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Abstract—This paper proposes a pattern-based I/0 scheduling
mechanism, which identifies frequently written data with patterns
and dispatches them to the same SSD blocks having a small
erase count. The data on the same block are mostly like to be
invalided together, so that the overhead of garbage collection
can be greatly reduced. Moreover, a read balance-oriented wear-
leveling scheme is introduced to extend the lifetime of SSDs.
Specifically, it distributes the hot read data in the blocks with
a small erase count, to heavily erased blocks in different chips
of the same SSD channel, while carrying out wear-leveling. As a
result, internal parallelism at the chip level of SSD can be fully
exploited for achieving better read data throughput. We conduct
a series of simulation tests with a number of disk traces of real-
world applications under the SSDsim platform. The experimental
results show that the newly proposed mechanism can reduce
garbage collection overhead by 11.3%, and the read response
time by 12.8% in average, comparing to existing approaches of
scheduling and wear-leveling for SSDs.

Index Terms—Solid state drivers, pattern, scheduling, wear-
leveling

I. INTRODUCTION

NAND flash memory-based solid-state drives (SSDs) have
non-volatile nature, and are then widely leveraged in digital
devices. Specially, SSDs are featured with small size, high
performance, random-access performance and low energy con-
sumption [1], [2], [3]. However, flash units (e.g. blocks of
SSDs) are written upon, they must be erased before they can
be written again. Generally, the basic unit of NAND flash
memory has an erase limit, and the unit will become unreliable
once its erase count reaches the limit. For example, the erase
limit of single-level cell (SLC) is about 10 thousands, and the
limit of multi-level cell (MLC) and triple-level cell (TLC) is
approximately 1/10 and 1/100 of SLC, though the latter
two can hold more data per cell, in contrast to SLC [4].

Consequently, a part of SSD blocks might wear out before
the SSD device wears out, that lead to smaller available ca-
pacity of a SSD device at the late stage of the device’s lifetime
[5], [6]. Considering this fact, the wear-leveling algorithm is
proposed, which works at Flash Translation Layer (FTL) of
SSDs, to guarantee that all blocks within the SSD device
can be uniformly worn out. In other words, through evenly
spreading the number of P/E cycles (i.e. the erase limits) that
is taken place across different SSD blocks, the SSD device can

decrease the aging heterogeneity across all blocks, to further
extend the lifespan of the device [6].

Specifically, the wear-leveling mechanism intends to mini-
mize the variance of the wearout amount across blocks through
remapping the heavily written blocks to less frequently written
ones [5]. With respect to different application contexts, many
wear-leveling algorithms have been developed [5], [7], [8],
[9]. For example, Liao et al. [S] have introduced an adaptive
wear-leveling approach, to allow varied wear-leveling policies
at different stages of device lifespan. Chang et al. [7] proposed
a scheme on the basis of hot/cold data swapping, to better
enhance wear-leveling effectiveness after categorizing data
blocks into several sets.

On the other side, the data stored in SSD blocks can be
divided into three categories: hot read data, cold read data, hot
write data, by referring their access characteristics. Although
the existing wear-leveling methods differ from each other in
technical details, they commonly migrate a block of (valid)
data to another free SSD block in the same SSD plane. Thus,
the erase counts across all blocks can be guaranteed. In other
words, the factor of hot read data and cold read data within
the same SSD block is not taken into account. But migrating
hot read data to different chips of SSDs can obviously benefit
to exploiting the chip-level internal parallelism for real-time
responses [12].

To address this issue, we propose a read balance-oriented
wear-leveling mechanism. This method groups both hot read
data and cold data in the migrant blocks (on which the valid
data are required to be migrated) as a units, and then move
the units to the available blocks in different SSD chips by
following a round-robin fashion.

