
Parallel all the time: Plane Level Parallelism
Exploration for High Performance SSDs

Congming Gao∗†‡, Liang Shi∗, Chun Jason Xue§, Cheng Ji§, Jun Yang†, and Youtao Zhang†
∗East China Normal University, China; †University of Pittsburgh, USA
‡Chongqing University, China; §City University of Hong Kong, China

Email: {gaocm92, shi.liang.hk}@gmail.com,
jasonxue@cityu.edu.hk, chengji4-c@my.cityu.edu.hk,

juy9@pitt.edu, zhangyt@cs.pitt.edu

Abstract—Solid state drives (SSDs) are constructed with mul-
tiple level parallel organization, including channels, chips, dies
and planes. Among these parallel levels, plane level parallelism,
which is the last level parallelism of SSDs, has the most strict
restrictions. Only the same type of operations which access the
same address in different planes can be processed in parallel.
In order to maximize the access performance, several previous
works have been proposed to exploit the plane level parallelism
for host accesses and internal operations of SSDs. However,
our preliminary studies show that the plane level parallelism
is far from well utilized and should be further improved. The
reason is that the strict restrictions of plane level parallelism are
hard to be satisfied. In this work, a from plane to die parallel
optimization framework is proposed to exploit the plane level
parallelism through smartly satisfying the strict restrictions all
the time. In order to achieve the objective, there are at least
two challenges. First, due to that host access patterns are always
complex, receiving multiple same-type requests to different planes
at the same time is uncommon. Second, there are many internal
activities, such as garbage collection (GC), which may destroy
the restrictions. In order to solve above challenges, two schemes
are proposed in the SSD controller: First, a die level write
construction scheme is designed to make sure there are always
N pages of data written by each write operation. Second, in a
further step, a die level GC scheme is proposed to activate GC in
the unit of all planes in the same die. Combing the die level write
and die level GC, write accesses from both host write operations
and GC induced valid page movements can be processed in
parallel at all time. As a result, the GC cost and average write
latency can be significantly reduced. Experiment results show
that the proposed framework is able to significantly improve the
write performance without read performance impact.

Index Terms—SSD, Parallelism, Storage, Performance Im-
provement

I. INTRODUCTION

Solid state drives (SSDs) are widely adopted in modern
computer systems, ranging from embedded systems, personal
computers, to large servers in data centers. SSDs have many
advantages, such as shock resistance, high random access
performance, and low power consumption [1]. An SSD usu-
ally consists of multiple channels with each channel having
multiple chips, each chip having multiple dies, and each die
having multiple planes [2] [3]. To achieve high performance,
the prior studies strive to exploit the parallelism at chan-
nel/chip/die/plane levels so that multiple accesses, such as

reads, writes, and erases, can be processed in different parallel
units simultaneously [4] [5] [6].

However, the parallelism at the last level, referred to as
plane level parallelism, exhibits strict restrictions – for two
operations that can be issued simultaneously to two different
planes, they not only need to be of the same type (i.e., read
or write) but also need to have the same in-plane address (i.e.,
the same offset within each plane), making it challenging to
explore as shown in recent studies [7] [8] [9] [10] [11] [12].
For example, to concurrently write two planes, their write
points need to aligned. Unfortunately, host sends uneven write
requests to individual planes [9] while the activities origi-
nated from SSDs (e.g., garbage collection operations) further
introduce asynchronicity [9] [13]. This leads to sub-optimal
exploration of plane level parallelism and prevents modern
SSDs from achieving further performance improvement.

In recent studies, Tavakkol et al. proposed TwinBlk to
write data to the different planes in a die in a round-robin
fashion [11]. TwinBlk faces two problems: (i) a single-page
write operation can mis-align the write points of different
planes; (ii) the write points may be misaligned by GC or
WL (wear leveling) activities originated inside the SSD. In
this case, most of accesses to the multiple planes cannot be
processed in parallel. What’s more, GC, when being initiated
asynchronously in different planes, disables the plane level
parallelism of related planes [9] [13] [14] [15]. To reduce
GC-induced plane idleness, Shahidi et al. proposed ParaGC
to activate the GC process at all planes in the same die at the
same time [9]. However, it is only able to opportunistically
use the plane level parallelism when all the pages at the
same address of different planes are valid. For GC, TwinBlk
selects blocks with same offset in different planes at the same
time and activates GCs simultaneously. However, it cannot
process all valid page movements in parallel when not all
paired pages are valid. What all of these works did is to
optimize plane level parallelism passively. None of them is
able to satisfy the strict restrictions all the time. The key
problem of previous works, such as TwinBlk and ParaGC,
is that they cannot actively construct multi-plane command
supported requests on all planes in the same die at all time,
especially after GC is processed. Since the number of valid
pages may be different for GC selected blocks, write points

of different planes will be moved to unaligned positions so
that subsequent requests can not be processed in parallel. This
problem also exist in superpage enabled SSDs [1] [16] [17].
Superpage is adopted to strip multiple requests to all planes
in a die at each time so that more sequential write access is
generated for improving write performance of SSDs. However,
if there is a GC triggered on one of these planes, although GC
induced valid page movements can be processed by writing
superpage to all planes, the reclaimed free blocks will be
unaligned, causing write points unaligned while these free
blocks are allocated. That is, under superpage design, write
points cannot be maintained all the time, too. Motivated by
previous work, if we can construct the multi-plane command
oriented writes from both host and GC at all time, the plane
level parallelism can be maximally exploited.

In this paper, we propose SPD, an SSD from plane to die
parallel optimization framework, to fully exploit the last level
parallelism of SSDs for performance improvement by smartly
satisfying the restrictions all the time. We summarize our
contributions as follows.

• We propose SPD to treat all planes (e.g., N planes) in
a die as a single unit so that a die write results in N
page writes while a die read fetches N or fewer pages.
Similarly, internal activities, e.g., GC, get triggered for
N blocks from different planes that have the same in-
plane block address. To our best knowledge, this is the
first work on actively maintaining aligned write points for
multiple planes in a die combining writes from both host
and internal activities for all the time;

• We then propose die level write construction and die level
GC schemes to fully exploit the plane level parallelism
enabled by SPD. The write construction scheme is to
construct write operation with N pages of data and issue
them to a die at once; The die level GC scheme is to
process valid page movements, aligning the write points
of all planes in the same die.

• We evaluate the proposed SPD using a significantly
extended SSDSim [10] and compare it to the state-of-the-
arts. The experimental results show that SPD is able to
significantly improve write performance of SSDs without
read performance impact.

The rest of this paper is organized as follows: In Section
II, the background is presented. In Section III, the problem
statement is presented. In Section IV, the SPD framework is
presented. In Sections V and VI, the experiment setup and
evaluations are presented. In Section VII, related works are
discussed. Finally, the work is concluded in Section VIII.

II. BACKGROUND

In this section, we briefly discuss the background, including
SSD organization, advanced SSD commands, parallelism, and
garbage collection (GC).

A. SSD Organization

A modern SSD usually consists of multiple channels with
each channel containing multiple flash chips. Within each flash

chip, there are multiple dies with each die containing multiple
planes. Figure 1 illustrates the organization of a typical SSD
that has 4 channels, 2 chips per channel, 2 dies per chip,
and 2 planes per die. The SSD parallelism can be exploited
at channel/chip/die/plane levels, which have one major focus
of previous studies for performance improvement [2] [13]
[18]. To manage the flash memory as well as to explore the
parallelism, an SSD controller comprises several components,
including flash translation layer (FTL), data allocation (DA),
wear leveling (WL), garbage collection (GC).

H
o
s
t

In
te

rf
a
c
e

FTL

N
A

N
D

 F
la

s
h

 I
n

te
rf

a
c
e

Chip 3 Chip 7

SSD Controller

Multiplexed Interface

P
la

n
e
 0Data

Alloc

Wear
Leveling

Garbage
Collection

Die 0 Die 1

P
la

n
e
 1

P
la

n
e
 2

P
la

n
e
 3

Chip 0 Chip 4

Chip 1 Chip 5

Chip 2 Chip 6

Buffer Solid State Drive
System

reg reg reg reg

Fig. 1. The organization of SSDs.The FTL is to manage the mapping between logical ad-
dresses and physical addresses. Based on the operation gran-
ularity, there are three types of mapping schemes, i.e., page
mapping [4], block mapping [19], and hybrid mapping [20]
[21] [22]. In this work, we assume the widely adopted page
mapping as it tends to have its better performance.

