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Abstract—The paper addresses the problem of providing per-
formance QoS guarantees in a clustered storage system. Multiple
related storage objects are grouped into logical containers called
buckets, which are distributed over the servers based on the
placement policies of the storage system. QoS is provided at the
level of buckets. The service credited to a bucket is the aggregate
of the IOs received by its objects at all the servers. The service
depends on individual time-varying demands and congestion at
the servers.

We present a token-based, coarse-grained approach to pro-
viding IO reservations and limits to buckets. We propose pShift,
a novel token allocation algorithm that works in conjunction
with token-sensitive scheduling at each server to control the
aggregate 1Os received by each bucket on multiple servers.
pShift determines the optimal token distribution based on the
estimated bucket demands and server IOPS capacities. Compared
to existing approaches, pShift has far smaller overhead, and
can be accelerated using parallelization and approximation. Our
experimental results show that pShift provides accurate QoS
among the buckets with different access patterns, and handles
runtime demand changes well.

Index Terms—distributed storage, coarse-grained QoS, reser-
vations, limits, token based scheduling

I. INTRODUCTION

Clustered storage systems such as Ceph [1]], GlusterFS [2]],
Amazon’s Cloud Storage [3], FAB [4], Kudu [5]], Dynamo [6],
Cassandra [7]], HDFS [8] and vSAN [9], provide a scalable
and economical approach for the storage of huge data sets
over multiple storage servers. In such systems, multiple re-
lated objects are often grouped into logical containers called
buckets. Objects are replicated on multiple servers for fault
tolerance and performance, large objects are sharded for
manageability, and decentralized consistency protocols enable
highly concurrent, distributed access to data.

With shared storage becoming the norm in datacenter
deployments, performance QoS is becoming an increasingly
important requirement of storage systems. In our model, QoS
is provided at the level of buckets. The creator (owner) of
a bucket contracts for storage space and a specified IO rate
(lower and upper bounds) for bucket access. IO requests to
bucket objects may be generated by multiple independent
applications, and the requests follow independent paths from
a requestor node to the server holding the object. A bucket’s
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objects are distributed over the cluster, and QoS allocations
must account for service received at multiple servers.

There has been considerable past research [10]—[18] on
providing QoS controls for virtual machines (VMs) sharing a
single server-attached [17] or SAN-attached storage array [|18].
All IO requests of a VM go through a hypervisor module,
which controls when and in what order these requests are
forwarded to the storage backend to enforce QoS guarantees.
In previous work on QoS for distributed storage clusters, [15],
[17], [19]-[21] considered a model where all requests from
a client (the QoS entity) pass through a common ingress
point before being dispersed to the servers. This is reasonable
in centralized client applications, but is onerous when the
bucket is accessed by multiple independent distributed appli-
cations. The ingress point collects global information about
a client’s requests and adds meta-information to a request
before forwarding it to the appropriate server. The servers
use sophisticated schedulers that use the meta-information to
arbitrate requests.

A method for providing bucket QoS using a token-based
approach was recently proposed [22]. The framework called
bQueue models token allocation as a max-flow problem on
a graph with servers and buckets. However, since max-flow
algorithms have high time complexities and cannot be paral-
lelized, it is not practical to use bQueue in storage systems at
large scales.

In this paper, we present a token-based, coarse-grained
approach to providing IO reservations and limits to buckets.
We propose a novel token allocation algorithm, pShift, that
works in conjunction with token-sensitive scheduling at each
server, to control the aggregate IOs received by each bucket
on multiple servers. pShift determines the optimal token dis-
tribution based on estimated bucket demands and server IOPS
capacities. It periodically distributes tokens to the storage
nodes to shape their local request schedulers. Compared to
fine-grained QoS approaches, our scheme does not require
any additional overhead for per-request metadata-based tag
computations at the servers, and only uses simple token-
sensitive, round-robin schedulers. Moreover, it does not require
the requests of a bucket to be funneled through a common
ingress node. We believe that pShift is a novel algorithm
for distributed resource allocation that provides coarse-grained



bucket QoS in distributed storage systems.

The rest of the paper is organized as follows. In Section
we provide additional background on the system architecture
for bucket QoS. Section presents the design of the pShift
algorithm and its usage in QoS allocation. Section [[V| shows
the performance evaluation of pShift under different runtime
scenarios. Section [V] discusses related QoS schemes and addi-
tional design issues in the pShift approach. Finally, Section
provides conclusions and summarizes future work.