For facilitating the proposed wear-leveling scheme, we have
also introduced a pattern-based scheduling approach at Flash
Translation Layer of SSD, to dispatch write requests. This
approach groups the frequently write data with pattern itemsets
and maps them to the same SSD blocks, when these data are
required to be flushed to the disk. Consequently, it is able to
boost the effectiveness of wear-leveling, as the read data and
the frequent write data can be dispatched onto the different
SSD blocks. Moreover, since the relevant hot write data, that
are combined and saved on the same block, are likely to be
invalidated together, it can consequently decrease the garbage
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Fig. 1. The architecture overview of parallelism in SSDs ( including channel-

level, chip-level, die-level, and plane-level parallelism [2], [17]).

collection overhead.
In brief, this paper makes the following two contributions:

e Combining hot read data and cold read data in migrant
units. In the wear-leveling process, the hot read data and
the cold read data of migrant blocks are combined with
units. Then, these units are migrated to the free blocks
of different chips in the same SSD channel, according
to the round-robin fashion. The primary motivation is to
maximize read data throughput by exploiting chip-level
internal parallelism, through carrying out wear-leveling.

o Group dispatching write requests with frequent patterns.
The frequent patterns of write requests have been mined,
to direct mapping logical addresses of requests at FTL.
Specifically, the write requests in the pattern are supposed
to be flushed to the same blocks of storage device. The
purpose is to separate the hot write data from other data,
for benefiting the newly proposed wear-leveling scheme.
Furthermore, it can minimize the write amplification in
garbage collection, to reduce its overhead. This is because
the relevant hot write data in the same pattern are more
likely to be invalidated together.

The rest of paper is organized as follows. Section II de-
scribes an overview of NAND Flash architecture, related work
and our study motivation. Section III presents the design and
implementation specifications of the newly proposed mecha-
nism. Section IV shows evaluation experiments and relevant
discussions. Finally, we conclude the paper in Section V.

II. BACKGROUND AND MOTIVATION
A. SSD Architectural Overview

Figure 1 shows an architectural overview of SSDs, including
the software and hardware. As seen, the main software layer
is Flash Translation Layer (FTL), which takes charge of
translating logical sector address into physical address that the
flash memory can identify. Furthermore, it supports garbage
collection and wear-leveling: garbage collection is carried out
to reclaim the space occupied the invalid data (e.g. outdated
pages) due to the out-place updates. Since each SSD block
affords a limited number of erases, it becomes critical to
take advantage of the mechanism of wear-leveling, to extend
the lifespan of flash memory by uniformly distributing erases
across all blocks [26].

On the other hand, for enhancing the I/O performance of
the SSDs, the parallelism feature has been exploited in the
internal structure of the SSDs. Hu et al. [17] categorized the
internal parallelism of the SSDs into four levels: channel-
level, die-level, chip-level and plane-level, as shown in Figure
1. Supposing there are two incoming requests in the queue,
which can be concurrently dispatched to two different chips,
even in the same channel, by resorting to the chip-level
internal parallelism. This feature is specially beneficial for
read requests, as the I/O response time can be significantly
reduced. But for write requests, it may bring about some
negative impacts on the efficiency of garbage collection [12].

B. Wear-leveling Approaches

As discussed, the primary goal of the wear-leveling algo-
rithm is to prolong the lifespan of flash memory, by preventing
any single block from prematurely reaching the erasure cycle
limit. The (static) wear leveling algorithms try to migrate cold
data to more worn blocks for yielding more even distribution
of wear. But, moving cold data around without any update
requests must result in certain overhead [22].

Chang et al. [11] proposed a static wear-leveling, which
holds a Block Erase Table (BET) and two procedures of SWL-
Procedure and SWL-BETUpdate. When flash memory needs
conducting static wear-leveling, the SWL-Procedure function
is invoked. It triggers garbage collection and selects adaptive
block to write back data. The SWL-BETUpdate procedure
updates erase count information in BET after erasing blocks.
On the basis of this work, they also introduced a mechanism,
for swapping hot data with cold data to improve performance
of wear-leveling [7].