The DA is to determine the allocations of channel, chip, die
and plane for write operations. The pages within a plane are
written sequentially, with the location of the next page to write
indicated by a write point [2] [10] [23].

The WL is to distribute written data evenly to flash pages
for prolonging the SSD lifetime [24] [25]. Since WL is not
the focus, we do not discuss WL in the following sections —
the proposed scheme works with widely adopted WL schemes
in the literature.

Since flash memory cannot reprogram a programmed flash
page before executing an erase operation to reclaim the whole
block, modern SSDs widely adopt out-of-place-update scheme
for data updating. To update a page, the corresponding updated
data are programmed to a free flash page while the original
flash page is set as invalid. When the number of free pages
drops below a predefined threshold, the GC is activated to
reclaim the invalid pages. GC first selects a victim block, e.g.,
the one with the most invalid pages; it then reads and programs
the valid pages in the block to other blocks; and finally, it
erases the whole victim block. Since page movements and
erase operations are slow operations, GC has been identified
as the most time-consuming activity in SSDs [9] [13] [14]
[26]. In this work, we optimize GC by fully exploiting plane
level parallelism.

In addition, modern SSDs widely equip a built-in Random
Access Memory (RAM), referred to as the SSD buffer, within
SSD controller for temporarily storing hot data and metadata.
Since the access latency of RAM is much smaller than that of

flash memory, buffer-equipped-SSDs can provide much better
performance for data hit in the buffer [27] [28] [29] [30].

B. Parallelism and Advanced Commands

The hierarchical SSD architecture provides four level par-
allelism, from channel, chip, die to plane. For channel and
chip level parallelism, data can be processed in different chips
in parallel. The parallelism of these two levels is naturally
supported by SSDs while that of the rest two levels are
supported by advanced commands [31] [18] [10] [9] [12]. The
die and plane level parallelism is also referred to as internal
parallelism [3].

For die level parallelism, operations issuing to the same
chip but different dies can be processed in parallel with
interleaving command [10] [9]. There is no restriction on when
to use the interleaving command. For the last level parallelism,
plane level parallelism may be exploited to further improve
performance through processing operations concurrently on
different planes of the same die. Due to circuit restrictions
[7], as shown in the open NAND flash interface (ONFI)
standard specification [8], the plane level parallelism can be
exploited when satisfying the two operation type and in-plane
address restrictions of multi-plane command. A multi-plane
command improves plane utilization as it operates multiple
planes within the same die in parallel and only takes the time
to finish one operation. However, when the restrictions can
not be met, it processes different planes sequentially to the
requested operation. In particular, an operation processed on
one plane blocks other planes of the same die from servicing
other operations.

The number of planes per die can be 2 or 4 in most
products, where 2 is the most popular design. If there are two
planes within die, multi-plane command can be used when two
operations accessing these two planes satisfy the restrictions. If
there are four planes within a die, two different types of multi-
plane command utilization are adopted in different SSDs. For
the most popular one, multi-plane command is executed on
either paired plane 0&1 or plane 2&3 [1] [10]; For the another
one, all four planes are accessed in parallel only when four
operations accessing planes satisfy the restrictions of multi-
plane command [32].

Another advanced command, i.e., copy-back command, is
designed to mitigate the inter-plane data movement cost [31]
[1] [33]. With copy-back command, the register on a plane
can temporarily store data from the current plane and write
them back to other pages in the same plane [1] [33].

III. PROBLEM STATEMENT

In this section, we present the challenges in exploiting
the plane level parallelism. Due to the restrictions of the
multi-plane command, the plane level parallelism is hard to
exploit, as shown in previous studies [9] [18]. For example,
we assume a die with two planes. Without considering GC, the
operations that access the same die can be categorized into one
of the following four cases. In this work, we focus on write

operations as they are much slower than read operations and
thus have larger impact on the overall performance.

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0

W D E V _ 0
A v e r a

g e
0 . 0 00 . 0 3

2 0
4 0
6 0
8 0

1 0 0

0 . 4 6 8 70 . 2 0 5 6 0 . 0 4 7 60 . 1 9 9

 S i n g l e W r i t e U n - a l i g n e d W r i t e s P a r a l l e l W r i t e s

Th
e P

erc
ent

age
s o

f
Th

ree
 Ty

pes
 Ac

ces
s(%

)

0 . 0 8 8 7

Fig. 2. The percentages of write operations in three cases.

Case 1: Operations are issued to one plane only (Single
Write). In this case, the write operation will introduce un-
aligned write point;
Case 2: Two different types of operations are issued to

the two planes of the die. Due to the operation type restriction,
the operations cannot be processed in parallel;
Case 3: Two same type operations with unaligned in-

plane addresses are issued to the two planes of the die
(Unaligned Writes). Due to the address restriction, the op-
erations cannot be processed in parallel either;
Case 4: Two same type operations with aligned in-plane

addresses are issued to the two planes (Parallel Writes). In
this case, they can be processed in parallel.

We next analyze how to address the four cases to fully ex-
ploit the plane level parallelism. For Case 2, mixed operations
cannot be scheduled in parallel due to the circuit restriction
of multi-plane command. We then collect the numbers of
operations falling in Case 1, Case 3 and Case 4, respectively,
and report the results in Figure 2. The experiment setting
details can be found in the experiment section. We have two
observations from the results: (i) plane level parallelism is far
from well utilized; (ii) a large percentage of write operations
issued to the die are unaligned write operations, which can be
exploited for performance improvement.

First, a naive solution to address the above issues is to write
data at the aligned points greedily [10]. However, if the current
write points are unaligned, writing data at the aligned points
lead to wasted space. For example, we assume there are two
planes per die, one block per plane, and six pages per block,
as shown in Figure 3(a). In Figure 3(a)-(1), the current write
points are unaligned. Traditionally, if two write operations,
W1 and W2, are issued to the two planes in the same die,
they will be processed sequentially. If they are written to the
aligned pages, a free page in Plane 1 would be wasted, as
shown in Figure 3(a)-(2). In this work, we strive to design a
write construction scheme to align the write points in each
die.

Second, internal SSD activities, e.g., GC, also introduce
non-negligible performance impact [13] [14]. Given a die
with multiple planes, if one plane activates GC, the other
planes cannot be accessed before this GC finishes. To solve
this problem, Shahidi et al. proposed to activate GCs in all

Free Page

Valid Page Waste Page

Plane 0 Plane 1

Die

Plane 0 Plane 1

Die

Invalid Page Valid Page

W1

W2

Plane 0 Plane 1

Die

Plane 0 Plane 1

Die

Invalid Page Valid Page

(2) Un-aligned
 Write Point

B
lo

ck

P0

P1
P2

P3

P4

W1 W2

1
2

3
4

5

12

34
5

Pg5

Pg0

Pg1

Pg2

Pg3

Pg4

Invalid Page Valid Page

Waste Page Free Page

(1) Traditional (2) Parallel Write

B
lo

c
k

Die0
Plane 0 Plane 1

W1

W2

Die1

W1 W2

Invalid Page Free Page

B
lo

c
k

Die0

1

2

3

4

5

Die1

12

34

5

Pg.0

Pg.3

Pg.1

Pg.2

Pg.4

Pg.5

Valid Page Waste PageInvalid Page

WP

WP

Pg.0

Pg.3

Pg.1

Pg.2

Pg.4

Pg.5

(1) Victim Block

Plane 0 Plane 1 Plane 0 Plane 1 Plane 0 Plane 1

(a) Unaligned write operations (b) Unaligned write operations in GC

Fig. 3. The problems of unaligned write operations.

planes at the same time so that GC induced time cost can be
overlapped [9]. To avoid significant parallel GC induced write
amplification, ParaGC first selected a block containing most
invalid pages in a plane, then, if its paired block in another
plane contains enough invalid pages, these two blocks can be
reclaimed by GCs simultaneously. Otherwise, only one block
is processed by GC. However, such a solution faces two issues:
First, since the number of valid pages in paired blocks are
different, ParaGC may lead to unaligned write points across
different planes after valid page movements. For example, in
Figure 3(b), after moving valid pages in each plane in Figure
3(b)-(1), the new write points (WP in the figure) become
unaligned, as shown in Figure 3(b)-(2). Second, if there
is only one block is processed by GC, write points will be
unaligned while reclaimed free block is allocated and its paired
block still has not been reclaimed. That is, to maintain aligned
write points at all time, we need to construct multi-plane
oriented writes for host requests and GC induced operations.

