
Efficient Encoding and Reconstruction of HPC
Datasets for Checkpoint/Restart

Jialing Zhang Xiaoyan Zhuo Aekyeung Moon Hang Liu Seung Woo Son
Department of Electrical and Computer Engineering

University of Massachusetts Lowell
Lowell, MA, USA

Abstract—As the amount of data produced by HPC applica-
tions reaches the exabyte range, compression techniques are often
adopted to reduce the checkpoint time and volume. Since lossless
techniques are limited in their ability to achieve appreciable data
reduction, lossy compression becomes a preferable option. In this
work, a lossy compression technique with highly efficient encod-
ing, purpose-built error control, and high compression ratios is
proposed. Specifically, we apply a discrete cosine transform with
a novel block decomposition strategy directly to double-precision
floating point datasets instead of prevailing prediction-based
techniques. Further, we design an adaptive quantization with
two specific task-oriented quantizers: guaranteed error bounds
and higher compression ratios. Using real-world HPC datasets,
our approach achieves 3x–38x compression ratios while guaran-
teeing specified error bounds, showing comparable performance
with state-of-the-art lossy compression methods, SZ and ZFP.
Moreover, our method provides viable reconstructed data for
various checkpoint/restart scenarios in the FLASH application,
thus is considered to be a promising approach for lossy data
compression in HPC I/O software stacks.

Index Terms—Lossy Compression, Checkpoint/Restart, DCT

I. INTRODUCTION

HPC applications periodically produce extremely large
amounts of data, mainly for snapshotting their states for
possible failure/restart and post-simulation data analysis [1],
[2]. Storing these raw data generated on supercomputers incurs
an excessive overhead of storage space and I/O time. For
example, a total of 170 terabytes of CESM (Community Earth
System Model) data is being produced for CMIP5 (Coupled
Model Intercomparison Project), and multiple petabytes of
data will be generated for the upcoming CMIP6 experi-
ments [3], [4] per entire run. At the same time, however, a
supercomputer like Yellowstone [5] has only tens of petabytes
of centralized file system and data storage, with less than 100
GB/s of aggregated I/O bandwidth.

Compression techniques can help mitigate the burden during
the data I/O phase by reducing checkpoint data size, thereby
shortening the checkpoint (I/O) time [6]–[9]. Traditional loss-
less compression techniques, while preserving 100% of data
fidelity, are not able to achieve appreciable data reduction on
floating-point scientific data [10]–[15]. For example, the loss-
less compressors used in MCRENGINE [14], ISOBAR [15],
and Welton et al. [13] achieved only about 1.15x–1.6x com-
pression ratios which do not meet the demanding datasize

This material is based upon work supported by the National Science
Foundation under Grant No. 1751143.

reduction requirement. Lossy compression, which has been
widely used in image, video, and audio compression, can
realize higher compression ratios than lossless ones. To date,
lossy compression has not been widely adopted in the scientific
domain for several reasons: scientific domain knowledge is
required for the design of efficient lossy compressors, high
compression precision on scientific data is demanded, and
the viability of reconstructed data from lossy compressors
in scientific workflows such as checkpoint/restart is not well
quantified.

On the other hand, lossy compression, which has been
widely used in image, video and audio compressions, can bring
a higher compression ratio than lossless one. Though it will
introduce errors which are not easy to bound, recent studies
have found that scientific data can actually tolerate some error-
bounded loss in their simulation data accuracy [6]. Moreover,
errors, to some extent, are inherent in scientific simulations
where they can be generated from inaccurate scientific sen-
sors [16]–[19]. Thus, applying lossy compression can mitigate
the overall overhead faced by today’s HPC systems.

Existing lossy compression techniques used for scientific
data often apply strategies such as prediction, binary represen-
tation, data transform, and vector quantization. Di and Cap-
pello [20] proposed a technique called SZ, where predictable
data were represented based on several curve-fitting models
and unpredictable datasets were compressed using a binary
representation analysis. Tao et al. [20], [21] extended SZ by
employing an adaptive quantization mechanism to improve
the accuracy of their prediction-based compression algorithm.
The limitation of the prediction-based compressors is that they
were data dependent. The compression performance would de-
grade if the simulation data exhibited less structure [22], [23].
Lakshminarasimhan et al. [24] proposed a technique called
ISABELA, where the B-Spline transformation was applied on
sorted data. However, the compression ratio of ISABELA was
limited due to the sorting process. NUMARCK [25] adopted
quantization mechanisms on the change ratios between consec-
utive checkpoints, but it could not ensure compression error
within the bounds. Yuan et al. [26] presented a parallelized
version of [25], but it had a drawback of its large memory
requirement.

The above-mentioned challenges motivate us to design
a lossy compressor that is efficient, error bounded, able
to achieve high compression ratios, and viable for check-

point/restart. In this work, we propose a novel block decom-
position strategy and combine it with the well-known discrete
cosine transform (DCT) on double-precision floating point
datasets directly. The reason for choosing DCT is because
it has high decorrelation efficiency [9], [27], and its inverse
has the same spectrum as the original data [28]. The major
contributions of our approach presented in this paper are
described as follows:

1) With the proposed novel block decomposition strat-
egy directly applied to floating-point numbers, the modified
transform-based technique not only efficiently decorrelates
data content but also eliminates potential computational over-
heads, such as sorting or ordering coefficients, while achieving
high compression ratios. Combining DCT with customized
decomposition, which improves the ability of DCT to distin-
guish dominant coefficients, and quantization, we were able to
achieve comparable compression ratios with high efficiency.

2) An adaptive quantization customized with our decom-
posed DCT coefficients is designed, in which users can select
the compressor modes based on their task requirements: either
guaranteed maximum relative errors within specified bounds
(by an error-controlled Quantizer-EC) or high compression
ratios within acceptable error rates (by a quantization table
based Quantizer-QT). Strict error control in original (spatial)
domain is achieved in transform-based lossy compressors.
The quantizer is determined for each checkpoint by learning
the distribution of high-frequency DCT coefficients. We also
create a customized encoding model that exploits increased
redundancies in bin indexes by our quantization table designed
for block-based DCT coefficients, improving compression
ratios further.

3) We compare our compressor with state-of-the-art com-
pressors, SZ-1.4 and ZFP, using six scientific datasets from
three real scientific applications, FLASH [29], CMIP5 [30],
and Nek5000 [31], [32]. Our experimental results demon-
strated that our compression approach achieves compara-
ble performance with regard to compression ratio, compres-
sion accuracy (Maximum Relative Error, Normalized Root-
Mean-Square Error (NRMSE), the Peak Signal-to-Noise Ratio
(PSNR), and Pearson correlation) and compression speed. On
the evaluated data, our compressor achieves 3x–38x compres-
sion ratios while ensuring user-specified error bounds.

4) Lastly, we reconstruct the data from two solvers (Sedov
and Cellular) in FLASH, and investigate them under several
checkpoint/restart scenarios. It is shown that restarts from
lossy state are viable without any application disruptions, and
the propagation of single and compounding errors remain
within the user-specified error bounds. This demonstrates that
our compression technique can seamlessly work for check-
point/restart in FLASH application workflows.

II. BACKGROUND

A. Discussion of Prior Work

Datasets generated by HPC applications usually exhibit
diverse characteristics, and thus the compression performance
may vary largely in different applications. Prior studies such as

ZFP [9] have demonstrated that transform-based compression
can provide high data decorrelation efficiency. Because this is
desirable, researchers have been attracted to apply transforms
(well utilized in JPEG, JPEG2000 [33], and MPEG [34]) to
various HPC datasets.