To reduce the cache space for holding BET, conventional
mechanisms use a 1-bit flag as the sign of two or three
blocks, but which degrades precision of wear leveling [10].
To overcome this problem, Kim et al. [10] presented a round
robin-based wear-leveling algorithm called RRWL, which takes
advantage of a one-to-one mode based on the round robin
method, to increase accuracy of cold block identification.

Liao et al. [5] proposed an adaptive wear-leveling algorithm,
to avoid unnecessary erasing operations. In early lifespan
of Flash memory, the wear-leveling operations are purposely
avoided. It triggers wear-leveling to migrate cold write data to
the block, only if the distribution of block erasures becomes
noticeably uneven, and is beyond a threshold.

Chang et al. [8] presented a lazy wear-leveling algorithm. It
uses a RAM counter to indicate the average wear of the entire
flash, and it automatically selects a threshold to make balance
between wear evenness and overhead. Kwon and Chung [14]
proposed a mechanism to boost the performance and durability
of the flash memory. While executing the algorithm, the target
data, which are likely to be updated, are supposed to be evenly
distributed onto other blocks.

Yang et al. [9] made use of the hardware-dependent infor-
mation to estimate the reliability level of each block, and then
proposed an efficient reliability-aware wear-leveling scheme.
By utilizing the reliability level of each block, the proposed
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scheme can maximize the number of good blocks that have
evenly low error rates.

C. Garbage Collection

The functionality of garbage collection is to reclaim the
page contained invalid data, and migrating valid pages may
result in extra write operations (i.e. write amplification [24],
[27]). Regarding garbage collection, prior approaches [2], [12],
[23], [24] mainly intend to shorten the interference between
garbage collection and I/O transactions, for minimizing the
garbage collection time. Specially, Huang et al. [13] have pre-
sented a write buffer algorithm, which exploits correlations of
pages in the SSD cache to eject the buffered pages together to
the blocks, for improving performance of garbage collection.

More importantly, Guo et al. [12] propose a garbage col-
lection aware 1I/O Scheduler called PGIS. It depicts a hot data
identification approach, and then groups the frequently updated
data to the same SSD blocks, for eventually decreasing the
garbage collection overhead. But, the clustered hot data on
the SSD block may be lack of correlation, and they may not
be invalidated together in the same time period.

Besides, to further cut down the overhead of data migra-
tion, many technical efforts attempt to conduct wear-leveling
through garbage collection if needed [7], [8], [9], [11], [26]. In
other words, the migrant blocks are selected according to the
principle of wear-leveling, their valid pages in these blocks are
supposed to be migrated to other free blocks having a relative
high erase count, by performing garbage collection.

D. Trace Access Characteristics and Motivation

Inspired by [12], we have further analyzed the access
frequency distribution of logical sector address in the collected
disk traces. Figure 2 presents the analyzed results of MSRC
proj_0 and three collected random PC server traces'. We have
found that a non-negligible portion of logical sector addresses
have been read or written more than 4 times. For instance,

'We target at the applications having both relative large numbers of read
and write requests. Section IV will present the specifications on these selected
traces.
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around 40% of logical sector addresses have been requested
beyond 4 times in the proj_0 trace, as reported in Figure 2(a).

Then, we have generated the frequent access patterns (i.e.
sets) of logical sector numbers of requests in each time
window having 1024 requests. The minimum support for
an itemset to be identified as frequent is configured as 4,
and the element number of each pattern is set larger than 2.
More details about the mining approach for frequent access
patterns of logical sector numbers are depicted in Section
III-B1. After that, we count the occurrence distribution of
addresses, which have been flushed not less than 4 times, are
in these frequent patterns or not. As shown in Figure 2(b), the
results demonstrate that a vast majority of frequently accessed
addresses are requested with other related addresses in the
same pattern. Take the proj O trace for instance, 38.2% of
frequent requested logical sector numbers are associated with
the mined frequent access patterns.