IV. SPD: FROM PLANE TO DIE PARALLELISM
EXPLORATION

A. Overview

To maximize plane level parallelism, the access addresses
of writes on all planes in the same die should be aligned at
all time. In this work, we propose SPD, an SSD from plane to
die framework, to exploit the plane level parallelism for per-
formance improvement by smartly maintaining aligned write
point for the multi-planes in each die all the time. Basically,
SPD takes the following strategies to achieve the objective,
as shown in Figure 4. SPD adds two new components — a
die level write construction and a die level GC. The die level
write construction is designed to maintain aligned write points
for host writes. The die level GC is designed to maintain
aligned write points for GC induced page movement. Note
that for other activities, such as WL, they can adopt the same
design principle of GC. For simplicity, only GC is taken as
an example in this paper. For die level write construction,
SPD exploits the SSD buffer to choose N dirty pages and
writes them back to one die simultaneously. This helps to
convert one die access to N page writes at the aligned in-plane
address. This is referred to as Die-Write. Similarly, the
read access to the die is referred to as Die-Read. Note that
Die-Read only needs to read required number of data, which
does not introduce any read amplification. For die level GC, it
is activated at the multiple planes in a die at the same time. In

addition, all writes induced from the valid page movements is
processed in the unit of N page writes to maintain the aligned
write point. This is referred to as Die-GC. N is set to two in
the following discussion while we evaluate different N values
in the experiments. We will elaborate the details of these two
components in following sections.

SSD
Controller

Free PageInvalid PageValid PagePage in Buffer

Host Interface Logic

FTL

DA

WL

Die-GC

R0

Buffer
Management

Reallocating

Die-Write Die-Read

Buffer

W0 W1

W0 W1 R0

W0 W1

W2 W3

Aligned Eviction

Flash Memory Array

Plane 0 Plane 1
Die 0

Plane 0 Plane 1
Die 1

Plane 0 Plane 1
Die n

Plane 0 Plane 1
Die n+1

W
ri

te
 P

o
in

ts

(D0) (D0)

(D0,P0) (D0,P1)

D0

D1

……

Fig. 4. The Overview of the from plane to die framework

B. Die Level Write Construction

Given that multi-plane commands would be disabled if the
in-plane addresses are mis-aligned, the basic idea of die level
write construction is to maintain aligned write points all the
time by write the same amount of data synchronously to all
planes in the same die. That is, (1) the amount of data issued
to a die should be a multiple of N pages, assuming there are
N planes in a die; and (2) the starting locations of data should
be aligned for all the planes in the same die. With this scheme,
whenever there are multiple write operations issued to a die,
they can be processed in parallel.

SPD exploits SSD buffer to assist die level write construc-
tion. An SSD buffer evicts a multiple of N dirty pages from
one die at a time such that these pages can be written using
Die-Write. For data allocation, we adopt a plane level
dynamic allocation scheme [11]. The data allocation at higher
levels can either be static or dynamic, as discussed in Section
2.1. In the following discussion, we assume static allocation
at the channel, chip, and die levels.

1) Buffer Supported Die-Write: Figure 5 illustrates how
the SSD buffer assisted Die-Write works. Figure 5(a) shows
how the SSD buffer is organized. It maintains a die queue that
keeps a list of dirty pages for each die in the system. The pages
in each list are linked together using LRU algorithm. The data
evicted from the buffer are written to their corresponding dies.
To balance the number of writes sent to different dies, SPD
adopts round-robin to choose the next die from which its LRU
pages are evicted.

For the example, in Figure 5(b), the SSD has four dies, each
die has two planes, and the current turn is Die 0. When the
SSD buffer is full and there is a host requirement for inserting

Wr
it

e
Po

in
ts

Free Page

Head

Turn

Flash Memory Array
Pg0

Pg2
Plane 0 Plane 1

Die 0
Plane 0 Plane 1

Die 1

Pg5 Pg7

Plane 0 Plane 1

Pg7

Die 2

Pg4 Pg6
Plane 0 Plane 1

Die 3

Evicted Page Valid Page Invalid Page

(b)

Die 2 Die 3 Bu
ff

er

Pg0

Die 1 Die 0

(a)

LRU Head LRU Tail
Turn

Die 2

Die Queue

Pg0 Pg2 Pg3 Pg8 Pg13

Pg1

Pg5 Pg9 Pg11 Pg12

Bu
ff

erDie 1

Die 0

(a)

Pg2

Pg0

Pg3

Pg11

Pg5

Pg9

Pg12

Pg4

Pg6

Queue Head

Pg1

Pg7

Pg5

Pg9

Pg6

Pg4

Pg8Tail

LR
U

Skipped

Fig. 5. Organization of write buffer and the die level write construction

five dirty pages to the buffer, SPD chooses the victim dies with
at least two dirty pages (i.e., two is the number of planes in
a die) and evicts the two LRU pages from each selected die.
In the example, it first chooses Die 0 and then skips Die 1 as
the latter does not have enough dirty pages. It continuously
chooses Die 2 and Die 3 and then evicts two pages from Die
0, 2, and 3, respectively.

From this example, the write points of all planes are
effectively aligned. The proposed scheme may evict one more
dirty page than the number of dirty pages from the host. Since
one Die-Write takes the same amount of time as one page
write, the scheme is able to speed up the storage access if
there exist several dirty pages evicted to the same die. But
if only one dirty page from the host, evicting one more dirty
page can align the write points without introducing additional
time cost. In addition, since all Die-Writes operations can
be scheduled in parallel, SPD avoids the access conflicts on
the same die [3] [18]. Due to that we always evict the pages
at LRU positions, the write amplification can be minimized.

Since the addresses of requested data are fixed, die level
read operations cannot be constructed the same way at that
for Die-Write. In this work, Die-Read only read the
requested data, i.e., if there exist read operations with aligned
access locations, they can be issued to the die in parallel;
otherwise, only single page read gets processed next. The
goal of Die-Read is to maximize the number of multi-plane
command supported read operations without introducing read
amplification.

2) Implementation and Analysis: Most of the state-of-the-
art SSDs have equipped with a RAM based buffer inside SSD
controller for metadata and data caches [1] [27] [28] [29] [34].
The buffer sizes range from 8MB in early products to 1GB
in recent ones. To assist die level write constructions, SPD
enhances the SSD buffer management to expose more parallel
processing opportunities.

Different from traditional buffer management scheme, SPD
needs to evict a multiple of N dirty pages from one die queue.
In this work, the N pages of dirty data at the head of LRU
are selected for eviction. When inserting new dirty pages to
the buffer, SPD first checks if they are already in the queue
and moves hit pages to the tail of the queue. Comparing to
traditional LRU eviction, SPD evicts N pages instead of one

page at a time. SPD does not require an extra built-in buffer
and thus does not introduce extra space demand. However,
SPD requires a minimal of M ∗N ∗Size of Page-byte buffer
for smooth buffer management where M is the number of
dies in an SSD, and each die has N planes. When the number
of planes within each die increases, the minimal buffer size
increases as well. A tradeoff exists between the minimal buffer
space requirement and the number of planes within a die. Most
existing SSD devices have two or four planes per die [1] [35]
[23] [36] [32], where the space requirement can be easily met.
For example, for a 512GB SSD, with 16GB die, two or four
planes in each die and 4KB page size, the minimal buffer is
256KB for two planes and 512KB for four planes, which can
be satisfied by most existing SSD products.

