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Abstract—NAND flash memory is widely used in solid-state
storage including SD cards and eMMC chips, in which JPEG
pictures are one of the most valuable data. In this work,
we study NAND flash memory-aware, long-term JPEG data
protection and recovery. Our goal is to increase the robustness
of JPEG files stored in flash-based storage and rescue JPEG
files that are corrupted due to long-term retention. JPEG files
with our proposed protection techniques are compatible with
existing JPEG viewers. We conduct real-system experiments by
storing JPEG files on 16 nm, 3-bit-per-cell flash chips and let
the JPEG files undergo a retention process equivalent to ten
years at 25°C. Experimental results show that the proposed
techniques can rescue corrupted JPEG files to achieve a PSNR
improvement of up to 23.5 dB.

Keywords-flash memories; nonvolatile memory; image stor-
age; image restoration; fault tolerance; error correction;

I. INTRODUCTION

NAND flash memory (flash for short) is widely used
as mass storage devices such as removable mass storage
devices (e.g., SD cards) and embedded mass storage devices
(e.g., eMMC and UFS chips in smartphones). More than
one billion SD cards and one billion eMMC chips are sold
per year [2], [6], which constitute massive storage of tens to
hundreds of exabytes. Thus, unsurprisingly, each of us owns
multiple these mass storage devices. Within these flash-
based storage devices, JPEG pictures are one of the most
valuable data.

Interestingly, many people usually do not realize or forget
that flash-based storage is intrinsically not good at long-term
data preservation, and thus leaving valuable pictures in SD
cards and smartphones for a long time (e.g., a few years) can
risk uncorrectable errors, which result in corrupted pictures.
The reason why uncorrectable errors occur is that flash
memory is naturally prone to have retention errors. As the
fabrication process shrinks and multiple bits are stored in
a cell, nowadays flash memory can exhibit a bit error rate
(BER) as high as 1% after data are stored in flash for a
few years, which can exceed the error correction strength of
flash-based storage. This issue is even worse for SD cards
and eMMC chips in smartphones because they may be left
without power to perform periodically scrubbing for multiple
years.

In this work, we study long-term, flash-aware JPEG
data protection and recovery. The goal is to increase the
robustness of JPEG files stored in flash-based storage and
rescue JPEG files that are corrupted due to long-term re-
tention errors. We make several observations as follows.
First, the header part of JPEG files is more critical than the
remaining part. Second, the reliability of flash-based storage
is extremely skewed across its entire capacity: strong pages
can retain data much longer than weak pages do. Third, a
single bit error can severely deteriorate the quality of a JPEG
image owing to two kinds of error propagation phenomena,
which we will explain shortly in Section III-A. Lastly, we
observe a chance to brute-forcibly find the locations of bit
errors according to the JPEG decoding procedure.

Based on the above observations, we propose the follow-
ing four techniques: 1) Strong-Page Header Protection, 2)
Bit Error Propagation Prevention, 3) DC Error Propagation
Mitigation, and 4) Huffman-Assisted Error Correction. Note
that even with our proposed techniques, JPEG files (with-
out uncorrectable errors) can still be decoded by existing
JPEG viewers as usual. This compatibility feature is crucial
because JPEG viewers have already been widely adopted.

The rest of this paper is organized as follows. Section II
provides the background of JPEG image compression. Sec-
tion III presents our observed error propagation phenomena
and our proposed four techniques. Section IV evaluates our
proposed techniques, Section V presents related works, and
Section VI concludes this work.
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Figure 1: Encoding procedure of JPEG

II. BACKGOURND

JPEG (Joint Photographic Experts Group) is the most
widely used image format by digital cameras and smart-
phones. Although JPEG was born in 1992, and several al-
ternatives to JPEG have been proposed since then, including
JPEG-2000 and JPEG-XR, they all fail to replace JPEG [12].
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Figure 2: Two error propagation phenomena

As shown in Figure 1, to encode an image as a JPEG
file, encoders first divides the image into multiple blocks
of 8×8 pixels. Each block is processed by the discrete
cosine transform (DCT), which transforms the block from
the spatial domain to the frequency domain. The output
of DCT is also a block of 8×8 values. The upper-left
most value corresponds to the lowest frequency component
(also known as the DC component) of the 8×8 block,
and the bottom-right most value corresponds to the highest
frequency component.