In brief, the most significant clue revealed by Figure 2(b)
is about the frequently accessed logical section numbers tend
to be requested with fixed patterns. Although the read patterns
do not benefit request scheduling, the write patterns may
contribute to system performance. If the addresses in the
pattern are flushed to the same blocks of storage device, write
amplification can be consequently eliminated or alleviated,
because these logical sector addresses are more likely to
be updated together. At the same time, other logical sector
addresses are mapped to SSD blocks with the default scheme,
their data will become either hot read data, or cold read data
at the late stage.

Moreover, we have also disclosed the read frequency dis-
tribution of the logical sector addresses about the selected
traces, and Figure 2(c) presents the results. Similarly, many
of logical sector addresses have been read for multiple times,
we can refer their data as hot read data. At the same time, a
half of logical sector addresses have been requested for only
once, and their relevant data can be regarded as cold read data.
Obviously, accelerating the responses to the requests for the
hot read data may contribute to better system performance.

Such observations motivate us to separately deal with write
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and read requests, by taking the access characteristics into
account. (1) we propose a pattern-based scheduling method
for write requests, to effectively reduce the garbage collection
overhead. (2) we re-distribute the frequently read data onto
different places (e.g. SSD chips) while carrying out wear-
leveling, so as to ultimately minimize the time required for
accessing the hot data with a parallel manner.

III. DESIGN AND IMPLEMENTATION
A. System Overview

In this newly proposed mechanism, we first identify hot
write requests with frequently access patterns, and then map
these requests to the same SSD block. It is able to boost
the garbage collection efficiency and benefit wear-leveling at
the late stages. After that, we can re-distribute the frequently
read data accompanying with the less accessed data onto the
different chips (or dies, or planes), when conducting wear-
leveling?. Consequently, the hot read data can be accessed
concurrently for achieving better system performance, through
taking advantage of the internal parallelism of SSD devices.

Note that only the frequent write data are supposed to be
flushed to the SSD blocks with patterns, when scheduling
the write requests. On the other side, the less modified write
data will be dispatched by using the default algorithm. They
will become cold read data or hot read data after running the
application for a while. Such data will be re-organized and
re-distributed during the process of wear-leveling.

B. Pattern-based Write Scheduling

In order to reduce the garbage collection overhead and
maintain the block erase number, the scheduling mechanism
can group the frequently accessed logical numbers of write
requests in the I/O queue. Then, the data of these requests will
be flushed to the SSD blocks having a small erasure count.

A high level overview of system architecture is shown in
Figure 3. There are some requests in the I/O queue, labeled as
logical sector numbers (a, b, ¢, ...). By referring the frequent
mined patterns, the requests hit in a specific pattern should be

2It completes wear-leveling by garbage collection, in the meanwhile the
SSD channel is not available [7]. Therefore, we only migrate the data within
the channel while carrying out wear-leveling.

{b.g.Lk}.{ac.e.f}, {j.0.p}. . {h,L.m.n}

Channel i
Chip 0 [ chip n-1 | chipn
A4 # A A
A0 ol %z Al 185
'
1
r . T =
@ Identify target : F a Hoavil
blocks | @ Re-group pages in . s erased block
\ a block unit L ¢ 1', %fsskerased
- ) 4 oc
s5® %}ﬁiﬁz_’ftmp dat‘i/' Hot read page
’,” Cold read page
_________ . &* D Other data

Fig. 4. High level overview of batched inter-chip wear-leveling.

grouped and dynamically mapped together to a lightly erased
block. On the other side, the rest of requests that are rarely
updated, are dispatched to the block that has a relatively heavy
erasure count. Specifically, Figure 3 assumes that each block
has 10 pages and each page holds 2k bytes. The request hit
in patterns, like {a,c,e, f}, should be grouped and mapped
to cold blocks, which have a small erasure count (i.e. #2 in
Figure 3). The requests that are not hit in patterns, like d, are
dispatched to hot blocks having a large erasure count.

