
Parity-Only Caching for 
Robust Straggler Tolerance

Mi Zhang, Qiuping Wang, Zhirong Shen, Patrick P. C. Lee
The Chinese University of Hong Kong

MSST 2019



Background
Stragglers exist in large-scale storage systems

• Nodes operate with slow performance
• Also known as gray failures [Huang, HotOS’17] or fail-slow failures [Gunawi, FAST’16] 

Stragglers introduce latency variation [Dean, Comm.’13]

• Long tail in latency distribution 

Hard to pinpoint stragglers [Huang, HotOS’17; Gunawi, FAST’16]

• Varying root causes
• Long time to detect

2



Background

Caching accessed data to bypass stragglers
• Cache space is limited
• Only caching popular data inevitably hits stragglers

Selective replication creates more replicas for hot data
• High redundancy overhead
• Data popularity can change sharply [Huang, HotNets’14]

3



Erasure Coding
 (𝑘𝑘, 𝑚𝑚) erasure coding

• Encodes 𝑘𝑘 data blocks to generate 𝑚𝑚 parity blocks (𝑚𝑚 < 𝑘𝑘)
• Any 𝑘𝑘 blocks suffice to reconstruct original content

Erasure coding is a promising redundancy technique 
• Storage efficiency

• Reduce storage overhead from 3x to 1.33x in Azure [Huang, ATC’12]

• High reliability against fail-stop failures

Can we combine caching and erasure coding to achieve 
robust straggler tolerance?
• By robust, we mean straggler tolerance does not rely on accurate 

detection of stragglers
4



Our Contributions

Conduct mathematical analysis
Design POCache, a parity-only caching scheme for robust 

straggler tolerance
• Mitigate coding overhead via two mechanisms
• Straggler-aware cache algorithm

 Implement POCache atop Hadoop 3.1 HDFS
Evaluate POCache on a local cluster and Amazon EC2

• Compare POCache with hedge reads and selective replication

5



Mathematical Analysis
Retrieve data from 𝑘𝑘 storage nodes 

6

…

client

…

𝑘𝑘 data nodes 𝑐𝑐 cache nodes 

• Assume every node has a probability of 0.5% to become a straggler
• What is the probability of hitting a straggler for a read request?



Mathematical Analysis
Probability of hitting a straggler

• When reading from 𝑘𝑘 = 4 data nodes

7

Number of cached blocks

No-caching

Caching data

Caching parity



Mathematical Analysis
Probability of hitting a straggler

• When caching only 𝑐𝑐 = 1 block

8

Different number of data blocks

No-caching

Caching data

Caching parity



Main Findings

Caching parity blocks is more effective than caching data 
blocks to bypass stragglers

Caching only one parity block can effectively eliminate the 
impact of stragglers

Even with slowdown of cache nodes, caching parity blocks still 
maintains straggler tolerance

9



Challenges
 Large encoding/decoding overhead

• Decoding time takes about 30% of read time [Rashmi, OSDI ’16]

• Degrade normal read/write performance

What parity blocks to cache?
• Manage cache space with considering stragglers

Can we support general deployment? 
• Support general storage systems and protocols
• Support upper-layer applications

10



POCache Design
Block slicing

11

data blocks parity block

…
subblock

substripe

D0 D1 Dk-1 C0

• Slice blocks into smaller-size subblocks
• Cache parity subblocks rather than the whole block

• Parallelize coding across different substripes
• Pipeline the process of caching parity blocks



POCache Design
 Incremental encoding

12

C0
’ C0

’’ C0
’’’’ C0

…

data subblocks Parity subblock
…

D1 Dk-1 C0D0

• Addition operations are associative in a linear combination
• Compute parity subblocks one by one incrementally



POCache Design

How to minimize straggler hit ratio?
• Avoid accessing stragglers
• Consider file popularity

Straggler-aware cache algorithm
• Admit caching parities for blocks on stragglers

• Collect each node’s service rate
• Identify stragglers according to three-sigma rule
• Compose a straggler list

• Evict least-recently-accessed files
• 75% of re-accesses occur within 6 hours [Chen, VLDB’12]