Woodring et al. [35] used the JPEG 2000 technique on
climate data compression, and Belmon et al. [36] used wavelet
transform for spacecraft data compression. However, these
works were limited to evaluating datasets from only one
specific domain. Sasaki et al. [37] applied the Haar wavelet
transform (HWT), and Li et al. [38] applied the Cohen-
Daubechies-Feauveau wavelet transform (CDF 9/7) in their
compressors. However, HWT requires multiple levels of de-
composition while CDF 9/7 is limited to the levels of trans-
forms for information compaction. Yeo et al. [39] and Ratnakar
et al. [40] applied discrete cosine transform (DCT) for its high
efficiency on data volume rendering, however, their approaches
are less capable of bounding errors. It should be noted that
applying JPEG or MPEG techniques directly in scientific data
compression will usually introduce a large number of errors.
Therefore, quantifying errors and proving the viability of the
compressors for checkpoint/restart become important. Though
Sasaki et al. [37] and Woodring et al. [35] showed certain
precision of their compressors, their techniques were limited
to exhibiting the stability and viability for checkpoint/restart
mechanisms. ZFP [9] employed its own optimized data trans-
form rather than using existing discrete ones, however, the
reconstruction errors were not strictly bounded in ZFP, and
the compression ratio was optimized mainly for 2D or 3D
structured datasets.

B. Discrete Transforms

There are several well-known transforms such as dis-
crete cosine transform (DCT), discrete wavelet transform
(DWT), Cohen-Daubechies-Feauveau (CDF), and Fast Walsh-
Hadamard (FWHT) that can be applied in a lossy com-
pressor. While selecting the appropriate transform type for
HPC datasets (in floating-point numbers) or designing an
optimized transform like [9] is challenging, one should note
that most of the commonly used discrete transforms share the
same beneficial property: many natural signals have concise
representations of original data after transforms.

We illustrate this property by using the “rlds” dataset from
CMIP5 (shown in Figure 1a). Figure 1b shows the distribution
of coefficients (in frequency domain) after applying a discrete
transform (the Haar from DWT is used as an example). The
trend sub-signal on the left half of Figure 1b shows a concise
representation of the original data. The sub-signal on the right
half of the figure presents its variations (defined as high-
frequency coefficients), which are significantly smaller than
the original datapoints. This is because discrete transforms
tend to redistribute the energy contained in the signal and
condense most of the energy into a small number of dominant
coefficients (defined as low-frequency coefficients). The en-
ergy represents the data information, and the sum of squares

2

0 2000 4000 6000 8000 10000 12000

data point

0

100

200

300

400

500

d
a

ta
 v

a
lu

e

(a)

0 2000 4000 6000 8000 10000 12000

transformed coefficient

-200

0

200

400

600

800

c
o

e
ff

ic
ie

n
t
v
a
lu

e

(b)

0 2000 4000 6000 8000 10000 12000

transformed coefficient

-200

0

200

400

600

800

1000

1200

1400

c
o
e

ff
ic

ie
n
t
v
a
lu

e

(c)

0 2000 4000 6000 8000 10000 12000

data point

0

100

200

300

400

500

d
a

ta
 v

a
lu

e

original data
reconstruction data

(d)

Fig. 1: The distribution of rlds dataset in various forms. (a)
original data. (b) after applying 1-level Haar wavelet trans-
form (HWT). (c) after applying 3-level HWT. (d) comparison
between the original and reconstructed data with 3-level HWT
(discarding high-frequency coefficients).

of the magnitudes of the coefficients usually represents the
total data information [22].

For more concise representations of the original signal
in transform-based compression, a decomposition process
(e.g., multi-level decomposition) is commonly implemented.
This process involves a recursive application of partitioning
and transforming on high-frequency components, which is
compute-intensive. For instance, Figure 1c shows the distri-

!"#$%

&'%'

()*+,-./0

1023456)701-.89:

9:

;'%'

#4*"%)

9:0

54,<<*5*,"%)

!"#$%&'()*)#+,&%-)#.(/-&0,(1

=)%0054,<<*5*,"%04<0,'5>0234560000

(&?054,<<*5*,"%/

/"#23,'4#5/(*%*%,-%-6 '"#7()89)-':#7%3*)(%-6

;"#!"# +,)00%'%)-*#<(6/-%=)#%-#!3,'4#,(;)(
'330@"; 54,<<*5*,"%04<0,'5>023456

'33 $%&' 54,<<*5*,"%04<0,'5>023456

&?054,<<*5*,"%

A34560&,54B#4)*%*4"0C*%>0&?D70,EFE70234560)*+,04<09:

A34560G34%

1023456)
H*+,I0=0J01 H*+,I0=0J0(.K1/

L4CK<M,N$,"5O0

?4,<<*5*,"% P*F>K<M,N$,"5O

?4,<<*5*,"%

Fig. 2: An illustration of block decomposition with DCT using
the rlds dataset. Our method is applicable to data of any
dimensions as we regard all of them as flattened data.

bution of coefficients after applying 3-level decomposition.
It is observed that the amount of low-frequency coefficients
in Figure 1c is less than that in Figure 1b, and also the
values of low-frequency coefficients in Figure 1c are higher.
This indicates that each of these low-frequency coefficients
(shown on the left in Figure 1c) carries a larger percentage of
information from the original data.

The above-mentioned unique features of discrete data trans-
forms inspired us to design a transform-based lossy com-
pressor. We designed our compressor with the following key
questions in mind: 1) How do we capture dominant coefficients
without incurring compute-intensive steps, such as recursive
transforms? 2) Since we know that most of the transforms
are lossless and the errors are introduced during the quanti-
zation or the elimination of high frequency coefficients (as
shown in Figure 1d), how do we control the errors during
quantization while achieving high compression ratios? 3) What
is the impact of lossy compression in real-world application
workflows?

III. PROPOSED LOSSY COMPRESSOR

A. Block Decomposition with DCT

In our compressor, we select Discrete Cosine Transform
(DCT) (the most commonly used DCT-II) as our transform
method. Since DCT itself does not clearly favor any fre-
quencies (as shown in Figure 3a), we design a novel block
decomposition strategy, as illustrated in Figure 2. The inspira-
tion comes from JPEG and MPEG techniques, where the first
pixel of an image (i.e., the top left pixel in a 2D image) or
the first frame of a video is stored as the most informative
content during compression. In a similar way, we consider
the first DCT coefficient as the most informative coefficient
(i.e., DC coefficient which contains zero frequency), and the
remaining coefficients as the AC coefficients (contain non-zero
frequencies).

In our decomposition, we first partition data into small
blocks. Specifically, we choose the block size of 64 as it can be
used as 8×8 in 2D and 4×4×4 in 3D. Then we apply DCT on
block-based coefficients. Next, we collect the DC coefficient

3

from each block, organize them based on the block sequence
order, and consider them as low-frequency coefficients for the
entire data. The remaining AC coefficients are considered as
the high-frequency coefficients. We note that the block size
affects not only precision but also compression ratios and
availability of parallelism. We also note that, while one can
employ recursive DCT, but it gives lower compression ratios
because of an extra index and sorting/ordering coefficients.

Figure 3b shows the distribution of DCT coefficients after
applying our block decomposition strategy. This indicates that
our decomposition strategy is able to improve the ability of
DCT to distinguish dominant frequency coefficients. Also,
based on the experiments on the rlds dataset, we found that
the transformation time of a DCT with block decomposition
(block size of 64) was an average of 3x faster than that
of a 6-level HWT (N -level HWT transforms or DCT with
block decomposition size of 2N will generate low-frequency
coefficients with the same length of 1/2N). Therefore, by
applying a block decomposition strategy with DCT, we avoid
not only the storage-consuming sorting step during transform
but also time-consuming recursive transforms.

Another advantage of our block decomposition strategy is
that the gradients of small block-based data could be smaller
than that of an entire checkpoint (single iteration). As a result,
applying DCT on block-based data could be more accurate and
efficient, and incurs less memory overhead during encoding
than on an entire checkpoint.

Moreover, we apply an exponent normalization on the
block decomposed coefficients by aligning data values to a
common exponent and expressing each value with reference
to the largest exponent. This alignment unifies the range of
transformed coefficients so that a smaller number of indices
are required during encoding.