1) Mining Frequent Patterns: To support the proposed
scheduling scheme, generating frequent patterns is the first
step. The logical sector addresses of requests, such as lsnq,
lsns, lsns, ..., lsn,, are needed to be mined. We take advan-
tage of the FP-Growth algorithm for mining frequent item sets
[21], to generate frequent patterns from write requests in the
I/O queue. As a result, we can achieve a number of frequent
item sets. For example, the pattern of {lsn,,lsny,lsn.} has
three logical sector numbers of requests, and these address
combinations have occurred multiple times (i.e. more than
predefined threshold).

2) Pattern Matching: In the scheduling process, we have
to determine whether the current request is associated with a
mined pattern, for mapping it to a block. To this end, we build
a matrix to improve the effectiveness of matching process.
The row of matrix is relevant to the requests in the I/O queue
which labeled as logical sector numbers. And the column is the
pattern which previously generated while the value of matrix
is the number of accessed times about logical sector numbers.

C. Read Balance-oriented Wear-leveling

The read balance-oriented wear-leveling scheme can adap-
tively combine frequently read data with infrequently read
data, and move them to a block having a relative large erasure
count. The motivation is not only to balance erasure distribu-
tion of SSD blocks, but also to maximize read data throughout,
by spreading the frequently read data onto different chips (dies
or planes) of SSDs with a parallel manner.

Figure 4 illustrates a high-level overview of the proposed
wear-leveling approach to re-group read data and map them



to the blocks on the different chips. As seen, it first identifies
the target blocks, which hold the pages of data needing to be
migrated. Next, it re-groups the frequent read data with the
less read data. At last, the re-grouped data will be migrated
onto the blocks of different SSD chips located at the same
channel. Note that during the process of garbage collection,
the target SSD channel is not available, so that we do not
support inter-channel data movement in wear-leveling.

To better illustrate our wear-leveling mechanism, Algorithm
1 shows its pseudocodes with more details. First, we make use
of BET to record whether the block has been erased or not
(a bit for an entry). The parameter of ecnt indicates the total
erase number of all blocks. The parameter of fcnt means the
number of 1s in BET, and findex represents the block index
in BET. The predefined threshold of 7' is utilized to trigger
the process of wear-leveling, which is defined as ecnt/ fent.
We set it as 10 in our evaluation, by referring [7].

Furthermore, we propose PRT (Page Read Table) to log
whether the page has been read or not (a bit for an entry).
Similar to BET, we employ 1 to represent the corresponding
page has been read; otherwise, the bit is set as 0. Note that all
relevant entries will be reset as 0, in the case of the associated
block is erased. That is to say, PRT can be used for directing
the read balance-oriented wear-leveling. The parameter of rfcnt
is the number of 1s in PRT, which will be used for identifying
the read type of a target block.

As seen in Lines 10-11 of Algorithm 1, we retrieve BET
to find a target block that may have a small erase count, after
triggering wear-leveling. On the one hand, either frequent read
block or less read block is supposed to be split, and the split
data will be distributed to the free blocks on the different
SSD chips. Lines 14-34 demonstrate the specifications on
processing this case. Specifically, we use a block set that has
two blocks, to be the destinations for moving data in. And each
block in the set is supposed to hold a half of frequent read
data and a half of less read data. On the other hand, it carries
out normal garbage collection for the target block having an
index of findex, as seen in Line 36, to fulfill wear-leveling.

IV. EXPERIMENTS AND EVALUATION

This section depicts the experimental settings for evaluating
the newly proposed mechanism, and then presents the ex-
perimental results. First, we describe the experimental setup,
including the experimental platform and the used comparison
counterparts. Next, the evaluation results and relevant discus-
sions are reported, to show the feasibility and applicability of
our newly proposed scheme. At last, we make a brief summary
about the findings obtained from the evaluation experiments.