After the DCT, JPEG encoders leverage four schemes
to achieve image compression: quantization, differential
pulse code modulation coding (DPCM), run-length encoding
(RLE), and Huffman entropy coding. As for quantization,
since human visual systems emphasize the low-frequency
(DC) components of images than the high-frequency (AC)
components, JPEG encoders quantize the values of AC
components using coarse steps to reduce their information.
Regarding DPCM coding, the DC components of a row
of consecutive 8×8 blocks are treated as a sequence, and
JPEG encoders record the differences between each two
consecutive DC components. Since the color and brightness
of meaningful images typically exhibit smoothness, keeping
the differences (i.e., relative values instead of absolute
values) achieve compression. Regarding RLE, the 63 AC
components of each 8×8 block is linearized according to
a zigzag order, and every consecutive run of zeros are
represented using only a run-length number. Regarding
Huffman entropy coding, each DC component and each non-
zero AC component with the length of its leading zeros are
treated as a symbol, respectively. Symbols that have a high
occurrence frequency are encoded using shorter codewords,
and symbols that have a lower occurrence frequency are
encoded using longer codewords.

The compressed data after Huffman coding are referred to
as bitstreams. A JPEG file typically encapsulates bitstreams
according to the JPEG File Interchange Format standard
(JFIF). The JFIF standard defines various kinds of markers

to separate different contents in a JPEG file such as the SOI
(Start of Image), DQT (Define Quantization Table), DHT
(Define Huffman Table), APP (Application data), and COM
(Comment) markers.

III. OBSERVATIONS AND DESIGN

We first describe the observed error propagation phenom-
ena, which severely deteriorate the image quality of JPEG
files that have uncorrectable errors. Then we explain the
skewed storage reliability phenomenon, which is observable
in flash-based storage but not in hard disk drives (HDDs).
We propose the following four techniques: 1) Strong-Page
Header Protection, 2) Bit Error Propagation Prevention, 3)
DC Error Propagation Mitigation, and 4) Huffman-Assisted
Error Correction.

A. Error Propagation Phenomena

Figures 2(a) and 2(b) illustrate the two observed error
propagation phenomena. We refer to the first phenomenon
as Bit Error Propagation, which results from the fact that
Huffman codes belong to variable-length codes. Decoding
variable-length codes heavily relies on correctly decoding
the length of the codes, and a bit error can mess up things.
Let us take Figure 2(a) for example. Four values (1, 2,
14, and 2) are encoded into four pieces of bits (011, 110,
0011110, and 110) according to the exampling codebook in
the figure. During decoding, the starting 01 unambiguously
implies the existence of a single following bit, 1, according
to the codebook. Similarly, the fourth bit, 1, unambiguously
implies two following bits, 10. However, a bit error (the
eighth bit, 0 → 1) causes the length of the third code to
be incorrectly decoded (7-bit 0011110 → 3-bit 011). It not
only interferes with the third value (14 → 1); the incorrect
length further causes the fourth and likely many following
values to be incorrectly decoded, too (2→ 3, etc.).

The second error propagation phenomenon is DC Error
Propagation, which results from the fact that JPEG utilizes
DPCM codes to compress the DC components of a sequence
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Figure 3: Two typical data-Vth mappings of TLC flash

of consecutive 8 × 8 blocks. Figure 2(b) illustrates five
consecutive blocks whose DC components are 10, 15, 17,
19, and 20, respectively. According to DPCM codes, the
five values are encoded as the first absolute value (10) and
four relative values (5, 2, 2, and 1). For example, if a bit
error interferes with the second DC value (5→13), a DPCM
decoder not only produces an erroneous second DC value
(15→23). Moreover, the following third, fourth, and fifth DC
values also become incorrect (17→25, 19→27, and 20→28).

B. Skewed Storage Reliability

Unlike traditional HDD storage, flash-based storage ex-
hibits a unique property that its storage reliability varies
dramatically depending on page addresses: some pages can
store data much more reliably than the others. We referred
to this property as Skewed Storage Reliability. The poten-
tial sources of skewed storage reliability include process
variations and storing multiple bits per cell. The latter is
consistent among flash chips of the same part number, and
this work exploits it.

Figure 3 shows two typical data-Vth mappings of flash
memory with three bits per cell (also referred to as TLC).
Flash stores different data using different threshold voltages
(Vth’s), and TLC utilizes eight different Vth’s. If the Vth of
a cell is lower than V1, its stored three bits are 111, which
is also the erased state of flash; if Vth is between V1 and V2,
the three bits are 110, and so on. Flash is prone to retention
errors, which are caused by Vth shift over retention time.
For example, if the Vth of a flash cell shifts and crosses V1,
data 110 are incorrectly interpreted as 111, and in this case,
the least significant bit of the cell becomes erroneous.