B. Quantization Technique

Since the majority of original data information is preserved
in a small number of low-frequency coefficients, we store
them as is and adopt a proper quantization technique on the
high-frequency coefficients. In this section, we propose an
adaptive quantization with two task-oriented quantizers (shown
in Figure 4): either guaranteed maximum relative errors within
specified bounds (Quantizer-EC) or high compression ratios
within reasonable error rates (Quantizer-QT). Since checkpoint
data evolves as simulation goes, our quantizer is determined
for each checkpoint by learning the distribution of transformed
high-frequency DCT components.

a) Quantizer-EC: Quantizer-EC is an adjustable error-
controlled (EC) quantizer, where users can control compres-
sion errors by selecting their desired bound, denoted as P (in
terms of relative error), and a total number of bins, C. Then
a global bound GP is fixed to [−P ∗ C,P ∗ C]. We evenly
partition the global bound GP into C bins, and the width
of each bin is equal to twice of the error bound P . If the
value of a coefficient is within a certain bin range, then it
is approximated as the bin’s center value. By doing this, the
maximum error introduced after quantization will be smaller

0 2000 4000 6000 8000 10000 12000

transformed coefficient

-500

-300

-100

100

300

500

c
o

e
ff

ic
ie

n
t
v
a

lu
e

(a)

0 2000 4000 6000 8000 10000 12000

transformed coefficient

-400

0

400

800

1200

1600

c
o

e
ff

ic
ie

n
t
v
a

lu
e

(b)

Fig. 3: The distribution of DCT coefficients. (a) after applying
DCT transform. Note that we show the coefficients in range [-
500, 500] for illustrative purposes only. The actual coefficients
are in range [-8.4879e+03, 3.3362e+04]. (b) after applying
block decomposition with the block size of 8. Note that the
block size of 8 (instead of the block size of 64) is used here
to show its similarity to 3-level HWT (as shown in Figure 1c)
in terms of coefficient distribution.

 set error bound (P)

 ½ bin width
coefficients value

0-a a

 outbound
save “as exact"

 outbound
save “as exact”

B bins

save as corresponding  
“bin center value”

 each bin

Global bound: (-B*P, B*P)

Global bound

(a) Quantizer-EC

!"

#$%&&'#'%()*

+,-()'.-)'$(/-01% 2!"3

!"456%(%7-)%50851%-7('(65)9%5:'*)7'0,)'$(5$&5%-#9501$#;

<-7)')'$(%:501$#;=5>501$#;*01$#;5?@5

!"

#$%&&'#'%()*

!<<7$A'@-)%:5

!"5#$%&&'#'%()*

-<<7$A 01$#;5?@5

! "

!"01$#;5?@5

@! #$%$&'=>=5>B:-)-*'.%C01$#;5*'.%

(b) Quantizer-QT

Fig. 4: Overview of our proposed quantizers.

than the specified error bound P . For coefficients outside the
global bound GP , we either save them as is to ensure accuracy
or apply an extra truncation to improve the compression
ratio. Algorithm 1 outlines this quantization method in detail.
Although using a larger C can potentially reduce errors, we

4

Algorithm 1 The algorithm of Quantizer-EC.
Input: DTH : high-frequency coefficients.

I: the number of checkpoint iteration.
J : the number of high-frequency coefficient in each iteration.
P : a user-specified error bound.
B: bin.
C: bin index.

Output: DT ′
H : approximated coefficients.

1: for i = 1, 2, . . . , I do
2: Evenly partitioning global bound [−2P ∗ 255, 2P ∗ 255] into 255 bins
3: for j = 1, 2, . . . , J do
4: if DTH i, j ∈ Bi,c, c = 1, 2, . . . , 255 then
5: DTH i, j′ ← approximation (center value of Bi,c)
6: else
7: DTH i, j′ ← DTH i, j
8: end if
9: end for

10: end for

fix C to 255 (28−1) because a larger number of bins requires
extra encoding steps in addition to Huffman coding for the bin
index. Smaller bin sizes also can be used but we find using 255
(or 1-byte) maximizes compression ratios and efficiency with
our encoding scheme. This binning strategy is straightforward
and can be applied to high-frequency coefficients from other
transforms like wavelets.

It should be noted that the binning mechanism described
above is applied in the frequency domain (i.e., DCT co-
efficients), not in the spatial domain (i.e., original data).
Therefore, extra errors could be introduced during the inverse
transform for reconstructing data from lossy state. If the maxi-
mum compression errors (the difference between reconstructed
data and original data) must be guaranteed within the user-
specified error bound P , a revised error bounding method
is needed. This strict error guarantee is dependent on the
transform employed because each transform has a different
inverse transform property. For DCT, its inverse transform
has the same computation as the non-inverse one, which is
calculated as the sum of weighted coefficients. Mathematically
speaking, the new max error in the spatial domain is then
calculated as

√
N times the max error in the frequency domain

(where N is the block size). Therefore, users need to set their
error bound to P /

√
N in the frequency domain such that,

after inverse transforming, the compression errors are bounded
within P in the original domain. This makes DCT with
Quantizer-EC (namely DCT-EC) a conservative yet efficient
compressor.

b) Quantizer-QT: Quantizer-EC described so far applied
the quantization to AC coefficients (high-frequency) directly.
However, there is an opportunity to improve compression
ratios further by applying various quantization methods to AC
coefficients so that the number of bits required for encoding is
reduced. This is inspired by the property of discrete transforms
wherein spatial frequencies represent the detailed information
of the original data. In other words, if the original data values
are spatially smooth (which is common in many scientific
applications that model physical phenomenon), a block in the
DCT domain will have smooth high-frequency coefficients
(i.e., with small variations).

To verify whether there is exploitable smoothness in high-

1 9 17 25 33 41 49 57 64

block coefficient

-5

0

5

10

15

20

25

30

35

c
o
e
ff
ic

ie
n
t
v
a
lu

e

(a) rlds

1 9 17 25 33 41 49 57 64

block coefficient

-15

-10

-5

0

5

10

c
o
e
ff
ic

ie
n
t
v
a
lu

e

(b) Eddy

Fig. 5: The distribution of DCT block coefficients. (a) and (b)
show the overlay of all blocks in a single checkpoint after
applying transform and exponent normalization on rlds and
Eddy datasets with block size of 64.

frequency coefficients, we take the rlds and Eddy datasets
(described in Table I) as examples and plot the overlays of
their block coefficients, as depicted in Figure 5a and Figure 5b,
respectively. Note that these two figures show the overlays of
all the blocks of a single checkpoint after applying the data
transform, not the distribution of the checkpoints shown in
step d of Figure 2. Our investigation of these plots leads to
several findings.

First, most distributions of block coefficients demonstrate
two distinctive patterns: 1) the DC coefficient (the first block
coefficient) contains most of the data information, and the
remaining ones are either small values or zeros (as depicted
in Figure 5a); and 2) besides the first dominant coefficient,
there are a few secondary-informative coefficients, or spikes
(as depicted in Figure 5b). To confirm the occurrence of these
patterns in scientific datasets, we define two cases: Case 1 is
when DC coefficient carries more than 90% of the total energy
of a block, and Case 2 is when Case 1 is not applicable but
the top three dominant coefficients carry more than 90% of
the total energy. Our statistical analysis indicates that there
is an average of 62.67% occurrence of Case 1 and 16.95%
occurrence of Case 2 on six evaluated datasets (described in
Table I). The total occurrence of Case 1 and Case 2 illustrates
that most of the data information can be represented by a
small number of coefficients. In other words, most of the block
coefficients are small in magnitude (i.e., smooth) and contain
less data information.

Second, it is worth mentioning that different checkpoint
data in the same dataset show a similar block pattern (i.e.,
the transformed coefficients capture temporal redundancy).

5

Algorithm 2 The algorithm of Quantizer-QT applied to block
coefficients in a single iteration.
Input: BA: AC block coefficients.

qt: quantization table (initial value are set to zeros).
M : the number of blocks.
N : the number of block coefficient in each block, also the number of qt’s coefficient.