A. Experimental Setup

We conducted trace-driven simulation with SSDsim (ver2.1),
which has a wide range of modules and a diverse set of
configurations [18]. Consequently, it has been employed in
many studies for measuring the efficiency and performance of
SSD systems. We applied our proposal as a part of SSDsim,
for scheduling the logical addresses of requests to the physical

Algorithm 1: Read balance-oriented wear-leveling
Input: ecnt, fent, findex, BET, T, PRT, rfcnt
Output: NULL
if fent == 0 then

L return;

[ ST

3 while ecnt/fent > T do

4 if fent == size(BET) then

5 eent = 0;

6 fent = 0;

7 findex = 0;

8 return,;

9 /*find the target block for moving its valid data out.*/

10 while BET[findex] == 1 do

1 | findex = (findex + 1) % size(BET);

12 /% block( findex, r fent) returns the read type of
block having an index of findex: 0 for less read, 1
for frequent read, 2 for others.*/

13 type = block(findex,r fent);

14 if type == 0 or type == 1 then

15 /* blockset_head points an list. Its node holds

the info about the blocks for moving data in.*/

16 blockset=blockset_head,

17 while blockset = NULL do

18 /* find matched blocks for the current one*/

19 if type+blockset.type # 1 then

20 L blockset=blockset — next;

21 else

2 L break;

23 /* the matched blocks are found?*/

24 if blockset # NU LL then

25 first=blockset.blocka;

26 second=blockset.blockb;

27 delete(blockset);

28 else

29 /*new a blockset node with two free blocks*/

30 p=new blockset(first, second);

31 p.type=type;

32 insert(blockset_head, p);

33 split block valid data moving to first, second,

34 Eraseblock(findex);

35 else

36 | GCblock(findex);

page numbers in the SSD blocks, as well as carrying out wear-
leveling. Since we aim to observe more erasures in garbage
collection and wear-leveling, we emulated a small capacity
of SSD device with 16 GB, and Table I presents relevant
parameters.

Four disk traces from real applications have been chosen
in our tests. One is MSRC proj_0, which is in the Microsoft



TABLE I
EXPERIMENTAL SETTINGS OF SSDsim (MLC)

Parameters Values | Parameters Values

Channel Size 2 Read latency 0.03ms

Chip Size 4 Write latency 0.6ms

Plane Size 4 Erase latency 3ms

Block per plane 2048 | Erase limit 3000

Page per block 64 GC Threshold 5%

Page Size 4KB FTL Scheme Page mapping
TABLE 11

SPECIFICATIONS ON SELECTED DISK TRACES

# of Req Write ratio  Avg. Req size
MSRC proj_0 4224524 87.5% 39.0 KB
Random_server_1 | 5076765 68.8% 136.6 KB
Random_server 2 | 6658794 52.4% 123.6 KB
Random_server_3 11404881 30.7% 101.9 KB

Research Cambridge (MSRC) block 1/O trace collection. An-
other three traces are collected from daily computer activities
such as web surfing, email, multimedia and document editing.
Table II reports the specifications on these traces.

Besides, we used the following comparison counterparts for
measuring the performance of our proposed mechanism:

- Baseline: which indicates the dynamic mapping scheme
adopted by SSDsim by default. And the functionality of
wear-leveling is not supported in our evaluation.

- SWL: which means the approach of static wear-leveling
[7]. It intends to proactively migrate cold data, to evenly
distribute block erases over flash memory.

- PGIS+SWL: PGIS [12] is a garbage collection aware

I/O scheduler that decreases garbage collection overhead
by dispatching hot write data into the same physical
block. Because PGIS does not support wear-leveling, we
have applied static wear-leveling in the native PGIS, for
comparison fairness.
We argue that PGIS+SWL might be the most related work
to ours, as it considers the fact of read/write frequency
to schedule the write requests. But, this mechanism does
not take the correlation factor into account, when group
hot write requests.

- Pattern: which is the newly proposed scheme. It combines
pattern-based write scheduling and read balance-oriented
wear-leveling to cut down garbage collection overhead
and boost read data performance.

In addition, the number of I/O requests in each time window
is setting to 1024. And we select write requests in the
first 256 requests in each time window to generate frequent
patterns and then the write requests in the same time window
match with the patterns to instruct dispatching process. Table
IIT reports the write pattern statistics on the selected traces
in our experiments. For example, the MSRC proj_0 trace has
4126 time windows. Each window includes 15. 3 frequent
write patterns, and each pattern consists of 6. 4 logical sector
addresses, in average.

