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Background
Stragglers exist in large-scale storage systems

• Nodes operate with slow performance
• Also known as gray failures [Huang, HotOS’17] or fail-slow failures [Gunawi, FAST’16] 

Stragglers introduce latency variation [Dean, Comm.’13]

• Long tail in latency distribution 

Hard to pinpoint stragglers [Huang, HotOS’17; Gunawi, FAST’16]

• Varying root causes
• Long time to detect
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Background

Caching accessed data to bypass stragglers
• Cache space is limited
• Only caching popular data inevitably hits stragglers

Selective replication creates more replicas for hot data
• High redundancy overhead
• Data popularity can change sharply [Huang, HotNets’14]
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Erasure Coding
 (𝑘𝑘, 𝑚𝑚) erasure coding

• Encodes 𝑘𝑘 data blocks to generate 𝑚𝑚 parity blocks (𝑚𝑚 < 𝑘𝑘)
• Any 𝑘𝑘 blocks suffice to reconstruct original content

Erasure coding is a promising redundancy technique 
• Storage efficiency

• Reduce storage overhead from 3x to 1.33x in Azure [Huang, ATC’12]

• High reliability against fail-stop failures

Can we combine caching and erasure coding to achieve 
robust straggler tolerance?
• By robust, we mean straggler tolerance does not rely on accurate 

detection of stragglers
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Our Contributions

Conduct mathematical analysis
Design POCache, a parity-only caching scheme for robust 

straggler tolerance
• Mitigate coding overhead via two mechanisms
• Straggler-aware cache algorithm

 Implement POCache atop Hadoop 3.1 HDFS
Evaluate POCache on a local cluster and Amazon EC2

• Compare POCache with hedge reads and selective replication
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Mathematical Analysis
Retrieve data from 𝑘𝑘 storage nodes 
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…

client
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𝑘𝑘 data nodes 𝑐𝑐 cache nodes 

• Assume every node has a probability of 0.5% to become a straggler
• What is the probability of hitting a straggler for a read request?



Mathematical Analysis
Probability of hitting a straggler

• When reading from 𝑘𝑘 = 4 data nodes
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Mathematical Analysis
Probability of hitting a straggler

• When caching only 𝑐𝑐 = 1 block
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Main Findings

Caching parity blocks is more effective than caching data 
blocks to bypass stragglers

Caching only one parity block can effectively eliminate the 
impact of stragglers

Even with slowdown of cache nodes, caching parity blocks still 
maintains straggler tolerance
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Challenges
 Large encoding/decoding overhead

• Decoding time takes about 30% of read time [Rashmi, OSDI ’16]

• Degrade normal read/write performance

What parity blocks to cache?
• Manage cache space with considering stragglers

Can we support general deployment? 
• Support general storage systems and protocols
• Support upper-layer applications
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POCache Design
Block slicing
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• Slice blocks into smaller-size subblocks
• Cache parity subblocks rather than the whole block

• Parallelize coding across different substripes
• Pipeline the process of caching parity blocks



POCache Design
 Incremental encoding
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• Addition operations are associative in a linear combination
• Compute parity subblocks one by one incrementally



POCache Design

How to minimize straggler hit ratio?
• Avoid accessing stragglers
• Consider file popularity

Straggler-aware cache algorithm
• Admit caching parities for blocks on stragglers

• Collect each node’s service rate
• Identify stragglers according to three-sigma rule
• Compose a straggler list

• Evict least-recently-accessed files
• 75% of re-accesses occur within 6 hours [Chen, VLDB’12]

Details referred to the paper
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Implementation
 Implement POCache on Hadoop 3.1 HDFS

• Use Redis to build cache nodes
• Add Manager on NameNode for cache management 
• Modify HDFS client
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Evaluation Setup
 Local cluster

• 15 commodity machines
• Intel core i5, 16 GiB RAM, 1 TiB SATA disk

• 10 Gbps Ethernet switch
• Employ benchmark tool DFS-Perf
• Inject stragglers by running Linux stress
• 64-MiB block, 256-MiB file (4 blocks) by default

Amazon EC2
• 30 m5.large instances, 2 m5.2xlarge instances

• Magnetic storage
• 5 Gbps network bandwidth
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Evaluation Results

Effectiveness of block slicing
• Cache one parity block for a file

• Lowest latency when subblock is of 1 MiB
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Evaluation Results

Single-client reads
• Read mechanisms

• Vanilla, read sequentially
• HR, hedged read
• PR, read blocks in parallel

• Evaluate different file sizes
• POCache reduces the 

latency with straggler to the 
latency in normal case
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Evaluation Results

Multi-client reads
• Read mechanisms in comparison

• Vanilla, read blocks sequentially
• HR, hedged read
• SR, cache popular data blocks

• Evaluate with 4, 8, 12 clients
• POCache achieves low mean and

tail latencies
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Evaluation Results
Cache efficiency of Straggler-aware cache algorithm (SAC)
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Evaluation Results
Experiments on Amazon EC2

• Read mechanisms
• Vanilla, read sequentially
• HR, hedged read
• PR, read blocks in parallel

• Stragglers naturally appear in cloud
• POCache achieves lowest latency

among all four read policies
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Conclusion

Present POCache, a parity-only caching design for robust 
straggler tolerance
• Minimize coding overhead
• Straggler-aware cache algorithm
• Preserve original workflow and performance

 Implement POCache on Hadoop 3.1 HDFS
Conduct experiments on a local cluster and Amazon EC2
Source code

• http://adslab.cse.cuhk.edu.hk/software/pocache
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Thank you!
Q&A
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Background and Motivation
Stragglers affect both data layouts

• Contiguous layout
• Striping layout
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Numerical Analysis
Probability of hitting straggler
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Motivation
Stragglers slow down read request

• Read a file f, consisting of k blocks residing on k nodes
• Each node behaves abnormally with probability ps
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Mathematical Analysis
 Two caching strategies

• Data-only cache
• c data blocks out of k data blocks

• Parity-only cache
• c parity blocks generated from k data blocks
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Implementation
Add Manager on NameNode

• Store metadata on cached parities
• Support different cache algorithms via two primitives:

• Query, return admission decision
• Update, update related information and return eviction decision if needed
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Evaluation Results

Experiments on Amazon EC2 cloud
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Evaluation Results

Single-client reads under striping layout 
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