } ?
 F,has been omitted after is { F;, F.} found
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Design: Find out MFCSs to explain failure predictions

o Step 2: Validate known MFCSs (Optional)

* Known MFCSs: the MFCSs found from the explanations for existing failure
predictions.
e {km, km,, kmy km, ...}
e Found MFCSs from the previous step
* {fmy, fmy fmy fm, ..}
* Filters to reduce the validation times

« Not subset
Ifm;j:km; € fm; = km;isnotaFCS =  km,; is not a MFCS

» Not superset
Ifm;:fm; c km; = km;isnotthe minimal =  km,;isnota MFCS

» Should have common features
Elfm]fm] N kml- +* @
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Design: Measure feature importances on MFCSs

e Calculate feature importances for each MFCS individually
» Measure how much a feature has to be changed to change the prediction.
e 6.9. MFCS = {F;, F:}, to measure the importance of F,
£, E, F, £, F. £, => Failure
£, FE, E, E, F. £, => Normal
» Find out the change point F; between F; and F, with binary search
o Measure the feature importance

k3 - F)
IMPFg,MFCS — |F33—FZ|
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Design: Gather explanations to explain models

o Calculate metrics for each known MFCS
e TPyrcs: the number of failed disks predicted successfully with the MFCS
o FPyrcs: the number of normal disks predicted to fail with the MFCS
 Detection Rate: the importance/popularity of the predictive rule

I'Pyrcs
FDR =
MECS ™ the number of failed disks

 False Alarm Rate: the believability of the predictive rule

e FPurcs
MFCS ™ the number of normal disks
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Design: Gather explanations to explain models

e Measure feature importances on a model
* TPg,: the number of failed disks predicted successfully

with any MFCS including F;
e Feature Importance:

TPE.
IMPg, = -

l
the number of failed disks
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Evaluation: Datasets

e Datasets

Label Disk Series Collected From Download  Normal disks  Failed disks  Sampling Interval Total time

DO Seagate ST31000524NS Baidu Company 6] 22962 433 | hour 1 week or 20 days!
Dl Seagate ST4000DMOO0 Backblare Company [26] 34295 2502 I day Feb 2014 ~ Sep 2017
D2 Seagate ST3000DMO01 2898 1006 Feb 2014 ~ Nov 2015
D3 Seagate ST31500541AS 1679 238 Feb 2014 ~ Sep 2017
D4 Hitachi HDS722020ALA330 4535 193 Feb 2014 ~ Sep 2017
D5 WDC WD30EFRX 1161 152 Feb 2014 ~ Sep 2017
D6 HGST HMS3C4040ALE640 8569 126 Feb 2014 ~ Sep 2017
D7 HGST HMS5C4040BLEG4D 16181 120 Mar 2014 ~ Sep 2017
D8 Hitachi HDS5C3030ALAG30 4512 116 Feb 2014 ~ Sep 2017
D9 Seagate STS000DMO02 0882 110 May 2016 ~ Sep 2017

' For D0, 1 week samples are collected for normal disks and 20 days before the failure for failed disks

* Visualized explanations on a Random Forests model on DO
e Overheads on the 10 datasets.
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Evaluation: Procedure

-« 2 3 4 =
| Training * Model ' knownMFCSs | 2plamilon ot
set the model
1
Dataset
| Test S | Explanation for
| set failure predictions
1: Split the dataset 4: Perform Step 2 on training data and explain the model
2: Train a predictive model 5. Explain the failure predictions in test set

3: Build knownMFCSs with Step 1
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Evaluation: Visual explanation for models

Inferred Rule (M F'(C'S) | FDRuyres L]

FARypes

{5}

(.7822
(0.3201
0.3168
0.1518
0.0495
(0.0462
0.0396
0.0330
0.0330
0.0330

0.00019
0.00075
0.00137
0.00000)
0.00006
0.00000
0.00000
0.00093
0.00006
0.00006

Inferred Rule (M FCS) | FDRypes

FARypes |

[3,9,11}
{3,5}

0.3168
0.0330
0.3201
0.7822
0.0198
0.0033
0.0330
0.0231
0.0495
0.0099

0.00137
0.00093
0.00075
(.00019
0.00012
0.00006
0.00006
0.00006
0.00006
0.00006
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 MFCSs sorted by detection rates
 MFCSs sorted by false alarm rates

e Feature Im

F12
FI11
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Evaluation: Explanations from MDA and MDI

» Feature importances

FI2 ]
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FI10]|
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Features
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Evaluation: Comparison

 DFPE Explains more
e Predictive rules with their detection rates and false alarm rates

e Can be applied in post-process
» Remove rules with a low detection rate or a high false alarm rate to improve a model

Inferred Rule (M FC'S) | FDRuyres L' FARupes Inferred Rule (M F'CS) | FDRyres FARypes !
{5} 0.7822 0.00019 {3,9,11} 0.3168 0.00137
{8} 0.3201 0.00075 {3,5} 0.0330 0.00093
{3,9,11} 0.3168 0.00137 {8} 0.3201 0.00075
{6} 0.1518 0.00000 {5} 0.7822 0.00019
{8,9,11} 0.0495 0.00006 {3,4,8,0} 0.0198 0.00012
11,3,6} 0.0462 0.00000 {1,8} 0.0033 0.00006
{6,11} 0.0396 0.00000 {4,8,12} 0.0330 0.00006
{3,5} 0.0330 0.00093 {6,811} 0.0231 0.00006
{4,8,12} 0.0330 0.00006 {8,9,11} 0.0495 0.00006
{2,7,8,11} 0.0330 0.00006 {4,811} 0.0099 0.00006
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Evaluation: Comparison