Output: BA′: approximated coefficients.
for n = 1, 2, . . . , N do

2: for m = 1, 2, . . . ,M do
if abs (BAn,m) ≥ qtn,1 then

4: qtn, 1← abs (BAn,m)
end if

6: end for
end for

8: BAn,m′ ← BAn,m
qtn,1 , apply algorithm EC on BAn,m′

Also, the secondary-dominant coefficients (spikes) are always
clustered/oscillated around similar positions, as shown in Fig-
ure 5b. Therefore, if we can model the repetitive pattern from
one checkpoint into a quantization table, then it can be applied
to the blocks showing the same patterns in other checkpoints.
Exploiting the same spatiotemporal pattern not only simplifies
our quantization step (e.g., elimination of a zigzag order used
in JPEG), but also reduces the number of bits required to
represent coefficients.

Since most of the block coefficients show descent smooth-
ness and repetitiveness (as mentioned in above findings),
we design a quantization table qt in our quantizer, namely
Quantizer-QT. We generate qt by finding the maximum
value of the nth coefficient over all the blocks and build a
quantization table of length N − 1, where N is the block
size and n ≤ N . Note that the DC coefficients of the
blocks are not included in this step as they are saved as
is. As outlined in Algorithm 2, qt is calculated as qtn,1 =
max {|BAn,1| , |BAn,2| , |BAn,3| , ..., |BAn,m|}, where m is
the total number of decomposed blocks and the input data
is a one-dimensional floating-point array. All AC coefficients
are then converted into a global bound and quantized using
Quantizer-EC after being divided by qt.

As an example of how Quantizer-QT works, we select
rlds and Eddy datasets to demonstrate our design. Figure 6c
and Figure 6d show the distribution of block coefficients
of rlds and Eddy after being divided by their quantization
tables shown in Figure 6a and Figure 6b. As we can see, the
resulting coefficients require much fewer bit representations
after quantization table is applied as they are much narrower in
range. Our Quantizer-QT is a mechanism for striking a balance
between loss of precision and compression ratio. Therefore,
DCT with Quantizer-QT (namely DCT-QT) is designed for
scientists who want full compression potential but with less
tight error bounds.

C. Data Encoding

The last step of our lossy compression is to encode the
data into our compressed format. In this stage, the first dom-
inant coefficient in each block is stored as its original value.
The remaining high-frequency coefficients will be quantized
and stored as their corresponding approximated values. If a
coefficient lies within the global bound, it will be stored as

1 8 15 22 29 36 43 50 57 63

block coefficient

0

2

4

6

8

c
o

e
ff

ic
ie

n
t

v
a

lu
e

(a) rlds (qt)

1 8 15 22 29 36 43 50 57 63

block coefficient

0

2

4

6

8

c
o

e
ff

ic
ie

n
t

v
a

lu
e

(b) Eddy (qt)

1 10 19 28 37 46 55 63

block coefficient

-5

0

5

10

15

20

25

30

35

c
o
e
ff
ic

ie
n
t
v
a
lu

e

(c) rlds

1 10 19 28 37 46 55 63

block coefficient

-15

-10

-5

0

5

10

c
o
e
ff
ic

ie
n
t
v
a
lu

e

(d) Eddy

Fig. 6: An example quantization table for a single checkpoint
of (a) rlds and (b) Eddy. The overlay of AC coefficients after
applying individual qt to (c) rlds (d) Eddy.

the bin’s center value; otherwise, it will be saved as is for
guaranteeing error rates. For DCT-QT, a 1 × N quantization
table (in double-precision format) needs to be saved. An extra
1 bit is also needed to distinguish the out-of-range coefficients
and approximated coefficients. Lastly, we apply Gzip to bin
indices and dominant coefficients, which further improves the
compression ratio. While we use Gzip, the choice of using
add-ons such as Huffman, Gzip, ZSTD depends on user’s
need, i.e., higher compression ratios vs. higher compression
speed. Note that our encoding scheme can be performed on the

6

TABLE I: Evaluated Datasets and their characteristics.

Code Dataset Description Size

CMIP5 rlds Surface downwelling longwave radiation 218 MB
mrsos Moisture content of soil layer 218 MB

FLASH Sedov Hydrodynamical test code involving strong shocks
and non-planar symmetry

576 MB

Cellular Burn simulation: cellular nuclear burning problem 1.35 GB

Nek5000 Eddy 2D solution to Navier-Stokes equations 820 MB
Vortex Inviscid vortex propagation: tests the problem in

earlier studies of finite volume methods
580 MB

decomposed block, which is similar to ZFP, allowing random
read/write access to compressed floating-point data at block
granularity.

Huffman encoding or Gzip employed here can improve
compression ratios by removing redundancies but can be
time-consuming. However, our approach does not involve
other computationally-intensive tasks. For example, unlike
ZFP where floating-point data is converted into fixed-point
representations before transform, we apply DCT directly on
floating-point data. DCT itself is also fast compared to other
transforms and can be performed efficiently because of our
block decomposition. DCT transform speed is related to data-
size and larger data size will lead to a linear time increase.

IV. EVALUATION

A. Experimental Setup

1) System: We conducted our experiments on the Mas-
sachusetts Green High Performance Computing Cluster
(MGHPCC) for running FLASH and Nek5000 applications
at various scales ranging from 64 to 1,024 cores to gen-
erate datasets for our experiments. We used MPICH-3.2
and PnetCDF-1.7.0 for running the evaluated applications
(FLASH-4.2.1 and the latest version of Nek5000 solvers from
the repository).

2) Dataset: We used six real-world scientific datasets ob-
tained from three HPC code packages: FLASH, CMIP5, and
Nek5000, as shown in Table I. The number of checkpoints is
between 153 and 1,000 depending on datasets. The applica-
tions used in our evaluation are from three different scientific
domains: climate simulation, hydrodynamic simulation, and
nuclear combustion simulation. They all produce double-
precision floating-point data. For the solvers and datasets
provided in the FLASH code, we evaluated the five most
important variables: temperature, pressure, density, initial en-
ergy, and total energy from each checkpoint file. For the
benchmarks provided in the CMIP5 code package, we used
two atmospheric outputs of climate simulations: rlds and
mrsos (stored in a separate 1D array). These two datasets are
known to be hard to compress, due to less correlation between
neighboring datapoints compared to the mesh data produced
by conventional simulations, such as hydrodynamics and fluid
dynamics.

3) Evaluated Schemes: We compared our compression al-
gorithms with two state-of-the-art lossy compressors: SZ (SZ
1.4) and ZFP. SZ represents prediction-based compressors

!

"

#

$

%

&!

&"

&#

&$

!

&!

"!

'!

#!

(!

$!

)!

%!

+,- .-/- 01++2+3* 41,/5 6/*718 9,,:

4
;
3
<
<
/
<
==
1
<
7*
/
>
:
=?
@
A7
B

0
/
.
>
*1
-
-
A/
<
=C
3
7A
/

DE9F DE9F"!!!

Fig. 7: The bar graphs (primary y-axis) show the compression
ratios using off-the-shelf JPEG and JPEG 2000 techniques,
with quality of 75; The line graphs show the Entropy of
evaluated datasets.

which utilize curve-fitting, scalar quantization and Huffman
coding to compress predictable data points. ZFP represents
transform-based compressors which include mantissa conver-
sion and orthogonal transformation. Other lossy compressors
were not evaluated here as they exhibited similar or less
competitive results to SZ and ZFP [20]. Lossless compressors
were not considered in our evaluation due to their limitation in
compression ratios (e.g., no more than 2x based on Shannon’s
theorem summarized in [6]).