TABLE III
WRITE PATTERN STATISTICS ON SELECTED DISK TRACES

# of Win  Patterns per Win  Avg. pattern size
MSRC proj_0 4126 15.3 6.4
Random_server_1 4958 15.2 7.7
Random_server_2 6503 13.4 5.7
Random_server_3 11138 8.6 5.5
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Fig. 5. The time required for garbage collection.

B. Results and Discussions

1) Garbage Collection Cost: Grouping frequent write data
and mapping them to the same SSD blocks intend to cut
down the overhead of garbage collection. We have recorded
the time required for carrying out garbage collection, which
includes the time needed for moving valid pages and the
time required for block erases. Note that, all comparison
counterparts complete the task of wear-leveling by garbage
collection. Therefore, the garbage collection time consists of
the time of routine garbage collection and the time of wear-
leveling relevant garbage collection.

Figure 5 shows the results of processing the selected disk
traces. On the one side, Pattern and PGIS+SWL can re-
duce the garbage collection time by up to 921.5 seconds,
comparing to Baseline and SWL. On the other side, we can
see that SWL introduces the largest overhead for completing
the wear-leveling task, since more page moves are needed
when migrating the cold data. In other words, certain routine
garbage collection is done by the wear-leveling triggered
garbage collection while adopting SWL. This fact verifies that
clustering the hot data on same SSD blocks can effectively
refrain write amplification during garbage collection.

More importantly, the proposed Pattern scheme can further
outperform PGIS+SWL, and can save up to 14 .2% of garbage
collection time. As we emphasized, the frequent pattern-based
write scheduling takes the correlation factor into account,
when grouping relevant write requests together, which can
better decrease write amplification in garbage collection.

2) Endurance Improvement: We measure the endurance im-
provements by two metrics: first failure time and distribution
of block erases. The measurement of first failure time means
the time when the first block wears out, and a longer period
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Fig. 7. (Normalized) Average read response time.

of first failure time is preferred. The metric of distribution of
block erases can be reflected with the total erase numbers and
the standard deviation of block erases across all blocks.

Figure 6 shows relevant results of first failure time in our
simulated SSD device when processing the collected traces.
As seen, the wear-leveling schemes can noticeably yield a
longer first failure time, which implies the lifetime of SSD
can be prolonged. Furthermore, compared with SWL, both
PGIS+SWL and Pattern can achieve more attractive outcomes
of first failure time. We argue this is because scheduling the
hot write data and other data separately can benefit boosting
the effectiveness of wear-leveling.

Table IV reports more details about the erasure counts and
the standard deviation of all block erasure numbers. Obviously,
the proposed mechanism brings about less (total) erase counts
for the selected traces, in contrast to the selected comparison
counterparts. In fact, this is the primary reason for Pattern
causes the least overhead of garbage collection.

Besides, Table IV shows the standard deviation of era-
sure distribution among all SSD blocks. Clearly, Pattern
and PGIS+SWL yield almost the same standard deviation
of erasure distribution, and the related work of PGIS+SWL
even achieves more attractive standard deviation of erasure
distribution for some cases. But note that the newly proposed
Pattern technique results in less erase counts by upto 17.1%,
in contrast to PGIS+SWL.

TABLE V
MAIN MEMORY OVERHEAD FOR KEEPING PRT AND BET (UNIT: KB)

16GB 32GB 64GB 128GB
MLC (4KB) | 512+8 1024+16 2048+32 4096+64
TLC (8KB) 256+4 512+8 1024+16 2048+32
QLC (16KB) | 128+2 256+4 512+8 1024+16

3) Response Performance: The proposed wear-leveling
scheme distributes the hot read data across SSD chips, for
yielding better system performance. Because the read response
time varies when processing different traces, we then report
the normalized read response performance in this section, as
shown in Figure 7.