Figure 3 also can explain the reasons why storing three
bits in a cell results in skewed storage reliability. In common
practices, flash vendors separate the three bits of each cell
into three flash pages. They are widely referred to as least-
significant bit (LSB) pages, center-significant bit (CSB)
pages, and most-significant bit (MSB) pages. Figure 3(a)
illustrates the mapping of the flash we experiment. One can
see that among seven Vth boundaries (V1 to V7), crossing
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Figure 4: Extra header information

one of three boundaries, V2, V4, and V6, leads to a CSB
error. In comparison, there are only two boundaries related
to LSB and MSB errors, respectively. Therefore, CSB pages
are more sensitive to Vth shift than LSB and MSB pages do.
In addition, the lowest Vth state (111) typically separates
far from the second Vth state (110) because the former is
the erased state. Therefore, the chance that Vth shifts and
crosses V1 is relatively low. Owing to the above reasons,
LSB pages are the strongest type of pages, and CSB pages
are the weakest. For flash designed according to Figure 3(b),
previous characterization works have shown that MSB pages
are the strongest type of pages [4], [15].

C. Strong-Page Header Protection

The importance of JPEG contents is not homogeneous
across a JPEG file. For example, the JFIF standard formats
a JPEG file into header and data sections. The header section
comprises critical information for correctly decoding the
JPEG file, including image dimensions, sampling factors,
quantization tables, and Huffman tables. In comparison, the
data section comprises the bitstream of each 8×8 block.
Therefore, the header section is more critical than the data
section.

According to the above observations, we propose to
allow JPEG applications to allocate critical data to strong
pages. This feature can be implemented by adding vendor
commands to the command interface of SD cards and
eMMC chips, and the modification should be moderate and
practical. We leave prototyping such flash-based storage as
our future work.

D. Bit Error Propagation Prevention

As mentioned earlier (Figure 2(a)), a bit error in the data
section of a JPEG file not only interferes with the block
that contains the bit error. Even worse, the bit error usually
continuously fails the decoding of the successive blocks. To
address this issue, as illustrated in Figure 4, we propose
to additionally store the bitstream length of each block in
the header section of JPEG files (in strong flash pages).
Specifically, we store such information in COM markers
in the header section. By doing so, the augmented JPEG
file is still fully compatible with existing image viewers
because they ignore unrecognized contents in COM markers.
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Figure 5: Huffman-assisted error correction

Once uncorrectable errors occur in the JPEG file, an image
viewer that adopts our proposed JPEG recovery techniques
can recognize the information in the COM marker and utilize
it to rescue the JPEG file.

E. DC Error Propagation Mitigation

The DC components of JPEG images are essential to
image quality. As discussed earlier, even with Bit Error
Propagation Prevention, DC error propagation can still
occur and deteriorate the quality of JPEG images. To address
this issue, we propose to mitigate the degree of DC error
propagation by judiciously storing duplicated DC informa-
tion in the JPEG header section.

More specifically, as illustrated in Figure 4, we propose
to leverage the existing thumbnail in the APP1 marker in the
header section. JPEG encoders typically embed a thumbnail
JPEG in the APP1 marker of the main JPEG file to facilitate
image preview. We propose to set the width and height
of the thumbnail to be one-eighth that of the main JPEG,
respectively. By doing so, each pixel of the thumbnail can
be treated as the DC component of the corresponding 8×8
block. Once a DC component decoded from the main JPEG
deviates too much from the corresponding pixel value of the
thumbnail, our decoder uses the latter (i.e., thumbnail pixel)
as the DC component instead of using the former, and thus
the degree of DC error propagation is mitigated.

F. Huffman-Assisted Error Correction

The Huffman bitstream of each 8×8 block is roughly
100 bits on average. Even if the BER of flash is as
high as 1%, a significant portion of 8×8 blocks contain
only single erroneous bit. Therefore, there is a chance to
find the location of the bit error by trial-and-error. More
specifically, decoders can brute-forcibly try to flip one bit
at a time and repeatedly decode a block until valid results
are obtained. Note that Huffman-Assisted Error Correction

FPGA

Heater Flash

Figure 6: Setup of an FPGA, a heater, and flash under test

cannot work independently without Bit Error Propagation
Prevention mentioned earlier because without the bitstream
length of each block, once a block contains more errors
and is uncorrectable, decoders can fail to locate the correct
starting boundary of other successive blocks.