Another issue that SPD needs to consider is the power
interruption induced data loss. Since the write buffer is used
to store dirty data, these data would be lost when there is a
sudden power failure. This is often mitigated by integrating
a super capacitor, a popular scheme in state-of-the-art SSDs
(such as PCIe SSDs) for buffer protection [37] [38] [39]
[34] [40]. In addition to capacitor protection, non-volatile
memories, such as 3D-Xpoint [41], Phase change memories
[42], can also be employed as the write buffer to mitigate
data loss under sudden power failure.

C. Die Level GC

A GC process includes three steps: victim block selection
[14] [1]; valid page movement; and victim block erase. The
dominate cost of a GC comes from valid page movement [13].
The design goal of Die-GC is to speed up the GC process
with minimal GC cost. For this purpose, SPD activates GC at
all the planes in the same die at the same time with carefully
selected victim blocks. By adopting Die-Write instead of
sequential page writes, SPD improves reclaim effectiveness
by reducing the most timing cost. We elaborate the details as
follows.

1) GC Process: Figure 6 shows an example for Die-GC.
Different to the traditional GC process, Die-GC includes four
steps: First, SPD selects N blocks from the N planes of the
target die — one from each plane and all the selected blocks
share the same in-plane addresses. The selection process takes
the N aligned blocks as a GC unit. During this process, we
adopts the greedy based victim block selection [13] [1], where
the N blocks with maximal invalid pages are selected. With
this scheme, the total GC cost will be minimized. Second, SPD
uses Die-Read (in Section IV-B1) to read the valid pages
to the SSD buffer. Third, after reading N pages of valid data,
SPD groups the N pages of data to construct a Die-Write
operation and then writes the valid data back to the die. Finally,
when all the valid pages are written back, the N aligned blocks
can be erased in parallel. Given SPD reclaims N blocks from
one GC invocation, the GC gets triggered less frequently than
that of the traditional one. In addition, since the N aligned
blocks are taken as the GC unit for victim selection, GC with
multiple blocks induced lifetime impact can be minimized.

Write Points

0 1 2 3

0 1 2 3

A
c
tB

lk
-j

A
c
tB

lk
-j

P
la

n
e
 0

P
la

n
e
 1

Invalid PageValid Page

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

Aligned Block-0 Aligned Block-1

……

……

Aligned Block-j
B

u
ff

e
r

Erasing Victim Blocks

Die-Write

Die-Read
2

3

4

D
ie

Free Page

1Victim Block Selection

Fig. 6. The Process of Die-GC

For the example shown in Figure 6, let us assume the two
aligned blocks 0 are selected as the victim blocks. According
to Die-GC, the valid pages in these two blocks are read and
written with Die-Read and Die-Write, respectively.

Step1: Read page 0 from plane 0 and page 1 from plane 1
to the SSD buffer. Since they are not aligned, they are read
sequentially.

Step2: Group the two valid pages together to construct a
Die-Write operation and written them back to the current
aligned write point of both planes at block j. The current write
points are marked using red arrows in the figure.

Step3: Then, read page 2 from plane 0 and plane 1 to the
SSD buffer. These two pages are read in parallel as they have
aligned addresses.

Step4: Repeat step (2) for the last two valid pages.
Step5: Then, erase the two victim blocks in parallel. From

the above discussion, Die-GC significantly reduces GC cost
because it maintains aligned write points in the die such that
many strip reads and writes can operate in parallel.

An exception for the above scheme happens when the
total number of valid pages in the victim aligned blocks
is odd. In this case, the write points of different planes
become misaligned after GC. To address this issue, the last
Die-Write operation is constructed from remaining valid
pages and dirty pages from the write buffer (as discussed in
Section IV-B).

2) Implementation, Analysis and Discussion: We next elab-
orate the implementation overhead of SPD. We identify the
construction of Die-Write as the most critical component
in SPD. Since die level GC reclaims more blocks from each
invocation, more data need to be transferred from the planes
to the SSD controller sequentially, which introduces larger
transfer cost. However, the cost of writing valid pages is much
higher than that of data transfer [1] [10]. By writing multiple
pages in parallel, SPD reduces the overall GC cost even though
the data transfer cost increases.

Given that SPD transfers more data to the write buffer in
the controller, it demands larger data storage. Considering the
worst that all dies are activated with the die level GC, each
die needs at least N pages in the write buffer. For a typical
SSD setting as presented in Section 4.2, the required buffer
size for Die-GC is 256KB for a 512GB two-plane SSD and
512KB for a 5I2GB four-plane SSD. In summary, the storage
requirement is modest for modern SSDs. In addition, there are

no additional power, implementation area and latency costs for
the framework. The proposed work can be easily implemented
for state-of-the-art SSDs.

In the discussion, we assume SPD adopts 4KB flash mem-
ory page. However, recent studies proposed the adoption of
larger flash pages [43] [9]. SPD remains effective for larger
page sizes. This is because there still exist multiple planes
within a die so that several big data write operations also
can be processed in parallel using multi-plane command. For
Die-Read, a sub-page read operation [44] may be adopted
to mitigate read amplification resulted from reading data from
big flash pages.

V. EXPERIMENT SETUP

A. Simulated SSD Devices

Due to that the proposed scheme needs firmware support of
SSDs, in this work, we use a popular trace driven simulator,
SSDsim [10], to evaluate the effectiveness of the proposed
framework. In order to simulate a state-of-the-art SSD, SSD-
sim is significantly extended based on ONFI [8]. During the
evaluation, a 512 GB SSD is simulated, and page mapping and
greedy based GC scheme are adopted [10] [3]. The threshold
value for GC activation is set to 7% [9]. To triggering GC
process, SSD is warmed up by filling SSD with valid and
invalid data ahead. The warming up process contains two
steps: first, each plane of the SSD is randomly filled with
data from 93% to 95% to trigger GC immediately, of which
80% are valid; second, the evaluated workload is pre-processed
in the SSD to validate read data [13]. The over-provisioning
ratio is set to 25%, which complies with the setting in previous
work [9]. For the data allocation scheme, the most widely used
Channel-Chip-Die-Plane scheme is adopted. The experiment
settings represent an aged state-of-the-art SSD. Other details
are presented in Table I.

TABLE I
PARAMETERS OF THE SIMULATED SSD [9].

SSD
Configuration

512GB;16 Channels; 8 Chips/Channel; 1 Die/Chip;
2 Planes/Die;2048 Blocks/Plane; 256 Pages/Block;
4KB Page;

Timing
Parameters

0.075 ms for page read; 1.5 ms for page write; 3.8
ms for block erase; 25 ns for byte transfer.

During the evaluation, a DRAM buffer is configured in the
SSD. We set the buffer size to be 1‰ of the footprint of the
evaluated workload [27] [45], which helps to prevent setting
a large buffer from generating biased results in evaluation.
The default data organization of die lists in the buffer is de-
signed based on the scheme of the Element-Level Parallelism
Optimization (EPO) [46]. EPO evicts dirty pages from buffer
based on its die location so that the utilization of die level
parallelism can be maximized. The data are organized in LRU
for each die list of the buffer.

B. Evaluated Workloads

The workloads studied in this work include a subset of MSR
Cambridge Workloads from servers [47]. These workloads are

widely used in previous works for studying SSD performance
[18] [9] [14]. The characteristics of workloads are presented
in Table II. Each workload is characterized by three metrics:
W/R Ratio, FP , R V , W V , R S and W S. W/R Ratio
represents the write and read operation ratios, FP is the
footprints of each workload, R V is the total amount of read
data, W V represents the total amount of written data, R S
represents the average size of read requests, and W S is the
average size of write requests.

