Long-Term JPEG Data Protection and Recovery for NAND Flash-Based Solid-State Storage

Yu-Chun Kuo, Ruei-Fong Chiu, and Ren-Shuo Liu

System and Storage Design Lab Department of Electrical Engineering **National Tsing Hua University** Taiwan

Overview

- SD cards and eMMC consistute massive storage
 - Tens to hundreds of Exabytes per year
- JPEG pictures are one of the most valuable data in them
- Leaving JPEG files in SD and eMMC for a long term is risky
 - NAND flash is prone to have retention errors
 - Uncorrectable errors \rightarrow corrupted pictures

A Few Years Later

Contributions

- Increase the robustness of JPEG stored in NAND flash
 - At the cost of 9.9% storage overhead
- Rescue corrupted JPEG files
- Four techniques based on our observations
 - Strong-page header protection
 - Bit error propagation prevention
 - DC error propagation mitigation
 - Huffman-assisted error correction
- Compatible with existing JPEG viewers

Outline

- JPEG Background
- Observations and Design
- Evaluation
- Conclusion

JPEG Encoding Steps (Simplified)

- **DCT**: Discrete Cosine Transform
- **DPCM**: Differential Pulse Code Modulation
- JFIF: JPEG File Interchange Format

Popular values \rightarrow Less bits Less-popular values \rightarrow More bits

 Picture width & height Sampling method
 Huffman tables

Outline

Background

- Observations and Design
- Evaluation
- Conclusion

Observations

- Unequal criticality of JPEG file contents
- Error propagation phenomena
 - Bit error propagation
 - DC error propagation
- Skewed reliability of NAND flash

Unequal Criticality of JPEG File Contents

Unequal Criticality of JPEG Data

Header having a single bit error → very likely corrupts the entire picture

Unequal Criticality of JPEG Data

Body having a single bit error \rightarrow the results depends

Nearly identical
 Horizontal stripes
 Totally corrupted

Observations

- Unequal criticality of JPEG
- Error propagation phenomena
 - Bit error propagation
 → Totally corrupted

DC error propagation
 → Horizontal stripes

Bit Error Propagation Phenomenon

Huffman is a variable-length coding scheme

- \rightarrow bit error can change code length
- ightarrow many following codes can thus be mis-decoded

DC Error Propagation Phenomenon

 JPEG stores differential DC values
 → Once a bit error interferes with one value, the following values are also mis-decoded

Observations

- Unequal criticality of JPEG
- Error propagation phenomena
 - Bit error propagation
 DC error propagation
- Skewed reliability of NAND flash

Skewed Storage Reliability

- One third of flash pages can store data much more reliably than the other pages
 - We refer to them as strong/weak pages
- This property is known to SD and eMMC vendors but is not exposed to users and applications

Skewed Storage Reliability

- Bits are grouped into MSB, CSB, LSB pages
- LSB pages are strong pages for the flash we tested

Proposed Techniques

- Strong-page header protection
- Bit error propagation prevention
- DC error propagation mitigation
- Huffman-assisted error correction

Applications Oblivious to Strong/Weak Pages

Strong-Page Header Protection

Bit Error Propagation Prevention

- We additionally store the length of each 8×8 block in JPEG header
- Stop bit errors from propagation

DC Error Propagation Mitigation

- Thumbnail
 - Small JPEG embedded in the header of the main JPEG
 - Facilitate image preview
- We propose to set the width and height of the thumbnail to be 1/8 of the main JPEG
 - By doing so, thumbnail pixels approximate the DC values of the main JPEG

DC Error Propagation Mitigation

- Use thumbnail pixels to calibrate decoded DCs
- Error propagation is mitigated

Thumbnail:

Huffman-Assisted Error Correction

- Many 8×8 blocks contain only single bit error
 - 8×8 block is around 100 bits
 - Target bit error rate is 10⁻²
- We propose to correct single bit error per 8×8 block in a trial-and-error manner

Huffman-Assisted Error Correction

 We additionally store the number of Huffman codes of each 8×8 block in the header to check whether decoding is successful

Outline

- Background
- Observations and Design
- Evaluation
- Conclusion

Setup

Platform

- Xilinx Zedboard FPGA
- 16nm, 3-bit-per-cell flash chip
- 105 JPEG files
 - 100 from personal iPhone (3264×2448)
 - Five from the Kodak suite (3072×2048)
- Temperature acceleration
 - 70 hours under 85°C = 10 years under 25°C
- Assume bit error rates greater than 5×10^{-3} are uncorrectable

Experiments

- Flash characterization
 - Average bit error rate
 - Percentage of uncorrectable 2KB data blocks
- JPEG image quality at retention time wihin 10 years
 - PSNR (Peak Signal to Noise Ratio)
 - SSIM (Structural Similarity Index)

Average Raw BERs (Within 10 Years at 25 °C)

Average % of Uncorrectable 2KB Blocks

Image Quality (10 Years at 25 °C)

Ideal JPEG

Baseline

- Strong-page header protection
- Bit error propagation prevention
- This work All the four techniques

Average PSNR (Within 10 Years at 25 °C)

Average SSIM (Within 10 Years at 25 °C)

Concerns About Employing Extra ECC Parities

- Employing that at flash chip level
 - Cost per bit increases
 - Vendors are reluctant to do so
- Employing that at disk level
 - Disk capacity becomes non-constant
 - May be problematic to applications and operating systems
- Employing that at application level
 - Effectiveness of the extra parities is limited
 - Modern ECCs heavily rely on low-level accesses to flash memory

Conclusion

- Increasing the robustness of JPEG files and rescue corrupted JPEG files in flash-based storage
- Four techniques
 - Strong-page header protection
 - Bit error propagation prevention
 - DC error propagation mitigation
 - Huffman-assisted error correction
- Rescue corrupted JPEG files (10 years @ 25 °C)
 - Up to 24.3 dB PSNR improvement
 - At the cost of 9.9% of storage overhead
- Backward compatible with existing JPEG viewers

Long-Term JPEG Data Protection and Recovery for NAND Flash-Based Solid-State Storage

Yu-Chun Kuo, Ruei-Fong Chiu, and Ren-Shuo Liu

System and Storage Design Lab Department of Electrical Engineering National Tsing Hua University

Taiwan

JPEG Decoding and Recover Speed

- It takes 12 seconds on average for our program to recover a corrupted (10-year) JPEG file
- Note that
 - Speed is not a top concern for rescuing corrupted JPEG files
 - It is easy to parallelize the recovery tasks of multiple corrupted JPEG files

Skewed Storage Reliability