4) Evaluation Metrics:
a) Entropy: Shannon entropy, a popularly used metric in

lossless compression, is used to predict the compressibility of
datasets. Specially, the Entropy (H in bits) of a dataset x is
calculated as follows: H(x) = −

∑n
i=1 P (xi)log(P (xi)).

b) Compression Ratio and Accuracy: Compression ratio
(CR), is used to evaluate the size reduction from compression,
which is defined as the original size divided by the compressed
size. To measure the difference between the original data
and the reconstructed data, we use the metrics defined in Z-
checker [41], a framework for assessing lossy compressors
for scientific data. Specifically, we use: (1) Maximum Relative
Error (denoted as max θ), which is calculated as the maximum
absolute error divided by the value range of the data. We
denote θ as the relative error instead of pointwise error because
of the different value ranges exhibited in datasets. In our
compression algorithm, users can define their own relative
error bound (P). For DCT-EC, the relative error (θ) is guar-
anteed within the error bound; (2) Average Error: Normalized
Root-Mean-Square Error (NRMSE) and Mean Relative Error
(θ̄) are used to measure average relative error; (3) Distortion
and Correlation: The Peak Signal-to-Noise Ratio (PSNR) and
Pearson Correlation are used to evaluate compression error.

B. Evaluation Results

1) Entropy and Compression Ratio: We first use Shannon
Entropy as well as the achieved compression ratios from the
image-based compression techniques, JPEG and JPEG2000
to estimate the compressibility of the datasets. We use off-
the-shelf JPEG techniques as a compression-ratio indicator
by fixing compression quality. As shown in Figure 7, the
entropies of rlds, mrsos, Vortex and Eddy are higher and
their compression ratios are lower than those of Sedov and

7

!"#$

!"#%

!"#&

!"#'

!"#(

!"#!

)

*

!$

(&

'(

&)

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

2345 62575 .8479 ,833:3;2 "44< =72>8?

@
A
B
.
"

,
7
6
C
28
5
5
D7
E
FA
;
>D
7
FG
H
2I

+;>;58>5

(a) error bound=1E-3

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

*

&

!*

!&

)*

)&

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

+
,
-
#"
,
.
/

/
0
1

2345 62575 .8479 ,833:3;2 "44< =72>8?

@
A
B
.
"

,
7
6
C
28
5
5
D7
E
FA
;
>D
7
FG
H
2I

+;>;58>5

(b) error bound=1E-4

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

*

)

&

+

!,

!'

-
.
/
#"
.
0
1

1
2
3

-
.
/
#"
.
0
1

1
2
3

-
.
/
#"
.
0
1

1
2
3

-
.
/
#"
.
0
1

1
2
3

-
.
/
#"
.
0
1

1
2
3

-
.
/
#"
.
0
1

1
2
3

4567 84797 0:69; .:55<5=4 "66> ?94@:A

B
C
D
0
"

.
9
8
E
4:
7
7
F9
G
HC
=
@F
9
HI
J
4K

-=@=7:@7

(c) error bound=1E-5

Fig. 8: The bar graphs (primary y-axis) show compression
ratios for DCT-EC, SZ, and ZFP with the max error bounds
(P) of (a) 1E−3, (b) 1E−4 and (c) 1E−5. The markers
(secondary y-axis) show deviations between original data and
reconstructed data in terms of NRMSE with different lossy
compressors. (blue circle: DCT-EC, orange triangle: SZ, grey
square: ZFP).

Cellular. Therefore, we consider rlds, mrsos, Vortex and Eddy
as hard-to-compress datasets. It is interesting to note that the
compression ratios achieved by applying JPEG are higher than
the ones from JPEG 2000.

2) Compression Ratio and Error Bound: Figure 8 presents
the compression ratios (CRs) of DCT-EC, SZ and, ZFP, when
P is set to 1E−3, 1E−4, and 1E−5, respectively. Since ZFP
might not respect the error bound, for a fair comparison, we

!"#$

!"#%

!"#&

'

$

!'

!$

('

($

&'

&$

%'

)
*
+
#,
+
-
.

.
/
0

)
*
+
#,
+
-
.

.
/
0

)
*
+
#,
+
-
.

.
/
0

)
*
+
#,
+
-
.

.
/
0

)
*
+
#,
+
-
.

.
/
0

)
*
+
#,
+
-
.

.
/
0

1234 51464 -7368 *72292:1 "33; <61=7>

?
7
:
@
AB
7
2:
=C
8
7
A"
11
6
1A
D5
7
:
@
A!
E

*
6
5
F
17
4
4
C6
@
AB
:
=C
6
AD
G
1E

):=:47=4

Fig. 9: The bar graphs show compression ratios for DCT-QT,
SZ, and ZFP whereas the markers show deviations between
original data and reconstructed data in terms of Mean Relative
Error (θ̄).

manually adjust P of ZFP to guarantee that the max θ is
smaller than P . While we observe an overall trend that stricter
error bounds give lower CRs as shown in Figure 8, DCT-EC
shows the highest CRs for Sedov and Cellular for all three
error bounds we evaluated. For example, when P is 1E−3, the
CR of DCT-EC for Cellular is 38, which is 290% and 790%
higher than SZ’s 13 and ZFP’s 4.8, respectively. For Sedov,
with P=1E−5, the CR of DCT-EC is 7.1, which is 140% and
167% higher than SZ’s 5 and ZFP’s 4.2, respectively. It is
also shown that DCT-EC has the highest CRs for Eddy and
Vortex with P of 1E−3. We observe that ZFP has the best
compression ratios for mrsos, which is one of the hard-to-
compress datasets according to our entropy analysis (discussed
in Section IV-B1). DCT-EC did not perform well with mrsos
because of its characteristics: high entropy but low energy
concentration after transforms. Our analysis indicates that ZFP
requires fewer bits to encode the coefficients in mrsos than
DCT-EC and SZ. Figure 8 also presents the average errors (in
terms of NRMSE) for DCT-EC, SZ and ZFP with P of 1E−3,
1E−4, and 1E−5. It is shown that, for most of the datasets,
both ZFP and DCT-EC produce relatively lower average error
than SZ does. DCT-EC also produces a low average error while
achieving high CRs on Sedov and Cellular.

We next compare the performance of DCT-QT with SZ
and ZFP. Since the coefficients in DCT-QT are adjusted by
the quantization table, DCT-QT may not strictly bound the
user-defined error rates. Therefore, for a fair comparison, we
adjusted P and evaluated CRs of SZ and ZFP by aligning the
mean relative error (θ̄) to the same value for each dataset. As
shown in Figure 9, DCT-QT achieves much higher CRs than
SZ and ZFP on rlds, Sedov, Cellular, Eddy, and Vortex. The
CR on mrsos is close to 10, which is quite competitive.

To prove how much higher compression ratio DCT-QT
could achieve while guaranteeing max θ within certain error
bound, we compare DCT-QT with SZ by adjusting SZ’s P to
max θ of DCT-QT. The comparison result shows that DCT-
QT can achieve CRs of 122.83, 26, 203.10, 183.54, 19.65
and 62.27 on rlds, mrsos, Cellular, Sedov, Eddy, and Vortex,
respectively, while SZ can achieve CRs of 42.00, 19.62, 88.21,

8

TABLE II: Evaluation of Peak Signal-to-Noise Ratio (PSNR (dB)) with different lossy compressors on selected datasets.

max θ
rlds mrsos Sedov Cellular Eddy Vortex

DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 76.85 67.01 64.83 83.25 70.56 66.34 81.14 84.53 67.27 76.89 73.51 64.98 72.08 70.49 64.77 75.79 68.67 64.77
1E−4 97.30 91.05 84.79 104.58 94.58 85.647 104.41 101.20 86.55 96.91 91.86 84.83 92.83 88.57 84.77 95.77 86.69 84.77
1E−5 120.81 109.08 Inf 124.88 112.66 106.35 127.94 121.28 107.81 117.98 121.98 109.42 115.70 106.63 Inf 118.51 104.70 104.82

TABLE III: Evaluation of Pearson correlation with different
lossy compressors on selected datasets.

max θ
rlds mrsos

DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 ≥1-10−7 ≥1-10−6 ≥1-10−6 ≥1-10−8 ≥1-10−7 ≥1-10−6