 Feature importances
o Distribute more evenly: easier for feature comparison
o Better for the imbalanced learning problem

F12[_Jo.0208 F12 [l 0.0062 F12 [ 0.0070
Fi1] |0.1414 FiIl 01239 F11]0.0024
F10 Jo.0030 F10 | 0.0003 F10 |0.0000
M1 0.1395 Fo [] 0.0141 F9 [0.0003
F8 1474 i )
o B8 o _Fs| 00941 . F8 | | 0.3327
s F7 _ |{}.!]3[}? E F7 [ 0.0049 = F7[0.0009
3 Fo| 00772 E F6 [ ] 0.0666 8 F6 [_Jo.0s3s
F5 | 10,2502 F5 | 0.4638 F5 |0.5069
F4 I 0.0287 F4 | ]0.0644 F4 []0.0144
F3 | 0.1177 F3 : 0.1178 F3 | 0.0007
F2[oorss F2[ ] o.0418 F2 0.0805
FI | Joo247 : T
:I F1]0.0022 F1 | 0.0005
Feature Importances ] -
Feature Importances Feature Importances
{a) MDI (b) MDA
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Evaluation: Visual explanation for failure predictions

e Found MFCSs

MFCS | FDRyrpes FARymrpces

{6} 0.1518 0.00000
{5} 0.7822 0.00019
{3,9,11} 0.3168 0.00137

27

e Detection rates and false alarm rates for the MFCSs
 Feature importances on the MFCSs

MFCS Feature Importances
{6} F6 | 0.5638
15} F3 0.8975
F3 0.5674

139,11}

Fg
F11

0.7568

MSST 2019
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Evaluation: Explanation from LIME

* Feature importances

F3 To

F10 |0
F6 0
Fl 0.0048
8 -0.0112 ]
E -
5 F | o015
g F4 00253 ]
[ -
F7 ] 0.0284
FI1 ] 0.03as
FI12 | 0.068
F2 | 0.0853
F5 | 0.471

Feature Importances
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Evaluation: Comparison

 DFPE can
» Find out multiple causes
» Measure the feature importances individually
» Provides detection rates and false alarm rates

MFCS | FDRypes FARypeos F3 [0
{6} 0.1518 0.00000 1o o
{5} 0.7822 0.00019 i
{3,9,11} 0.3168 0.00137 F6 0
F1 | 0.0048
MFCS Feature Importances , I8 00112 [
. g F9 [ 0.015
{6} 6 | 0.5638 8 r 003 [
F7 ] 0.0284
151 Fs 0.8975 F11 ] 0.0345
F12 | 0.068
F3 .5674 F2 I 0.0853
13,911} | o 0.7568 F5 | 0.471
Fl1 :l 0.0654 Feature Importances
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Evaluation: Detect the hidden bias

* F;: the power-on time
* F5 Is Important observed from the explanations of MDA, MDI and

Features

LIME

F12 || 0.0062
Fir| Joaz230
F10 [ 0.0003
Fo [J0.0141

F8 0.0941

F7 | 0.0049

Fo | ]0.0666

F5 | 0.4638
F4{ ] 0.0644

F3al Joi7s

F2[Jo.0418

F1|0.0022

Feature Importances

{a) MDI
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Evaluation: Detect the hidden bias

* ¢ Is a determining factor observed from the explanation of DFPE

Inferred Rule (M IFC'S) | FDRypes ' FARupes MFCS | FDRyrpes FARypes
{5} | 0.7822 0.00019 {6} 01518 0, |
ey 03201 U075 | {5} 0.7822 0.00019 |

{3.9.11} 0.3168 0.00137 {30117 03768 000137
fteen e (&} AW A TATATAY S

* The predictive rule: When the power-on time of a disk exceeds a
threshold, the disk will fail.

e Age bias?
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Evaluation: Detect the hidden bias

e The values are normalized to [-1, 1]
e The smaller, the more power-on time

* The bias is caused by the data bias in the
dataset.

=]
i L

—m— MNormal disks
—®&— Failed disks

=
e

* Normal disks: [-0.08, 1]

=
(=

o Failed disks: [-1, 1]
* No normal samples with large power-on

Cumulative Distribution Function

time values 7
* Maybe the dataset was collected by: =
* Export records of all disks at a time 00— el

» Update records of failed disks afterwards
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Evaluation: Handle the hidden bias

e Two methods:

* Predict a disk to fail only when there are other MFCSs except {F:} in its
explanation.

e Remove F; and rebuild the model

o After handling the hidden bias
 Prediction accuracy on the test set decreases
* More applicable because it does not have the unsound rule.

Method FLDHR FAR

Original | 0.8769%  0.0033
1 0.6385  0.0029
2 06769  0.0109
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Summary

« Emphasize the importance of explainability
e Point out the data bias in a popular dataset

* Propose an explanation method for complex models in disk failure
prediction

 Present a case on how the new method helps to detect and handle bias
 Provide a new perspective of measuring feature importances
Enable intelligent failure handling by providing the failure causes.

 Future work
» Seek more applications for the new explanation method
* Lower the overheads
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Q&A

e Thank you very much!
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