TABLE II
THE CHARACTERISTICS OF EVALUATED WORKLOADS

Workloads W/R Ratio§ FP§ R V§ W V§ R S§ W S§

HM 0 67.9% 1.35 6.9 15.2 11.2 11.6
PRN 0 93.7% 2.93 3.0 20.5 24.8 11.6
PRN 1 32.1% 5.16 31.4 10.9 24.2 11.4
RSR 0 90.7% 0.31 1.8 14.6 15.0 12.6
STG 0 76.9% 0.28 7.4 9.3 33.6 12.6
PROJ 0 82.9% 1.58 7.2 56.5 21.9 35.7
PROJ 3 4.89% 1.86 21.6 2.8 11.9 29.9
SRC2 0 88.6% 0.52 1.9 13.6 12.2 11.0

TS 0 82.6% 0.57 4.9 15.9 17.5 11.8
PRXY 0 97.06% 0.17 0.27 5.8 9.6 6.2
WDEV 0 79.9% 0.34 3.2 9.2 16.5 12.1

§ W/R Ratio: Write and Read Requests Ratio;
FP: FootPrint (GB);
R V/W V: Read/Write Data Volume (GB);
R S/W S: Average Read/Write Request Size (KB).

C. Evaluated Schemes:

Five schemes are implemented to show the effectiveness of
SPD.

Baseline-D: This scheme is implemented to represent the
traditional SSD design [10]. The buffer management of
Baseline-D adopts EPO to exploit die level parallelism through
adding dirty pages to different die lists based on their die
locations [46]. With this organization, dirty data evicted from
write buffer can be distributed to different dies so that die level
parallelism can be exploited;

Baseline-P: This scheme is similar to Baseline-D. The
difference is that Baseline-P evicts dirty data based on their
plane locations to further exploit plane level parallelism. In this
case, dirty pages accessing different planes within the same die
are evicted at a time. Baseline-P evenly distributes dirty pages
to different planes to better exploit plane level parallelism,
which is similar to the previous studies [48] [18];

TwinBlk: This scheme is designed based on the work
proposed by Tavakkol et al. [11], which aims to align write
points of all planes in a die via round-robin policy. In this case,
several host requests can be processed in parallel when write
points are aligned. During GC process, the adopted round-
robin policy is designed to align write points of active blocks
in victim blocks as well, aiming to move valid pages with the
support of multi-plane command;

ParaGC: This scheme is designed by Shahidi et al. [9],
which aims to align valid page movement during GC to
minimize the GC cost. Differing from TwinBlk, ParaGC aligns
write points of active blocks through sequentially moving valid

pages to one active block until write points of all planes are
aligned. After that, with cache assistance, all valid pages can
be written back to active blocks with the support of multi-plane
command;

SPD: This is the proposed framework, which includes
Die-Write and Die-GC.

VI. EXPERIMENT RESULTS AND ANALYSIS

In this section, SPD is evaluated with two scenarios based
on whether GC is triggered. For the first scenario without
triggering GC, it is evaluated to show the advantages of the
proposed Die-Write scheme. For the second scenario with
triggering GC, it is evaluated to show the effectiveness of
SPD, including Die-Write and Die-GC. In addition, the
Die-GC is also evaluated in term of its cost and lifetime
impact. Finally, the impact of different buffer sizes and results
on SSD with 4 planes per die are presented.

A. Experiment Results without GC

(1) Write Latency Evaluation: Figure 7 shows the results of
write latency for the five schemes. Note that, since ParaGC
is designed to optimize GC process, the results of ParaGC
in this part are same to that of Baseline-D. The results show
that SPD achieves write latency reduction for all evaluated
workloads. For example, for HM 0, PRN 0, PROJ 3, SRC2 0
and PRXY 0, the write latency is reduced by more than
15% compared with Baseline-D. These results show that
deploying Die-Write to maintain aligned write points for
the multiple planes in a die is important in improving the
access performance. In Figure 8, we collected the percentages
of write operations processed by multi-plane command. The
results show that the proposed Die-Write is able to maintain
aligned write points for all write operations. However, this is
not a promise for the other schemes.

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0
W D E V _ 0

A v e r a
g e

0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Wr
ite

 Re
qu

est
 La

ten
cy

(m
s)

Fig. 7. Write Latency Reduction.

To obtain more details, we compare SPD with other two
schemes, Baseline-P and TwinBlk. Two observations can be
concluded from the results: First, compared with these two
schemes, SPD achieves the best write performance. Baseline-
P is proposed to distribute the same type requests to all
planes evenly. However, the address restriction is not taken
into consideration. As a result, Baseline-P only achieves little
write latency reduction, which is only up to 1.4%. TwinBlk

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0
W D E V _ 0

A v e r a
g e

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
2 0
4 0
6 0
8 0

1 0 0
 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Th
e P

erc
ent

age
s o

f W
rit

es
Co

ntr
ibu

ted
fro

m
Mu

lti-
Pla

ne
Co

mm
an

d(%
)

Fig. 8. Percentages of Write Operations Processed by multi-plane command.

aims to align write points of all planes in the same die as
well. However, the write points still may be unaligned due to
the unaligned accesses on planes of the same die. On average,
TwinBlk achieves 7.8% write latency reduction compared with
Baseline-D. As shown in Figure 8, the percentages of write
operations processed by multi-plane command for Baseline-P
is similar to that of Baseline-D. For TwinBlk, the percentage
is largely increased compared with Baseline-D. Second, for
several workloads, TwiBlk only achieves similar performance
improvement to that of Baseline-D, such as RSR 0, STG 0,
TS 0 and PRXY 0. This can be explained from the results in
Figure 8, where the percentage of write operations supported
by multi-plane command is limited. The reason is that TwinBlk
cannot guarantee aligned write points for all planes all the
time.

For read latency, the average read latency improvement
compared with Baseline-D is presented in Table III. The results
show that read latency is similar among the five schemes. The
key reasons are from two aspects: first, read requests of all
evaluated schemes are processed with higher priority [49] [50]
[3]; second, Die-Read is designed to only read requested
data. In conclusion, the proposed Die-Read is same to that of
normal read operations without introducing read amplification.

TABLE III
READ LATENCY IMPROVEMENT WITHOUT GC

Baseline-D Baseline-P TwinBlk ParaGC SPD
Reduction 0 0.049% 0.011% 0% 0.096%

(2) Plane Utilization: Plane Utilization is defined to
present the average number of planes being occupied in
parallel. In order to obtain plane utilization, the number of
planes being accessed is counted when each buffer eviction
process is completed. Figure 9 shows the plane utilization
(Bars) and the maximal number of planes being accessed in
parallel (Dots+Line) for the five schemes. The results have a
matching pattern with the write performance improvement in
Figure 7. SPD can significantly increase the plane utilization
through doubling the number of parallel planes with satisfying
the restrictions of multi-plane command. On average, the plane
utilization is increased by 36.5% compared with Baseline-
D. For the maximal number of planes accessed in parallel,

all planes of the SSD can be accessed in parallel for most
workloads. However, for Baseline-D, Baseline-P and TwinBlk,
there still exists a large gap compared with SPD. In conclusion,
Die-Write is not only able to increase plane utilization, but
also can make a full use of all planes of the SSD.

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0

W D E V _ 0
A v e r a

g e
0

1 0
2 0
3 0
4 0
5 0

 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Pla
ne

Ut
iliz

ati
on

 (%
)

1 0 0

1 5 0

2 0 0

2 5 0

 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Ma
xim

al
Nu

mb
er

of
Pla

nes
Be

ing
 Ac

ces
sed

 in
 Pa

ral
lel

Fig. 9. The Plane Utilization and Maximal Number of Planes being Accessed
in Parallel.

(3) Buffer Hit Ratio: Differently from previous work,
Die-Write may need to evict more data from the buffer
to align the write points. In this case, it may have impact to
the hit ratio of buffer. Figure 10 presents the results of buffer
hit ratios for the five schemes. The results show that SPD has
little impact to the hit ratio of buffer. The average buffer hit
ratio is reduced by only 1.92%, which is negligible. The reason
for the slight reduction is that Die-Write is designed with
following principles: first, it always only need to evict one
more dirty page, which is critical in aligning write points;
second, the buffer is designed to only evict the cold dirty data
from the LRU position.

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0
W D E V _ 0

A v e r a
g e

0
2 0
4 0
6 0
8 0

1 0 0 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Bu
ffe

r H
it R

ati
o (

%
)

Fig. 10. The Buffer Hit Ratios of Evaluated Schemes.