We propose to additionally record the number of non-
zero components of each 8×8 block in COM markers in
the header section (Figure 4). As shown in Figure 5, when
decoding an 8×8 block, a JPEG decoder can determine
whether the obtained results are invalid: if the number of
non-zero components produced by the decoding process
does not match the recorded number, the results are invalid,
and the decoder can start the brute-force bit flipping proce-
dure. Note that this procedure does incur extra latency, but
since this procedure is for rescuing corrupted JPEG files,
decoding speed is not a top-priority concern. In addition,
there are some chances of false positive, i.e., the number of
non-zero components matches, but the block still contains
errors, but some false positives are also acceptable for
rescuing corrupted JPEG files.

IV. EVALUATION

A. Experimental Setup

We conduct experiments using a Xilinx Zedboard FPGA
platform, 16 nm TLC flash chips, and a heater as shown
in Figure 6. We design digital circuits and firmware for the
FPGA to enable us to read, write, and erase the flash chips
using the FPGA. We program and erase flash for 400 times
before storing JPEG files in it.

A total of 105 JPEG files are used in the experiments.
One hundred of them are of the size of 3, 264 × 2, 488,
generated by an iPhone smartphone of one of the authors.
Another five JPEG files are of the size of 3, 072 × 2, 048
from the Kodak PhotoCD [1]. We add protection information
into the JPEG files and write them on flash chips with JPEG
headers allocated to strong flash pages (i.e., LSB pages).

To study the data retention impacts, we let the JPEG files
to undergo multiple years of retention time. The JEDEC
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JESD 47H.01 industrial standard provides a temperature-
accelerated method to realistically perform such an exper-
iment: by heating flash chips to 85°C, the effective data
retention time is 1, 300× longer that under 25°C. According
to this method, we heat flash chips by 85°C for seven hours
each time (equivalent to one year under 25°C) and retrieve
the JPEG files from the flash, which exhibit raw bit errors.
We repeat this process until 70 hours, which are equivalent
to ten years under 25°C.

The error correction codes (ECC) of flash-based storage
differ from vendors to vendors and are not publicly available.
As a reasonable assumption, we view each 8 KB flash page
as four interleaved 2 KB codewords and assume that ECC
can correct codewords with a BER up to 5 × 10−3. For
codewords that exhibit a BER higher than 5 × 10−3, we
assume that the bit errors are uncorrectable and remain in
JPEG files.

We set the baseline configuration as follows. JPEG files
are stored in flash storage as usual without using our
techniques. One exception is that we conservatively assume
that the header sections of JPEG files are allocated to strong
pages for the baseline. This experimental setup favors the
baseline because the baseline should be oblivious to flash
memory.

We use OpenCV to read JPEG files as the baseline setting.
In comparison, we extend a JPEG decoder [3] with our pro-
posed techniques for rescuing corrupted JPEG files. PSNR
(peak signal-to-noise ratio) and SSIM (structural similarity
index) [14] metrics are used to quantify the effectiveness
of our proposed techniques. In common practices, images
with PSNR greater than 30 dB or SSIM greater than 0.9 are
considered to have high quality.

B. Experimental Results

Figure 7 shows the average raw BER of JPEG files at
different retention time. We separately calculate the BERs
of three types of pages. Over a (temperature-accelerated)
ten years course, CSB pages consistently exhibit the highest
average BER, and LSB pages consistently exhibit the lowest
average BER.
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Figure 8 further shows the detailed distributions of flash
BERs at different retention time. In general, BERs follow
bell-shape distributions and increase over time. CSB pages
are the weakest, and the center of the BER distribution can
reach up to 5.5 × 10−3. In comparison, LSB pages are
the strongest, and the center of the BER distribution only
reaches 2.9× 10−3

Figure 9 plots the percentage of uncorrectable 2 KB
codewords over time. Again, CSB pages are the weakest,
and they start to exhibit uncorrectable errors since a very
early stage (e.g., 0.8% at the beginning) and the percentage
raises quickly to 64% in ten years. Note that although
the percentage of uncorrectable errors can be reduced by
increasing the strength of ECCs, the relative reliability
among LSB, MSB, and CSB pages of this flash does not
change: CSB pages (i.e., weak pages) always exhibit errors
earlier than LSB pages (i.e., strong pages).

