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Background : Arm Processors

* Arm processors have become dominant in loT and mobile phones, etc

* The recently released 64-bit ARM CPUs are suitable for cloud and data centers
- Arm-based instances have been available in Amazon AWS since Nov, 2018

* One of its important applications is to be the storage server
- Enhanced computing capability and power efficiency




Background : NVM Express
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Flash-based SSD is becoming cheaper and more popular
- High throughput and low latency

- Suitable for parallel I/0s
Non-Volatile Memory Express (NVMe)

- Supporting deep and paired queues
- Scalable for the next generation NVM
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*https://nvmexpress.org/about/nvm-express-overview/



Background: NVMe-over-Fabrics

* Direct Attached Storage (DAS)
- Computing and storage in one box
- Less flexible, hard to scale, etc

* Storage Disaggregation
- Separated computing and storage
- Reduced total cost of ownership (TCO)
- Improved hardware utilization

- Examples: NVMe over Fabrics, iSCSI -
Host Side w Target Side
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Motivations

e Continuous investment in Arm-based solutions

* Increasingly popular NVMe over Fabrics

* Integrating Arm with NVMeoF is highly appealing

* However, the first-hand comprehensive experimental data is still lacking



Motivations

e Continuous investment in Arm-based solutions

* Increasingly popular NVMe over Fabrics

* Integrating Arm with NVMeoF is highly appealing

* However, the first-hand comprehensive experimental data is still lacking

A thorough performance study of NVMeoF on Arm is becoming necessary.
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Experimental Setup

* Target Side: Broadcom 5880X Stingray.
- CPU: 8-core 3GHz ARMv8 Coretx-A72 CPU
- Memory: 48GB
- Storage: Intel Data Center P3600 SSD
- Network: Broadcom NetXtreme NIC
* Host Side: Lenovo ThinkCentre M910s

- CPU: Intel(R) 4-core (HT) i7-6700 3.40GHz CPU

- Memory: 16GB
- Network: Broadcom NetXtreme NIC

* The host and target machines are connected by a Leoni ParaLink@23 cable

Server/Client Arm/x86 x86/Arm
Bandwidth(Gb/s) 45.42 45.40
Latency (us) 3.26 3.17

RoCEv2 Performance

* Speed on both host and target sides is configured to be 50Gb/s

* Benchmarking tool: FIO
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Experiments

* Effect of Parallelism
e Study of Computational Cost

e Effect of IODepth
* Effect of Request Sizes
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Parallelism Feature in NVMe
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- Parallel I/Os play an important role in NVMe to fully exploit hardware potentials
* |/O parallelism will also have a great impact on NVMe-over-Fabrics

16 *https://nvmexpress.org/about/nvm-express-overview/



Finding #1: Effect of Parallelism
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Latency increases as the number of jobs increases
NVMeoF has a close or shorter tail latency for seq read
BW reaches plateau when job number reaches 4

CPU utilization on target side is much lower

Arm is powerful enough to be storage server
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Finding #2 : Computational Cost
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1. NVMeoF consumes 31.5% more CPU on host side than local NVMe
2. Kernel level overhead is dominant(26.9%) when request size is 4KB
3. Kernel level overhead are amortized as request size increases
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*Random Write, 4 KB-128KB, 8 Concurrent jobs, 128 IODepth
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1. NVMeoF consumes 31.5% more CPU on host side than local NVMe
2. Kernel level overhead is dominant(26.9%) when request size is 4KB
3. Kernel level overhead are amortized as request size increases

24
*Random Write, 4 KB-128KB, 8 Concurrent jobs, 128 IODepth



IODepth is important for NVMeoF
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Finding #3: Effect of IODepth
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* When IODepth is small, local access has a short tail latency than remote access

* When IODepth is large, remote access has a short tail latency than local access
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* Sequential Read, 4KB, 8 Concurrent Jobs, 1-128 I0Depth, one Arm core
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Finding #3: Effect of IODepth cont’d
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* Bandwidth will increase, and keep stable and increase again when |I0Depth is over 32.
e CPU utilization will increase, and keep stable and decrease when I0Depth is larger than 32.
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Interrupt Moderation

* Interrupt moderation means multiple packets are handled for each interrupt
* Overall interrupt-processing efficiency is improved and CPU utilization is decreased
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Interrupt Moderation

* Interrupt moderation means multiple packets are handled for each interrupt
* Overall interrupt-processing efficiency is improved and CPU utilization is decreased
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Observations

* NVMeoF can provide satisfactory and comparable performance to NVMe

* Arm processor is powerful enough as the NVMeoF target

* Request size, parallelism, and I/O queue depth are important for performance
* Kernel level overhead can be significant on NVMeoF host

* Interrupt moderation is important for overall performance improvement
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Implications

* Application level
- 1/0 Clustering. Merging small random operations into large sequential ones.
- A proper configuration, such as parallelism, request size, etc.
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Implications

* Application level
- 1/O Clustering. Merging small random operations into large sequential ones.
- A proper configuration, such as parallelism, request size, etc.

e System level
- Simplifying the |/O stack. Moving kernel level driver to user level.
- Replacing interrupts with polling™. More tradeoff space when storage becomes faster.

*).Yang, D.B.Minturn,and F.Hady. When Poll is Better Than Interrupt. FAST '12
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Implications

* Application level
- 1/O Clustering. Merging small random operations into large sequential ones.
- A proper configuration, such as parallelism, request size, etc.

e System level
- Simplifying the |/O stack. Moving kernel level driver to user level.
- Replacing interrupts with polling™. More tradeoff space when storage becomes faster.

 Hardware level
* Interrupt moderation. Important for performance improvement.
- NIC configurations

*)Yang, D.B.Minturn,and F.Hady. When Poll is Better Than Interrupt. FAST '12
a4



Conclusions

* We benchmark NVMe and NVMeoF on Arm based server
- NVMe over Fabrics only incurs minimal overhead than (Local) NVMe
- Arm servers are powerful enough to be target(storage) for NVMeoF

* NMVeoF shows better performance than NVMe for I/O intensive applications
- We give explanations for this phenomena

* We discuss related system implications for performance optimization
- 1/0O clustering, simplifying 1/O stack, interrupt moderation, etc.
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Effect of Request Size
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Computational Cost(1)

Long tail Plateau
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1. NVMeoF has a longer tail latency than NVMe for random writes
2. The bandwidth reaches the peak(about 500MB/s) for different request sizes
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Finding #1: Effect of Parallelism
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Finding #2 : Computational Cost
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1. NVMeoF consumes 31.5% more CPU on host side than local NVMe
2. Kernel level overhead is dominant(26.9%) when request size is 4KB
3. Kernel level overhead are amortized as request size increases
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*Random Write, 4 KB-128KB, 8 Concurrent jobs, 128 IODepth



Interrupt Moderation

* Interrupt moderation means multiple packets are handled for each interrupt
* Overall interrupt-processing efficiency is improved and CPU utilization is decreased
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