B. Experiment Results with GC

Figure 11 shows the results of write latency with GC
triggered. The results show that SPD is able to significantly
reduce the write latency for all workloads. The write latency is
reduced by 48.61%, 47.65%, 42.05%, and 28.58% compared
with Baseline-D, Baseline-P, TwinBlk, and ParaGC, on av-
erage. The significant improvement comes from two aspects:
First, SPD constructs aligned write access to reduce write
latency, which has been verified in Section VI-A. Second, the

GC cost is further reduced through moving all valid pages
with the support of Die-Write and reclaiming two planes
at once time.

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0
W D E V _ 0

A v e r a
g e

0
4
8

1 2
1 6
2 0
2 4
2 8

 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Wr
ite

 Re
qu

est
 La

ten
cy

(m
s)

Fig. 11. The Write Latencies of Evaluated Schemes.

To understand more details, the total GC costs are presented
in Figure 12. The results show that first, TwinBlk generally
has much higher cost than ParaGC. On average, compared
with Baseline-D, total GC cost of ParaGC is reduced by
30.8% while TwinBlk only reduces the total GC cost by 6.9%.
For ParaGC, it activates GCs in paired planes only when the
number of free pages in the other plane is smaller than 7%.
In this case, it can avoid introducing high GC cost while
moving valid pages. In addition, ParaGC proposed to align
write points during the process of valid page movement so
that valid pages in the same position of paired planes can be
read and written in parallel. However, for TwinBlk, it activates
paired GCs without considering the number of valid pages in
the paired planes. In this case, more valid pages from paired
planes may be moved during GC process. In addition, TwinBlk
adopted round-robin policy. If current write points are not
aligned, valid pages having same position in different planes
still can not be read and written in parallel. Therefore, for
some workloads, the total GC cost of TwinBlk is larger than
Baseline-D. Second, even though SPD also activates GC at the
all planes at the same time, it is proposed to regard the whole
die as the smallest access unit and all the write operations
during GC are processed via Die-Write. As a result, the
total GC cost is reduced by 36.4%, on average. In conclusion,
SPD achieves the best write performance compared with all
other related works.

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0
W D E V _ 0

A v e r a
g e

0

1 x 1 0 4

2 x 1 0 4

3 x 1 0 4 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

To
tal

 G
C T

im
e C

ost
 (s)

Fig. 12. Total GC Cost of Evaluated Schemes.

For read latency, results of read latency improvement with
considering GC are presented in Table IV. Similarly, the read
latency is similar among each scheme. The results show that
SPD has no impact to read access with significant write
performance improvement.

TABLE IV
READ LATENCY IMPROVEMENT WITH GC

Baseline-D Baseline-P TwinBlk ParaGC SPD
Reduction 0 0.052% -0.042% 1.144% 1.203%

C. GC Evaluation

In this part, Die-GC is evaluated. First, the average GC
cost and the number of triggered GC in different schemes are
evaluated. Second, the number of erase operations induced by
GC is collected to show its impact on the lifetime of SSDs.

(1) Average GC Cost: Average GC costs are collected in
Figure 13. In the Figure, the average GC cost is broken into
four parts: read cost, write cost, transfer cost and erase cost.
Read cost is the cost in reading valid pages from the victim
block; write cost is the cost in writing the valid data to free
pages; transfer cost is the cost in transferring the valid data
among planes or between controller and chips; and erase cost
is the time cost in erasing the victim block. The results show
that the write cost takes the dominate part of the total cost
[18]. This is because write latency of flash memory is several
times of read latency. In addition, there are always a large
number of valid page movement during GC. There are two
observations from the results: First, SPD has the minimal
GC cost compared with TwinBlk and ParaGC. Clearly, the
reduced GC cost is from the Die-Write used in Die-GC,
which is triggered to write dirty pages back to the multiple
planes in parallel. For TwinBlk, it also trigged GC in the
paired planes. However, TwinBlk adopted round-robin policy
for write operations among planes, which is not able to always
align the write points. In this case, many valid pages written
back may be processed sequentially. Second, the GC cost
of SPD is similar to that of Baseline-D and Baseline-P. As
presented in the technique part, Die-GC is designed to reclaim
several blocks in one GC. Several block reclaiming costs are
similar with single block reclaiming cost in Baseline-D and
Baseline-P due to that we carefully select victim blocks among
planes as a single unit and use Die-Write to speed up the
process.

(2) GC Count: Figure 14 shows the total number of trig-
gered GCs during runtime. We can find that Die-GC highly
reduces the number of GCs. Therefore, the frequency of
triggering GC is reduced. The results show that GC count
is reduced in the range of 32.9% to 50.1%, compared with
Baseline-D. As a result, the total GC cost during whole
runtime can be highly reduced as well so that the performance
of SSDs can be improved. For related works, the number of
triggered GCs in Baseline-P is similar to Baseline-D. Both
TwinBlk and ParaGC can reduce the number of triggered GCs
as well. This is because that TwinBlk and ParaGC erase more

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

 E r a s e T i m e T r a n s f e r T i m e W r i t e T i m e R e a d T i m e

A v e r a g eW D E V _ 0P R X Y _ 0T S _ 0S R C 2 _ 0P R O J _ 3P R O J _ 0S T G _ 0R S R _ 0P R N _ 1P R N _ 0SP
D

Tw
inB

lk
Pa

raG
C

Ba
sel

ine
-P

Av
era

ge
GC

 Co
st B

rea
kd

ow
n(m

s)

Ba
sel

ine
-D

H M _ 0 Ba
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
D

Ba
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
DBa
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
D

Ba
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
D

Ba
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
DBa
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
D

Ba
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
D

Ba
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
DBa
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
D

Ba
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
D

Ba
sel

ine
-D

Ba
sel

ine
-P

Tw
inB

lk
Pa

raG
C

SP
D

Fig. 13. Average GC Cost Breakdown of Evaluated Schemes.

blocks in each GC process as well. But for TwinBlk, it selects
victim blocks inefficiently so that its GC counts are slightly
higher in most cases. For a exception, PROJ 0, since SPD
may slightly increase write operations, the total triggered GC
count of SPD may be slightly increased.

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0
W D E V _ 0

A v e r a
g e

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0

GC
 Co

un
t (x

100
0)

 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Fig. 14. The Total Number of Triggered GC.

(3) GC Induced Erases: Figure 15 shows the number of
erase operations for the five schemes. Since TwinBlk, ParaGC
and Die-GC are designed to erase more blocks in each
GC process, the number of erase operations are larger than
that of Baseline for most workloads. The reason is that,
reclaiming blocks from different planes at once time may
trigger premature GCs [51] [52]. However, the results show
that the number of erase operations of Die-GC is much
smaller than TwinBlk and ParaGC. For example, TwinBlk, in
the worst case, introduces more than 102.2% erase operations
for PRXY 0, compared with Baseline-D. ParaGC, introduces
more than 65.8% erase operations compared with Baseline-
D. Compared with these two related works, SPD introduces
fewer erase operations in most cases. On average, the num-
ber of erase operations is reduced by 13.43% and 10.04%
compared with TwinBlk and ParaGC. The reason comes from
that Die-GC is triggered with regarding the whole die as
the smallest unit without introducing additional valid page
movements.

D. Sensitive Studies
(1) Buffer Size Impact: In this part, the write intensive

workload, RSR 0, is selected for buffer size sensitivity study.
Buffer size is different within different devices. Its impact
on SPD is presented. Figure 16 shows the results of the
normalized write latencies of the five schemes by varying

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0
W D E V _ 0

A v e r a
g e

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0

Er
ase

 Co
un

t (x
100

0)

 B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Fig. 15. The Total Number of Erase Operations

buffer size from 256KB to 16MB. During the evaluation, GC
is not triggered to only understand the impact from different
buffer sizes. Two observations can be concluded from the
results. First, with larger buffer size, the write latencies of
all schemes can be further reduced. This is because that more
dirty pages can be stored and higher hit ratio can be achieved.
Second, compared with other schemes, stable write latency
reduction is achieved by SPD with different buffer sizes. The
proposed framework is designed to align the write point of
planes all the time. It has benefit once there are multiple write
operations issued to a die.