II. OVERVIEW

In this section, we give an overview of our token-based
coarse-grained QoS architecture. The platform consists of a
cluster of servers (storage nodes) that collectively store and
manage data collections called buckets. A bucket is a grouping
of logically-related objects (e.g. fragments of a file or files in
a directory) that are distributed among the servers. A server
hosts objects from multiple buckets and the objects in a bucket
may be spread over several servers. Figure[T|shows an example
of the system architecture. There are 4 buckets indicated by
different colors, whose objects are distributed on 3 server
nodes. Node 1 hosts red and green buckets; Node 2 hosts
red, orange and blue buckets; and Node 3 hosts red, green
and orange buckets.
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Fig. 1: Token QoS architecture.

Each server receives read and write IO requests for its
stored objects. The requests are queued at the server in bucket-
specific queues and dispatched to the backend devices by
a QoS scheduler called the Token Scheduler. A controller
process running on a dedicated computing node (or one of
the server nodes) periodically receives status information from
the storage nodes and pushes dynamic QoS control parameters
(encoded as fokens) back to them for use by their respective
Token Schedulers.

A. QoS Model

QoS is specified at the granularity of buckets using two
QoS control inputs reservation R; and limit L; for bucket
1. Service time is divided into equal-sized non-overlapping
intervals called QoS periods. These controls specify that the
total number of IOs for bucket ¢ objects done in a QoS period

must be at least R; and must not exceed L;. The problem
is complicated because bucket objects are distributed across
multiple server nodes and requests go directly to the servers
without intervention.

The Token QoS framework uses tokens to control the
scheduling of requests at individual servers. There are two
types of tokens associated with a bucket: reservation tokens
(R-tokens) and limit tokens (L-tokens). An R-token for a
bucket implies priority in scheduling the requests of that
bucket. A bucket without any R-tokens at a server will only
receive service when there are no pending requests for buckets
with R-tokens at the server. L-tokens control the total number
of I0s for a bucket serviced at a storage node. A bucket
without L-tokens will not be scheduled at a server. The
controller periodically allocates R-tokens and L-tokens to the
servers using the pShift algorithm. The algorithm is based
on the current status of the system: current service rates
(IOPS) of the servers, demand distribution of the buckets at
the servers, and the number of unconsumed tokens of a bucket
(representing unfulfilled reservation or limit).

Algorithm 1: Token Scheduler

next = 0;

while (TRUE) do
Step 1a: Search the request queues in round-robin
order starting from next for the first queue that has
both pending requests and R-tokens;
if there is no such queue then

| Go to Step 2
Step 1b: Schedule a request from the queue found
in 1a, decrement the number of R-tokens for this
bucket by 1, update next; continue;
Step 2a: Search the request queues in round-robin
order starting from next for the first queue that has
both pending requests and L-tokens;
if there is no such queue then

| Go to Step 3
Step 2b: Schedule a request from the queue found
in 2a, decrement the number of L-tokens for this
bucket by 1, update next; continue;
Step 3: Delay a small amount; continue;

The Token Scheduler at a server uses its current allocation of
R-tokens and L-tokens received from the controller in schedul-
ing its requests. Algorithm |I{ shows the request scheduler. The
scheduler will not idle if there are any requests pending in its
queues, unless all buckets with pending requests have reached
their limit for the QoS period. It gives priority to buckets
with non-zero R-tokens (called reservation requests) over those
without any reservation tokens (called normal requests). It
chooses requests fairly among pending reservation requests by
serving them in round-robin order. If there are no reservation
requests it chooses among normal requests that have not
exceeded their limit, again in a round-robin manner. If there
are no pending requests or if the only pending requests are for



buckets that have reached their limit, the scheduler will wait
for a short interval and try again. One R-token (L-token) of a
bucket will be consumed for each reservation (normal) request
of the bucket that is scheduled.

III. TOKEN ALLOCATION

In this section, we describe the token allocation algorithm
to distribute R-tokens and L-tokens to the servers. In Sec-
tion [[ll-A] we formalize the token allocation problem, and we
concentrate on the allocation of R-tokens since the procedure
is similar for L-tokens. Section describes the pShift
algorithm, and the optimization approaches are discussed in

Section Section [[II-D| describes how pShift algorithm is
used in the Token QoS architecture.