Details referred to the paper
13



Implementation
 Implement POCache on Hadoop 3.1 HDFS

• Use Redis to build cache nodes
• Add Manager on NameNode for cache management 
• Modify HDFS client

14

Manager
NameNode

…

client

…

Architecture of POCache
DataNode Cache Node



Evaluation Setup
 Local cluster

• 15 commodity machines
• Intel core i5, 16 GiB RAM, 1 TiB SATA disk

• 10 Gbps Ethernet switch
• Employ benchmark tool DFS-Perf
• Inject stragglers by running Linux stress
• 64-MiB block, 256-MiB file (4 blocks) by default

Amazon EC2
• 30 m5.large instances, 2 m5.2xlarge instances

• Magnetic storage
• 5 Gbps network bandwidth

15



Evaluation Results

Effectiveness of block slicing
• Cache one parity block for a file

• Lowest latency when subblock is of 1 MiB

16



Evaluation Results

Single-client reads
• Read mechanisms

• Vanilla, read sequentially
• HR, hedged read
• PR, read blocks in parallel

• Evaluate different file sizes
• POCache reduces the 

latency with straggler to the 
latency in normal case

17



Evaluation Results

Multi-client reads
• Read mechanisms in comparison

• Vanilla, read blocks sequentially
• HR, hedged read
• SR, cache popular data blocks

• Evaluate with 4, 8, 12 clients
• POCache achieves low mean and

tail latencies

18

With one straggler



Evaluation Results
Cache efficiency of Straggler-aware cache algorithm (SAC)

19

Straggler hit ratio under different cache sizes Latencies under different cache sizes 



Evaluation Results
Experiments on Amazon EC2

• Read mechanisms
• Vanilla, read sequentially
• HR, hedged read
• PR, read blocks in parallel

• Stragglers naturally appear in cloud
• POCache achieves lowest latency

among all four read policies

20



Conclusion

Present POCache, a parity-only caching design for robust 
straggler tolerance
• Minimize coding overhead
• Straggler-aware cache algorithm
• Preserve original workflow and performance

 Implement POCache on Hadoop 3.1 HDFS
Conduct experiments on a local cluster and Amazon EC2
Source code

• http://adslab.cse.cuhk.edu.hk/software/pocache

21

http://adslab.cse.cuhk.edu.hk/software/pocache


Thank you!
Q&A

22



Background and Motivation
Stragglers affect both data layouts

• Contiguous layout
• Striping layout

23

file

6MiB

2~4MiB0~2MiB 4~6MiB

0~1MiB
3~4MiB

1~2MiB
4~5MiB

2~3MiB
5~6MiB

node0 node1 node2

node0 node1 node2

Contiguous layout

Striping layout



Numerical Analysis
Probability of hitting straggler

24



Motivation
Stragglers slow down read request

• Read a file f, consisting of k blocks residing on k nodes
• Each node behaves abnormally with probability ps

25

client storage node
data block

k



Mathematical Analysis
 Two caching strategies

• Data-only cache
• c data blocks out of k data blocks

• Parity-only cache
• c parity blocks generated from k data blocks

26

…

client

storage node
data block

cached block
cache node

…c

k



Implementation
Add Manager on NameNode

• Store metadata on cached parities
• Support different cache algorithms via two primitives:

• Query, return admission decision
• Update, update related information and return eviction decision if needed

27

Manager
NameNode

…

client

…
Architecture of POCache



Evaluation Results

Experiments on Amazon EC2 cloud

28



Evaluation Results

Single-client reads under striping layout 

29


	Parity-Only Caching for �Robust Straggler Tolerance
	Background
	Background
	Erasure Coding
	Our Contributions
	Mathematical Analysis
	Mathematical Analysis
	Mathematical Analysis
	Main Findings
	Challenges
	POCache Design
	POCache Design
	POCache Design
	Implementation
	Evaluation Setup
	Evaluation Results
	Evaluation Results
	Evaluation Results
	Evaluation Results
	Evaluation Results
	Conclusion
	Slide Number 22
	Background and Motivation
	Numerical Analysis
	Motivation
	Mathematical Analysis
	Implementation
	Evaluation Results
	Evaluation Results