2 5 6 K B 5 1 2 K B 1 M B 2 M B 4 M B 8 M B 1 6 M B0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Wr
ite

 Re
qu

est
 La

ten
cy

(m
s) B a s e l i n e - D B a s e l i n e - P T w i n B l k P a r a G C S P D

Fig. 16. Write Latency with Different Buffer Sizes.

(2) Four-Plane SSD Evaluation: In this part, SSD with four
planes per die is evaluated for SPD. For the four planes of
a die, each paired planes can be accessed in parallel with
the support of multi-plane command [1] [10]. The results of
write latencies for Baseline-D, Baseline-P, TwinBlk, ParaGC
and SPD are presented in Figure 17, where GC is triggered.
First, Baseline-P has similar write latency to that of Baseline-

D. Four-plane SSD requires that only paired plane 0&1 or
2&3 can be processed in parallel. Only a few write operations
can be processed with the support of multi-plane command.
Second, the write latency of TwinBlk is increased compared
with Baseline-D, especially for PROJ 3. The reason comes
from that more blocks are immaturely reclaimed so that the
total GC cost is highly increased. Take PROJ 3 as an example,
the total GC cost of TwinBlk is increased by 63.4% (Due to
space limitation, we did not show the total GC cost). Third,
the write latency of ParaGC is reduced by 19.3% compared
with Baseline-D. Since triggering GC in paired planes will
block the whole die, there still exist idle planes when there
are four planes in a die. Last, for SPD with four-plane SSD,
the write latency is further reduced. This is because that all
four planes are regarded as one unit in Die-Write and they
are reclaimed at one time by Die-GC as well. Therefore, the
frequency of triggering GC can be highly reduced when the
number of planes in a die increases. On average, compared
with Baseline-D, SPD achieves 65.6% write latency reduction,
on average.

H M _ 0
P R N _ 0

P R N _ 1
R S R _ 0

S T G _ 0
P R O J _ 0

P R O J _ 3
S R C 2 _ 0 T S _ 0

P R X Y _ 0
W D E V _ 0

A v e r a
g e

0 . 0
0 . 5
1 . 0
1 . 5
2 . 0

Wr
ite

 Re
qu

est
 La

ten
cy

(m
s) B a s e l i n e - D (2 - P l a n e) B a s e l i n e - P (2 - P l a n e) S P D (2 - P l a n e)

 B a s e l i n e - P (2 - P l a n e) B a s e l i n e - P (4 - P l a n e) S P D (4 - P l a n e)

Fig. 17. Write Latency with 4 Planes per Die.

VII. RELATED WORKS

In this section, related works on improving the plane level
parallelism and reducing GC impact on performance are
presented, respectively.

(1) Plane Level Parallelism Exploration: In order to improve
plane level parallelism, several previous works have been
proposed. Gao et al. [18] and Jung et al. [48] proposed to
increase the potential of using multi-plane command through
distributing requests belonging to different planes at one
time. Similarly, Abdurrab et al. [31] proposed DLOOP to
modify mapping policy to evenly distribute data across planes
based on a fixed location calculation. However, the achieved
performance is limited since they highly depend on the access
patterns of workloads to match the limitations of multi-plane
command. On the other hand, Tavakkol et al. [11] and Hu et
al. [10] proposed to align writing points of planes. Tavakkol
et al. [11] proposed to maintain the write points to distribute
writes among planes in round-robin fashion. However, due to
the above mentioned unaligned access problem, plane level
parallelism still can not be fully exploited. Hu et al. [10]
proposed a greedy multi-plane command. They proposed to

allocate new writing points in the same position. However,
this will waste space.

Different from all these works, SPD is the first on proposing
to align the write points in an active way. Die-Write is
designed to align the write point all the time. In this case,
all write operations issued to multiple planes in a die can be
processed in parallel.

(2) Garbage Collection Impact Minimization: Previous
works aiming at reducing GC impact on performance can be
classified into two groups: The first group proposed to reduce
the time cost of GC activity [13] [53]; For example, Gao et al.
[13] proposed to reduce the time cost of valid page movement
through migrating valid pages to idle chips. Park et al. [53]
proposed a new hotness identification method for accurately
capturing the recency and frequency of data. The second group
proposed to schedule requests or GCs to reduce the impact on
performance of SSDs [54] [14] [12]. For example, Wu et al.
[14] used cache to store requests conflicted by GC. Jung et
al. [54] proposed to advance or delay GC through moving
the time-consuming activity from busy period to idle period.
Choi et al. [12] proposed to combine host I/O operations
with valid pages migration. However, the aforementioned GC
optimization methods still have not taken unaligned access
problem of plane level parallelism into consideration.

There are two works proposed to reduce GC impact resulted
from unaligned access problem. Shahidi et al. [9] proposed
ParaGC to select paired planes, where GC activities can be
processed in parallel. However, if the paired planes can not be
found, unaligned access problem still exist. Tavakkol et al. [11]
proposed TwinBlk, which can minimize the unaligned access
induced impact on GC. TwinBlk is designed to trigger GCs on
all planes of the same die simultaneously so that symmetric
victim blocks on planes can be reclaimed in parallel. During
this process, valid pages are evenly moved to all planes in
round robin policy for aligning write points of all planes.

Different from these works, SPD uses Die-GC to speed
up the GC process and reduce the GC cost. Die-GC is
designed to select multiple blocks in the unit of die and adopt
Die-Write to speed up the GC process.

VIII. CONCLUSION

In this work, a from plane to die optimization framework is
proposed to exploit the plane level parallelism, which is the
last level parallelism of SSDs. Two components are designed
in the framework: die level write construction and die level
GC. Different from previous work, this work is the first which
is able to maintain the aligned write points for the multiple
planes for each die at the time. There are two components
designed to align the write points of all planes in the same die
all the time. In this case, the last level parallelism, plane level
parallelism, is fully exploited to improve the performance of
write requests and internal activities. Experiment results show
that SPD achieves significant write performance improvement
and much smaller lifetime impact compared with state-of-the-
art works.

IX. ACKNOWLEDGMENT

This work is supported by NSFC 61772092 and 61572411,
National Science Foundation 1718080, 1422331, 1725657 and
1617071.

REFERENCES

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark S
Manasse, and Rina Panigrahy. Design tradeoffs for ssd performance. In
ATC. USENIX, 2008.

[2] Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential roles of
exploiting internal parallelism of flash memory based solid state drives
in high-speed data processing. In HPCA. IEEE, 2011.

[3] Congming Gao, Liang Shi, Mengying Zhao, Chun Jason Xue, Kaijie
Wu, and Edwin H-M Sha. Exploiting parallelism in i/o scheduling for
access conflict minimization in flash-based solid state drives. In MSST.
IEEE, 2014.

[4] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. Dftl: A flash
translation layer employing demand-based selective caching of page-
level address mappings. In ASPLOS. ACM, 2009.

[5] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl: A content-aware
flash translation layer enhancing the lifespan of flash memory based
solid state drives. In FAST, 2011.

[6] Myoungsoo Jung and Mahmut T Kandemir. An evaluation of different
page allocation strategies on high-speed ssds. In HotStorage. USENIX,
2012.

[7] Rino Micheloni, A Marelli, and S Commodaro. Nand overview: from
memory to systems. In Inside NAND Flash Memories. Springer, 2010.

[8] ONFI. Open NAND Flash Interface Specification 4.1. Website, 2017.
http://www.onfi.org/∼/media/onfi/specs/onfi 4 1 gold.pdf?la=en.

[9] Narges Shahidi, Mohammad Arjomand, Myoungsoo Jung, Mahmut T
Kandemir, Chita R Das, and Anand Sivasubramaniam. Exploring the
potentials of parallel garbage collection in ssds for enterprise storage
systems. In SC. IEEE, 2016.

[10] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping
Zhang. Performance impact and interplay of ssd parallelism through
advanced commands, allocation strategy and data granularity. In ICS.
ACM, 2011.

[11] Arash Tavakkol, Pooyan Mehrvarzy, and Hamid Sarbazi-Azad. Tbm:
Twin block management policy to enhance the utilization of plane-level
parallelism in ssds. In Computer Architecture Letters. IEEE, 2016.