1E−4 ≥1-10−9 ≥1-10−9 ≥1-10−8 ≥1-10−10 ≥1-10−9 ≥1-10−8

1E−5 ≥1-10−12 ≥1-10−11 ≥1-100 ≥1-10−12 ≥1-10−11 ≥1-10−10

max θ
Sedov Cellular

DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 ≥1-10−7 ≥1-10−8 ≥1-10−6 ≥1-10−7 ≥1-10−7 ≥1-10−6

1E−4 ≥1-10−10 ≥1-10−9 ≥1-10−8 ≥1-10−9 ≥1-10−9 ≥1-10−8

1E−5 ≥1-10−12 ≥1-10−11 ≥1-10−10 ≥1-10−11 ≥1-10−12 ≥1-10−11

max θ
Eddy Vortex

DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 ≥1-10−7 ≥1-10−6 ≥1-10−6 ≥1-10−7 ≥1-10−6 ≥1-10−6

1E−4 ≥1-10−9 ≥1-10−8 ≥1-10−8 ≥1-10−9 ≥1-10−8 ≥1-10−8

1E−5 ≥1-10−11 ≥1-10−10 ≥1-100 ≥1-10−11 ≥1-10−10 ≥1-10−10

141.32, 16.09 and 59.18, respectively. (The specific max θ
is set to 5E−2, 1E−2, 7E−2, 8E−2, 1.5E−2, and 1E−2).
It is shown that with less tight error bounds, the CR of
DCT-QT increases faster than that of SZ. The high CRs
achieved by DCT-QT can help scientists who have special
needs on checkpoint reduction but with fewer constraints on
error precision. Overall, both DCT-EC and DCT-QT show
remarkably higher compression ratios for FLASH datasets
(multi-physics, hydrodynamic code) and provide comparable
results for the other datasets.

3) Distortion and Correlation: Table II and III show the
PSNRs and the Pearson correlation coefficients for DCT-EC,
SZ and ZFP. From Table II, we can see that with P of
1E−5, all three compressors obtain PSNRs higher than 100.
Compared with SZ and ZFP, DCT-EC obtains a higher range
between 110 and 120 on most datasets. From Table III, we can
see that all three compressors have “five nines” [42] or better
correlations with all three P s. For DCT-QT, it obtains PSNRs
of no more than 50 and Pearson correlations of no more than
0.9999 on six datasets (with max θ of around 1E−3), which
shows its limitation in compression precision compared with
DCT-EC.

4) Distribution of Compression Errors: Figure 10 shows
the distribution of relative errors for DCT-EC, SZ, and ZFP
with P of 1E−4. We can see that the distribution of com-
pression error for SZ is nearly uniform while those for ZFP
and DCT-EC are nearly normal. Moreover, DCT-EC is more
conservative with regard to the accuracy requirement, which
is due to its transform property discussed in Section II-B and
Section III-B. Also, from the cumulative distribution function
(CDF), we can see that more compression errors are centered

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Relative Compression Error 10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
o
u
n
ts

(a) SZ

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Relative Compression Error 10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
o
u
n
ts

(b) ZFP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Relative Compression Error 10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
o
u
n
ts

(c) DCT-EC

Fig. 10: The distribution of relative error (θ), with P=1E−4,
for (a) SZ (b) ZFP (c) DCT-EC (similar trend in DCT-QT). The
primary y-axis shows the error histogram and the secondary
y-axis shows the cumulative distribution function (CDF).

around zero for DCT-EC than SZ and ZFP. This illustrates that
DCT-EC introduces less errors than SZ and ZFP in a given
P . We observe similar trends with P of 1E−3 and 1E−5.

5) Impact on Checkpoint/Restart: In real simulation runs,
the errors of successive results after restarting from failures
may or may not converge. Therefore, evaluating the impact of
errors introduced by lossy compression against the original
values at each time step is critical, even if all evaluated
compressors provide a mechanism to guarantee error bounds.
Since DCT-EC, SZ and ZFP are designed for scientists who
have high compression precision demands, we choose them
for real simulation workflow comparison. To quantify the
impact of errors, we obtain their compressed restart files and
compare with their actual restarts. Since the higher CRs on

9

!"#$

!"#%

!"#&

!"#'

!"#!

!"()

!
*
$

'
)
!

'
)
+

'
!
&

'
!
*

'
'
$

'
&
!

'
&
+

'
%
&

'
%
*

'
$
$

'
,
!

'
,
+

'
+
&

'
+
*

'
-
$

'
*
!.
/
0
12
3
4/
56
7
3
1"
88
9
81
:;
/
0
1!
<1

=6;>4/569?1@538/569?
ABC#"B1!"#& ABC#"B1!"#% ABC#"B1!"#$

DEF1!"#& DEF1!"#% DEF1!"#$

=D1!"#& =D1!"#% =D1!"#$

(a) Cellular (single restart)

!"#$

!"#%

!"#&

!"#'

!"#!

!"()

'
$

&
&

%
!

%
*

$
+

,
$

+
&

-
!

-
*

*
+

!
)
$

!
!
&

!
'
!

!
'
*

!
&
+

!
%
$

!
$
&

.
/
0
12
3
4/
56
7
3
1"
88
9
81
:;
/
0
1!
<1

=6;>4/569?1@538/569?

ABC#"B1!"#& ABC#"B1!"#% ABC#"B1!"#$

DEF1!"#& DEF1!"#% DEF1!"#$

=D1!"#& =D1!"#% =D1!"#$

(b) Sedov (single restart)

!"#$

!"#%

!"#&

!"#'

!"#!

!"()

!
*
+

'
)
'

'
)
,

'
!
%

'
'
)

'
'
+

'
&
'

'
&
,

'
%
%

'
$
)

'
$
+

'
+
'

'
+
,

'
-
%

'
,
)

'
,
+.
/
0
12
3
4/
56
7
3
1"
88
9
81
:;
/
0
1!
<1

=6;>4/569?1@538/569?

ABC#"B1D9?E3D>5673183E5/851/51!*+ ABC#"B1E3D9?F183E5/851/51'&)

GHI1D9?E3D>5673183E5/851/51!*+ GHI1E3D9?F183E5/851/51'&)

=G1D9?E3D>5673183E5/851/51!*+ =G1E3D9?F183E5/851/51'&)

(c) Cellular (multiple, or compound, restart)

Fig. 11: The maximum relative error variation during simula-
tion timestamps in two solvers in FLASH. The y-axis shows
the maximum relative error between the data generated from
restart using reconstructed data and the original data. Note
that, in (a) and (b), the restart points of SZ and DCT-EC show
value no higher than 1E−5.

Sedov and Cellular datasets are very promising, we use Sedov
and Cellular solvers available in FLASH for comparison.
Specifically, we evaluate the restart of Sedov and Cellular at
time step 25 and 195, respectively, and run them until the

!

"!

#!

$!

%!

&!!

&"!

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

0123 40353 ,6257 (6118190 +22: ;50<6=

/
05
>
6
3
3
?@
A
BC
9
<6
BD
E
F
G3
H

'9<936<3

(a) Compression

!

"!

#!

$!

%!

&!!

&"!

&#!

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

'
(
)
*+
(

,
-

-
.
/

0123 40353 ,6257 (6118190 +22: ;50<6=

/
05
>
6
3
3
?@
A
BC
9
<6
BD
E
F
G3
H

'9<936<3

(b) Decompression

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

,-./01223-4

560371

148-934:

;<=473>=73-4

?,@

-7A10B-C10A1=92

?18-./01223-4

3987

918-934:

501=9

-7A10B-C10A1=92

(c)

Fig. 12: (a) Compression and (b) Decompression speed (MB/s)
using DCT-EC, SZ and ZFP with P of 1E−3. Similar trends
were observed with P of 1E−4 and 1E−5. (c) Breakdown of
compression and decompression time with P of 1E−3.

simulation ends. We have tried the restart from 1 to the final
steps and observed the same effect because each step, after
restart, solves the same Sedov explosion problem. We choose
step 25 and 195 to reflect the randomness. The evaluations are
done with error bound P of 1E−3, 1E−4, and 1E−5.