Clearly, Pattern causes the least average time for responding
to the read requests. It proves that distributing hot read data
onto different SSD chips can reduce the time required for
accessing the required data, by making use of the chip-level
internal parallelism. For example, compared with the most
related work, i.e. PGIS+SWL, our proposal can decrease the
response time by 7.1% in average.

4) Overhead: After presenting the positive effects brought
about by the newly proposed mechanism, this section discloses
the negative effects of overhead. We first show the main
memory overhead resulted by keeping the introduced data
structure in our proposal. Next, the mapping overhead caused
by clustering frequent write requests with patterns is reported.
At last, the wear-leveling cost is discussed.

Memory overhead: Because a one-bit flag is needed for each
page, PRT results in the major memory-space overhead on
the controller so as to maintain the read status of SSD pages.
In addition, BET requires memory space for keeping a one-
bit flag for each block. As shown in Table V, the memory
overhead depends on the type and the capacity of SSDs. For
instance, the needed memory size is 4MB+64KB, for a 128GB
MLC flash memory.

Mapping Overhead: Analyzing frequent access pattern sets
and matching requests with the sets must bring about certain
overhead. This section presents the time needed for mapping
logical sector numbers to the physical page numbers at Flash
Translation Layer, during processing the disk traces.

Figure 8 shows the results of mapping overhead by taking
advantage of three schemes. As illustrated, PGIS and Baseline
cause similar time for mapping the requests before flushing
the data to the SSD blocks. But, Pattern does bring about a
little more time for grouping the relevant write request, by less
than 138ms in all cases. In brief, the proposed mechanism
of pattern-based mapping can cut down the number of page
movements in garbage collection and the number of block
erasures, with acceptable mapping overhead.

Wear-leveling Overhead: In order to reduce the overhead of
wear-leveling, we adopt the policy that completes the task of
wear-leveling by garbage collection [7]. Thus, the overhead
of wear-leveling was presented as a part of garbage collection
overhead (the red part in the bar) in Figure 5. As seen, except
for Baseline, that does not carry out wear-leveling, the newly



TABLE IV
ERASURE STATISTICS

Traces Total Block Erases Standard Deviation of Block Erases
Baseline SWL PGIS+SWL Pattern Baseline SWL PGIS+SWL Pattern

MSRC proj_0 1206907 1270809 1226205 1223387 | 17.145858 14.030977 8.988854 9.134764

Random_server_1 | 1208876 1274601 1242155 1217567 | 17.434723 14.029503 9.798412 9.288180

Random_server 2 | 1211246 1273852 1269034 1222484 | 17.345198 13.999297 8.673104 9.173870

Random_server_3 | 1215976 1277092 1242155 1223387 | 17.319114 13.960486 9.811857 9.378567
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Fig. 8. Mapping overhead comparison of three schemes.

proposed mechanism does cause the least time for completing
the task of wear-leveling.

C. Summary

The evaluation experiments have demonstrated that our
newly proposed mechanism can effectively and practically
reduce the garbage collection overhead, as well as the response
time for reading data.

With respect to comparing the proposed scheme to con-
ventionally used scheduling and wear-leveling algorithms for
SSDs, we emphasize the following two key observations. First,
the proposed pattern-based write scheduling is able to achieve
better relative performance on garbage collection, through
resulting in less valid data movements and erase operations.
Second, the approach of read balance-oriented wear-leveling
cannot only yield an even distribution of erasures, but also
offers attractive I/O responses for reading data. This is because
the hot read data are distributed onto different chips of SSD
channel in the process of wear-leveling.

V. CONCLUSION

In this paper, we first have proposed a frequent pattern-based
I/0 scheduler for dispatching write requests, to purposely cut
down the garbage collection overhead. Specifically, it maps
the hot write data that are most probably to be updated in the
near future into the same SSD blocks having a small erasure
count. Therefore, the cost of reclaiming such blocks after the
relevant data have been invalidated can be decreased greatly.
After that, we have introduced a read balance-oriented wear-
leveling method. It targets at not only extending the lifetime
of SSDs by maintaining an even block erasure distribution,
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