[12] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and Chita Das.
Parallelizing garbage collection with i/o to improve flash resource
utilization. In HPDC. ACM, 2018.

[13] Congming Gao, Liang Shi, Yejia Di, Qiao Li, Chun Jason Xue, Kaijie
Wu, and Edwin Sha. Exploiting chip idleness for minimizing garbage
collection induced chip access conflict on ssds. In TODAES. ACM,
2017.

[14] Suzhen Wu, Bo Mao, Yanping Lin, and Hong Jiang. Improving
performance for flash-based storage systems through gc-aware cache
management. In TPDS. IEEE, 2017.

[15] Suzhen Wu, Yanping Lin, Bo Mao, and Hong Jiang. Gcar: Garbage
collection aware cache management with improved performance for
flash-based ssds. In ICS. ACM, 2016.

[16] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and
Mahmut T Kandemir. Hios: A host interface i/o scheduler for solid state
disks. In ACM SIGARCH Computer Architecture News. IEEE Press,
2014.

[17] Adrian M Caulfield, Laura M Grupp, and Steven Swanson. Gordon:
using flash memory to build fast, power-efficient clusters for data-
intensive applications. ACM Sigplan Notices, 2009.

[18] Congming Gao, Liang Shi, Cheng Ji, Yejia Di, Kaijie Wu, Jason Xue,
and Edwin Sha. Exploiting parallelism for access conflict minimization
in flash-based solid state drives. In TCAD. IEEE, 2017.

[19] Siddharth Choudhuri and Tony Givargis. Performance improvement of
block based nand flash translation layer. In CODES + ISSS. IEEE/ACM,
2011.

[20] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sang-
won Park, and Ha-Joo Song. A log buffer-based flash translation layer
using fully-associative sector translation. In TECS. ACM, 2007.

[21] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-
Won Lee, and Ha-Joo Song. System software for flash memory: a survey.
In EUC. Springer, 2006.

[22] Eran Gal and Sivan Toledo. Algorithms and data structures for flash
memories. In CSUR. ACM, 2005.

[23] Seungjae Lee, Chulbum Kim, Minsu Kim, Sung-min Joe, Joonsuc Jang,
Seungbum Kim, Kangbin Lee, Jisu Kim, Jiyoon Park, Han-Jun Lee,
et al. A 1tb 4b/cell 64-stacked-wl 3d nand flash memory with 12mb/s
program throughput. In ISSCC. IEEE, 2018.

[24] Yangyang Pan, Guiqiang Dong, and Tong Zhang. Exploiting memory
device wear-out dynamics to improve nand flash memory system per-
formance. In FAST. USENIX, 2011.

[25] Yeong-Jae Woo and Jin-Soo Kim. Diversifying wear index for mlc nand
flash memory to extend the lifetime of ssds. In EMSOFT. IEEE, 2013.

[26] Bingsheng He, Jeffrey Xu Yu, and Amelie Chi Zhou. Improving
update-intensive workloads on flash disks through exploiting multi-chip
parallelism. In TPDS. IEEE, 2015.

[27] Hyojun Kim and Seongjun Ahn. Bplru: A buffer management scheme
for improving random writes in flash storage. In FAST. USENIX, 2008.

[28] Nimrod Megiddo and Dharmendra S Modha. Arc: A self-tuning, low
overhead replacement cache. In FAST. USENIX, 2003.

[29] Liang Shi, Jianhua Li, Chun Jason Xue, Chengmo Yang, and Xuehai
Zhou. Exlru: a unified write buffer cache management for flash memory.
In EMSOFT. ACM, 2011.

[30] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A
cycle accurate memory system simulator. In Computer Architecture
Letters. IEEE, 2011.

[31] Abdul R. Abdurrab, Tao Xie, and Wei Wang. Dloop: A flash translation
layer exploiting plane-level parallelism. In IPDPS. IEEE, 2013.

[32] Tomoharu Tanaka, Mark Helm, Tommaso Vali, and Ramin Ghodsi. 7.7
a 768gb 3b/cell 3d-floating-gate nand flash memory. In ISSCC. IEEE,
2016.

[33] Micron. Nand flash performance improvement using internal data
move. Website, 2006. https://www.micron.com/resource-details/
d8322e29-f893-4c73-ade6-ad341f7f2b32.

[34] Congming Gao, Shi Liang, Yejia Di, Qiao Li, Chun Xue, and H.M. Ed-
win Sha. An efficient cache management scheme for capacitor equipped
solid state drives. In GLSVLSI. ACM, 2018.

[35] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu. Mqsim: A framework for enabling realistic
studies of modern multi-queue SSD devices. In FAST. USENIX, 2018.

[36] Ryuji Yamashita, Sagar Magia, Tsutomu Higuchi, Kazuhide Yoneya,
Toshio Yamamura, Hiroyuki Mizukoshi, Shingo Zaitsu, Minoru Ya-
mashita, Shunichi Toyama, Norihiro Kamae, et al. 11.1 a 512gb 3b/cell
flash memory on 64-word-line-layer bics technology. In ISSCC. IEEE,
2017.

[37] Min Huang, Yi Wang, Liyan Qiao, Duo Liu, and Zili Shao. Smart-
backup: An efficient and reliable backup strategy for solid state drives
with backup capacitors. In HPCC. IEEE, 2015.

[38] Jie Guo, Jun Yang, Youtao Zhang, and Yiran Chen. Low cost power
failure protection for mlc nand flash storage systems with pram/dram
hybrid buffer. In DATE. ACM, 2013.

[39] Woon Hak Kang, Sang Won Lee, Bongki Moon, Yang Suk Kee, and
Moonwook Oh. Durable write cache in flash memory ssd for relational
and nosql databases. In SIGMOD. ACM, 2014.

[40] Micron. 7100 m.2 nvme pcie ssd. Website, 2016.
https://www.micron.com/∼/media/documents/products/data-sheet/
ssd/7100 m2 pcie ssd.pdf.

[41] Wiki. 3d xpoint. Website, 2017. https://en.wikipedia.org/wiki/3D
XPoint.

[42] Ruijin Zhou and Tao Li. Leveraging phase change memory to achieve
efficient virtual machine execution. In VEE. ACM, 2013.

[43] Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao, and Tong Zhang.
Reducing solid-state storage device write stress through opportunistic
in-place delta compression. In FAST. USENIX, 2016.

[44] Feng Chen, David A Koufaty, and Xiaodong Zhang. Understanding
intrinsic characteristics and system implications of flash memory based
solid state drives. In SIGMETRICS. ACM, 2009.

[45] Sang-Won Lee, Bongki Moon, and Chanik Park. Advances in flash
memory ssd technology for enterprise database applications. In SIG-
MOD. ACM, 2009.

[46] Tao Xie and Janak Koshia. Boosting random write performance for
enterprise flash storage systems. In MSST. IEEE, 2011.

[47] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety,
and Antony Rowstron. Migrating server storage to ssds: Analysis of
tradeoffs. In EuroSys. ACM, 2009.

[48] Myoungsoo Jung, Ellis H Wilson III, and Mahmut Kandemir. Physically
addressed queueing (paq): improving parallelism in solid state disks. In
ISCA. IEEE, 2012.

[49] Tatyana Brokhman. Row scheduling algorithm in block layer. Website,
2012. https://lwn.net/Articles/509829/.

[50] Jaeho Kim, Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee,
and Sam H Noh. Disk schedulers for solid state drivers. In EMSOFT.
ACM, 2009.

[51] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time garbage
collection for flash-memory storage systems of real-time embedded
systems. In TECS. ACM, 2004.

[52] Li-Pin Chang and Chen-Yi Wen. Reducing asynchrony in channel
garbage-collection for improving internal parallelism of multichannel
solid-state disks. In TECS. IEEE, 2014.

[53] Dongchul Park and David HC Du. Hot data identification for flash-based
storage systems using multiple bloom filters. In MSST. IEEE, 2011.

[54] Myoungsoo Jung, Ramya Prabhakar, and Mahmut Taylan Kandemir.
Taking garbage collection overheads off the critical path in ssds. In
Middleware. ACM, 2012.