First, we observe that the overall execution, in terms of the
number of simulation steps to converge, is not affected by the
reconstructed data. Both solvers end at the same simulation
time steps as the original executions. This demonstrates that
the error in the reconstructed data is not significantly influenc-
ing the mathematical formulas that each solver is computing.

Next, we evaluate how the error introduced by each com-

10

pressor translates into errors in the actual scientific data
and its impact on real application simulations. As shown
in Figure 11a, the reconstructed restart file obtained from
SZ with P of 1E−3 generates a large spike after 20 steps
from the restart. While we conjecture that the exact cause
of this spike is related to a specific mathematical formula
in Cellular, it needs further verification from the domain
scientist. From Figure 11a, we observe that the reconstructed
restart files obtained from SZ with all three P s show small
divergence. The max θ keeps increasing for all cases. We
attribute this to the inherent error distribution in SZ, where
some scientific researchers require the compression errors to
follow Gaussian white noise distribution to satisfy the viability
of simulation. From Figure 11a, we also observe that, for all
reconstructed restart cases, the relative error for ZFP or DCT-
EC becomes relatively stable after a couple of simulation time
steps and finally shows the trend of decaying. With the highest
allowable error rate (P= 1E−3), DCT-EC shows a quicker
stabilization than the other two compressors. A similar trend
is also observed for Sedov, as shown in Figure 11b. With
the lowest error rate (P = 1E−5), all three compressors show
slower convergence, and thus more simulation steps are needed
before they stabilized.

In addition, we evaluate the effect of compounded errors
with P of 1E−3 on Cellular using the following restart
scenarios: (1) two successive restarts (which is similar to
[43]), at time step 195 and 196, and (2) two restarts at two
different time intervals (second restart at time step 230). Both
scenarios show that the compounded errors overlap with the
errors generated from the original restart, which is encouraging
because all three compressors work well with multiple restarts.
DCT-EC shows minimal impact of compounded errors and
remains below the error bound P .

All of these results demonstrate that both solvers (Sedov and
Cellular) worked well with various checkpoint/restart scenar-
ios (single or multiple restarts) in FLASH without disrupting
the original execution time and without a noticeable deviation
from numerical convergence. Therefore, as far as FLASH
solvers are concerned, all compressors do not require users
to adjust data for consistency after a restart.

6) Compression Throughput: Figures 12a and 12b present
the average compression and decompression speeds (excluding
disk I/O) on all evaluated datasets using DCT-EC, SZ, and
ZFP, with P of 1E−3. As shown in these figures, DCT-EC
and ZFP outperform SZ on most datasets. This indicates that
transform-based compression is overall faster than prediction-
based compression, at least for the datasets evaluated in this
work. It should be noted that DCT-EC includes Gzip encoding
on indices, while ZFP does not. It is also shown in the figures
that the decompression speeds are faster than compression
speeds on all three compressors, showing a promising result
for HPC workloads since data is compressed once and decom-
pressed frequently. Figure 12c, on the other hand, shows the
breakdown of DCT-EC. We can see that the encoding time
including encoding is around 60% of the total compression
time. For DCT-QT, the quantization takes an average of 26.3%

TABLE IV: Scalability of compression and decompression.

Number of Comp Comp parallel Decomp Decomp parallel
threads speedup efficiency speedup efficiency

2 1.99 99.5% 1.99 99.5%
4 3.98 99.5% 3.97 99.25%
8 7.88 98.5% 7.87 98.38%

16 14.7 91.88% 14.9 93.13%

of the total compression time on all evaluated datasets.
7) Scalability: Table IV presents the scalability results of

the compression and decompression time (excluding the I/O
time) of DCT-EC (with P of 1E−3) on dataset Celluar while
varying the number of threads from 2 to 16. We ran each
experiment ten times and used the average time. As shown
in the table, the parallel efficiencies for both compression
and decompression are at least above 91.8% and have almost
linear speedup with an increasing number of threads. We
attribute this linear speedup to the block-based approach in our
compressor design. For example, DCT transform can be done
in parallel with the decomposed blocks. Subsequent block-
based filtering and quantization can be also done in parallel
without any communication among the distributed blocks. In
order to calculate the exact file offset for locally encoded
data for writing, our method needs to perform parallel prefix
operations, which is straightforward to parallelize. Overall, we
believe that our proposed method is scalable at a production
level.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a lossy compression technique.
Specially, we apply DCT with a novel block decomposition
strategy and design an adaptive quantization with two task-
oriented quantizers: Quantizer-EC and Quantizer-QT. We com-
pare our compressor with SZ-1.4 and ZFP, using six scientific
datasets from three real scientific applications. Our com-
pression approach achieves comparable performance, showing
3x–38x compression ratio while guaranteeing user-specified
error bounds on the evaluated datasets. Moveover, we investi-
gate the reconstructed data from two solvers under several
checkpoint/restart scenarios. It is shown that restarts from
a lossy state are viable without any application disruptions,
and the propagation of single and compounding errors remain
within the user-specified error bounds. We empirically demon-
strate that our compression technique can seamlessly work
for checkpoint/restart employed in the FLASH application
workflows and thus is considered as a promising approach
for lossy data compression.

In our future work, we plan to expand the proposed com-
pression technique in several ways. First, we plan to improve
the compression ratio of our technique by optimizing the
quantization model. We also want to improve the compres-
sion quality of our technique on larger datasets. Lastly, we
plan to incorporate our compression mechanism into various
layers in the HPC I/O software stack, including MPI-IO [44],
PnetCDF [45], HDF5 [46], and ADIOS.

11

REFERENCES

[1] P. Beckman, R. Brightwell, B. R. de Supinski, M. Gokhale, S. Hofmeyr,
S. Krishnamoorthy, M. Lang, B. Maccabe, J. Shalf, and M. Snir,
“Exascale Operating Systems and Runtime Software Report,” 2012.

[2] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, J. Dongarra, A. Geist, G. Grider,
R. Haring, J. Hittinger, A. Hoisie, D. Klein, P. Kogge, R. Lethin,
V. Sarkar, R. Schreiber, J. Shalf, T. Sterling, and R. Stevens, “ASCAC
Subcommittee for the Top Ten Exascale Research Challenges,” 2014.

[3] R. J. Small, J. Bacmeister, D. Bailey, A. Baker, S. Bishop, F. Bryan,
J. Caron, J. Dennis, P. Gent, H. ming Hsu, M. Jochum, D. Lawrence,
E. Muñoz, P. diNezio, T. Scheitlin, R. Tomas, J. Tribbia, Y. heng
Tseng, and M. Vertenstein, “A new synoptic scale resolving global
climate simulation using the Community Earth System Model,” Journal
of Advances in Modeling Earth Systems, pp. 1065–1094, 2014.

[4] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka, S. A. Mick-
elson, J. Edwards, M. Vertenstein, and A. Wegener, “A Methodology
for Evaluating the Impact of Data Compression on Climate Simulation
Data,” in Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing (HPDC), 2014, pp.
203–214.

[5] Computational and Information Systems Laboratory, “Yellowstone: IBM
iDataPlex System (Climate Simulation Laboratory),” https://www2.cisl.
ucar.edu/resources/computational-systems/yellowstone, 2012.

[6] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W. keng Liao, and
A. Choudhary, “Data Compression for the Exascale Computing Era
- Survey,” Supercomputing Frontiers and Innovations, vol. 1, no. 2,
2014. [Online]. Available: http://superfri.org/superfri/article/view/13

[7] D. Ibtesham, D. Arnold, K. B. Ferreira, and P. G. Bridges, On the
Viability of Checkpoint Compression for Extreme Scale Fault Tolerance.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 302–311.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-29740-3 34

[8] X. Ni, T. Islam, K. Mohror, A. Moody, and L. V. Kale, “Lossy
Compression for Checkpointing: Fallible or Feasible?” in Proceedings
of the International Conference For High Performance Computing,
Networking, Storage and Analysis (SC), 2014.