Figure 10 visualizes the recovery results of a JPEG file
that is corrupted due to 10-year retention. In the baseline
configuration, even though we allocate JPEG header sections
to strong pages, the image is still heavily corrupted. This
outcome mainly results from bit error propagation. With
the Bit Error Propagation Prevention technique, the SSIM
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raises to 0.77, and the picture quality is better but still
heavily impacted by observable horizontal stripes, which
result from DC error propagation. By adopting all the
proposed techniques, the quality of the resulting image is
largely improved (PSNR=35.8 dB, and SSIM=0.96).

Figure 11 shows the averaged PSNR over the 105 JPEG
files. In the baseline configuration, as long as flash-based
storage exhibits a slight number of uncorrectable bit errors,
the PSNR severely degrades. In comparison, the proposed
techniques can recover corrupted JPEG files effectively. For
example, when flash exhibits uncorrectable bit errors, the
PSNR of the baseline drops to lower than 30 dB and
saturates at 11 dB. As shown in Figure 10, an image with a
16 dB PSNR is already unacceptable, not to mention images
with an even worse PSNR. In comparison, the proposed
techniques keep the average PSNR greater than 31 dB within
70 hours of 85°C baking (equivalent to 10 years retention
at 25°C). The maximum PSNR improvement is 23.5 dB at
the third year.

Figure 12 plots the SSIM results. The trend is similar
to that of PSNR. The proposed techniques consistently
outperform the baseline. Note that although the baseline
seems to be able to keep the SSIM at around 0.57 over 10-
year retention, such SSIM is already unacceptable as shown
in Figure 10.

C. Storage and Latency Overhead

The storage overhead for supporting the proposed tech-
niques is 9.9% in total. The original size of the tested
105 JPEG files is 201 MB, and that with the proposed
extra protection information (the COM and APP1 markers)
increases to 220 MB. With the protection capability shown
in the above experiments, we anticipate that many users are
willing to pay 9.9% storage overhead.

The 9.9% storage overhead can be otherwise used for
extra ECC parities, which can correct more raw bit er-
rors than our techniques because ECCs are mathematically
optimized. However, it is noteworthy that there are some
concerns about employing extra ECC parities. First, the per-
bit cost of SD cards and eMMC chips are sensitive, so
flash and storage vendors are likely reluctant to pre-allocate
space for storing extra ECC parities. Second, if SD cards
and eMMC chips dynamically allocate extra ECC parities
at run time, their visible capacity also changes at run time,
which may be problematic to some users, applications, and
operating systems. Third, employing extra ECC parities at
the application level is less effective because modern ECCs
of flash storage such as low-density parity check (LDPC)
rely on low-level access to flash cells. In comparison, the
proposed techniques are pure application-level and do not
cause the above problems.

Our program takes 11.9 seconds on average for recovering
a corrupted (10-year) JPEG file. Note that decoding speed
is not a top-priority concern for rescuing corrupted JPEG
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files. In addition, it is easy to parallelize the recovery tasks
of multiple corrupted JPEG files using multi-core PCs or
servers. Lastly, we have not optimized the speed of our
program yet, so there is still a speedup headroom.

V. RELATED WORKS

This work is the first on long-term JPEG data protection
and recovery with backward compatibility. Previous works
on approximate and retention-relaxed storage are related
but fundamentally different. For example, [5], [10], [13]
and [16] consciously lower image quality to increase storage
performance and density, but none of them focuses on
the most widely used JPEG format, and none of them
proposes strategies to rescue compressed images with high
uncorrectable BERs. Specifically, [13] and [16] focus on
RAW images, [5] focuses on JPEG-XR, and [10] focuses
on JPEG-2000. In addition, [7]–[9], [11] propose to relax
data retention to increase the performance and lifetime of
nonvolatile memory, but their design is for server workloads
instead of JPEG files.

VI. CONCLUSIONS

This work focuses on increasing the robustness of JPEG
files stored in flash-based storage (i.e., protection) and rescue
corrupted JPEG files using the protection (i.e., recovery).
Four innovative techniques are proposed: 1) Strong-Page
Header Protection, 2) Bit Error Propagation Prevention, 3)
DC Error Propagation Mitigation, and 4) Huffman-Assisted
Error Correction. The proposed techniques incur 9.9% stor-
age overhead on average and can help to rescue corrupted
JPEG files to achieve 23.5 dB better PSNR on average.
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