[9] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, Dec 2014.

[10] “GNU Gzip,” http://www.gzip.org/.
[11] P. Lindstrom and M. Isenburg, “Fast and Efficient Compression of

Floating-Point Data,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5,
pp. 1245–1250, 2006.

[12] M. Dipperstein, “LZSS (LZ77) Discussion and Implementation,” http:
//michael.dipperstein.com/lzss/.

[13] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. Ross,
“Improving I/O Forwarding Throughput with Data Compression,” in
Proceedings of the IEEE International Conference on Cluster Comput-
ing, Sept 2011, pp. 438–445.

[14] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. de Supinski,
and R. Eigenmann, “MCREngine: A scalable checkpointing system
using data-aware aggregation and compression,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Nov 2012.

[15] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. S. Chang, S. H. Ku, S. Ethier,
S. Klasky, R. Latham, R. Ross, and N. F. Samatova, “ISOBAR Precondi-
tioner for Effective and High-throughput Lossless Data Compression,” in
IEEE 28th International Conference on Data Engineering, April 2012,
pp. 138–149.

[16] G. Han, X. Wu, S. Zhang, Z. Liu, and W. Li, “Error Covariance
Estimation for Coupled Data Assimilation Using a Lorenz Atmosphere
and a Simple Pycnocline Ocean Model,” Journal of Climate, vol. 26,
no. 24, pp. 10 218–10 231, 2013.

[17] D. Zupanski and M. Zupanski, “Model Error Estimation Employing an
Ensemble Data Assimilation Approach,” Monthly Weather Review, vol.
134, no. 5, pp. 1337–1354, 2006.

[18] J. L. Anderson, “An Ensemble Adjustment Kalman Filter for Data
Assimilation,” Monthly Weather Review, vol. 129, no. 12, pp. 2884–
2903, 2001.

[19] J. S. Whitaker, T. M. Hamill, X. Wei, Y. Song, and Z. Toth, “Ensemble
Data Assimilation with the NCEP Global Forecast System,” Monthly
Weather Review, vol. 136, no. 2, pp. 463–482, 2008.

[20] S. Di and F. Cappello, “Fast Error-Bounded Lossy HPC Data Com-
pression with SZ,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2016, pp. 730–739.

[21] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly Improving
Lossy Compression for Scientific Data Sets Based on Multidimensional
Prediction and Error-Controlled Quantization,” in Proceedings of the
31th IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE Computer Society, 2017.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, 2006.

[23] K. Sayood, Introduction to Data Compression (2nd Ed.). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2000.

[24] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the Incompressible with
ISABELA: In-situ Reduction of Spatio-temporal Data,” in Proceedings
of the 17th International Conference on Parallel Processing - Volume
Part I, ser. Euro-Par’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 366–379. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2033345.2033384

[25] Z. Chen, S. W. Son, W. Hendrix, A. Agrawal, W.-k. Liao,
and A. Choudhary, “NUMARCK: Machine Learning Algorithm for
Resiliency and Checkpointing,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
733–744. [Online]. Available: https://doi.org/10.1109/SC.2014.65

[26] Z. Yuan, W. Hendrix, S. W. Son, C. Federrath, A. Agrawal, W. Liao,
and A. N. Choudhary, “Parallel Implementation of Lossy Data
Compression for Temporal Data Sets,” in 23rd IEEE International
Conference on High Performance Computing, HiPC 2016, Hyderabad,
India, December 19-22, 2016, 2016, pp. 62–71. [Online]. Available:
http://dx.doi.org/10.1109/HiPC.2016.017

[27] A. Moon, J. Kim, J. Zhang, and S. W. Son, “Lossy compression on iot
big data by exploiting spatiotemporal correlation,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), Sept 2017, pp.
1–7.

[28] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. Academic Press Professional, Inc., 1990.

[29] Flash Center for Computational Science, “FLASH User’s Guide: Ver-
sion 4.4,” http://flash.uchicago.edu/site/flashcode/user support/flash4
ug 4p4.pdf, 2016.

[30] G. A. Meehl, C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer,
“Overview of the Coupled Model Intercomparison Project,” Bulletin of
the American Meteorological Society, vol. 86, no. 1, pp. 89–93, 2005.

[31] P. Fischer, J. Lottes, S. Kerkemeier, O. Marin, K. Heisey, A. Oba-
bko, E. Merzari, and Y. Peet, “Nek5000 User Documentation,” http:
//nek5000.github.io/NekDoc/Nek users.pdf, Argonne National Labora-
tory, Tech. Rep. ANL/MCS-TM-351, 2015.

[32] J. W. L. Paul F. Fischer and S. G. Kerkemeier, “nek5000 Web page,”
2008, http://nek5000.mcs.anl.gov.

[33] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression
Fundamentals, Standards and Practice. Norwell, MA, USA: Kluwer
Academic Publishers, 2001.

[34] D. Le Gall, “MPEG: A Video Compression Standard for Multimedia
Applications,” Commun. ACM, vol. 34, no. 4, pp. 46–58, Apr. 1991.
[Online]. Available: http://doi.acm.org/10.1145/103085.103090

[35] J. Woodring, S. Mniszewski, C. Brislawn, D. DeMarle, and J. Ahrens,
“Revisiting Wavelet Compression for Large-Scale Climate Data using
JPEG 2000 and Ensuring Data Precision,” in 2011 IEEE Symposium on
Large Data Analysis and Visualization, Oct 2011, pp. 31–38.

[36] L. Belmon, H. Benoit-Cattin, A. Baskurt, and J.-L. Bougeret,
“Lossy compression of scientific spacecraft data using wavelets.
Application to the CASSINI spacecraft data compression,” Astronomy
& Astrophysics, vol. 386, no. 3, pp. 1143–1152, 2002. [Online].
Available: https://doi.org/10.1051/0004-6361:20020225

[37] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of
Lossy Compression for Application-Level Checkpoint/Restart,” in
Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 914–922. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2015.67

[38] S. Li, S. Sane, L. Orf, P. D. Mininni, J. Clyne, and H. Childs, “Spa-
tiotemporal wavelet compression for visualization of scientific simula-

12

tion data,” 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 216–227, 2017.

[39] B.-L. Yeo and B. Liu, “Volume Rendering of DCT-Based Compressed
3D Scalar Data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 1, no. 1, pp. 29–43, Mar 1995.

[40] V. Ratnakar and M. Livny, “RD-OPT: an efficient algorithm for optimiz-
ing DCT quantization tables,” in Data Compression Conference, 1995.
DCC ’95. Proceedings, Mar 1995, pp. 332–341.

[41] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,
vol. 0, no. 0, p. 1094342017737147, 0. [Online]. Available:
https://doi.org/10.1177/1094342017737147

[42] A. Wegener, “Universal numerical encoder and profiler reduces com-
puting’s memory wall with software, fpga, and soc implementations,” in
2013 Data Compression Conference, March 2013, pp. 528–528.

[43] D. Laney, S. Langer, C. Weber, P. Lindstrom, and A. Wegener, “Assess-
ing the Effects of Data Compression in Simulations Using Physically
Motivated Metrics,” in 2013 SC - International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Nov
2013.

[44] Message Passing Forum, “MPI: A Message-Passing Interface Standard,”
Knoxville, TN, USA, 1994.

[45] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel
netCDF: A High-Performance Scientific I/O Interface,” in Proceedings
of the 2003 ACM/IEEE Conference on Supercomputing, ser. SC ’03.
New York, NY, USA: ACM, 2003, pp. 39–. [Online]. Available:
http://doi.acm.org/10.1145/1048935.1050189

[46] The HDF Group. (1997-2017) Hierarchical Data Format, version 5. http:
//www.hdfgroup.org/HDF5/.

13