A. Problem Statement

We first formalize the token allocation problem as follows.
Let B and S denote the sets of buckets and servers respec-
tively. In a QoS period, bucket ¢+ must meet a reservation R;
and has an estimated aggregate IO demand (total number of
requests across all servers) of D,;. Without loss of generality,
we assume that D; > R; for all ¢ € B, ie. every bucket
has sufficient demand to meet its reservation. If not, the best
one can do is to match its demand, so we temporarily set
R; = D,. Each server has a current service rate (which may be
a workload-dependent estimate) that determines the number of
IOs it can do per unit time. C7 indicates the estimated number
of IOs that server j can perform in the QoS period.

For each bucket ¢ € B, the token allocation algorithm will
distribute a total of R; tokens among the servers j € S. Let d?
and a] denote the demand and the number of allocated tokens
for bucket i on server j. Note that 3. d} = D; and 3", a] =
R;. When a server does an IO for a bucket, it consumes one
of the bucket’s tokens. If all a bucket’s tokens are consumed
by the end of the QoS period, then the bucket’s reservation
requirements will have been met.

There are two situations when a server j may have uncon-
sumed tokens. Firstly, if j is allocated more tokens for bucket
i than its demand (i.e. d] < a]), then at most d/ tokens of
bucket 7 can be consumed on server j. Secondly, if the total
number of tokens allocated to server j (i.e. Y, g a;) exceeds
its IO capacity CY, then even with Token Scheduling, some
tokens will not be consumed. In the first case we say that
server j has strong excess tokens for bucket 7, and in the
second case we say that server j has weak excess tokens. A
server with weak excess tokens is said to be overloaded.

The goal of the token allocation algorithm is to maximize
the total number of tokens that will be consumed. If the tokens
for all buckets on all servers are consumed, then all reservation
requirements are met. In other cases, the distribution of
demands on servers may preclude meeting all reservations
irrespective of the scheduling or token allocation method. For
instance, a server may become overloaded if all the demands
of several buckets are concentrated on it. One cannot spread
the load to other servers since they do not have demand for

[ [ & (& ala]
Red 150 | 50 75 25
Blue 50 50 50 50

TABLE I: Configuration of Examples 1 and 2. Servers 1 and 2
have capacity 100 each. Red and blue buckets have reservation
of 100 each. d; and a; show demand and allocation on server
1.

these buckets. In this case the allocation aims to maximize the
number of reservation I0s performed.

We refer to a configuration of the system by its de-
mand distribution, server IO capacities, and token allocations:
{[d,C?,al] : i € B,j € S}. For a given configuration
u, we define the effective server capacity, ¢’(u), to be
the number of tokens that server j consumes: ¢’(u) =
min(C7, (3 ;cg min(al,d!)). The effective system capac-
ity, ®(u), is the sum of the effective capacities of individual
servers, i.e. ®(u) =3 @’ (). For different token allocations,
the effective system capacities & may be different, and the goal
of token distribution is to find an allocation that maximizes P,
which we call an optimal allocation. Note that the optimal
allocation may not be unique.

Example 1: Table [I] shows a system of 2 servers with 10
capacity 100, and two buckets (red and blue) with reservations
of 100 each. The demands and token allocations are shown
in the table. Server 1 receives a total of 125 tokens that
exceeds its capacity, so it is overloaded with 25 weak excess
tokens. Server 2 has only 75 tokens so is underloaded.
Note that the allocation of a bucket on any server does not
exceed the bucket demand on that server, so there are no
strong excess tokens. The effective capacity of server 1 is
min(100, (min(75,150) + min(50, 50))) = 100 which is its
IO capacity. Similarly, the effective capacity of server 2 is
min (100, (min(25,50) + min(50,50))) = 75. The effective
system capacity of the configuration is 175. The blue bucket
meets its reservation but the red bucket gets only 75 1Os.

B. pShift Algorithm

To find an optimal allocation we only consider prudent
allocations in which there are no strong excess tokens at
any server, i.e. the token allocations satisfy a] < d for
all i € B,j € S. A prudent allocation always exists since
Zj a! =R, < D; = Zj d?. Furthermore, it can be shown that
optimal allocations are either prudent or can be transformed
to a prudent allocation with the same ®.

The algorithm operates as follows. An initial prudent con-
figuration is obtained by distributing the R; tokens of bucket
¢+ among the servers in proportion to its demand on the server,
ie. server j gets an initial allocation of @] = R; x d!/D;.
Since D; > R;, we always have a] < dJ, so there are no
strong excess tokens. Following this allocation some servers
may be overloaded, some may be underloaded, and the rest
may exactly match their 10 capacities.

The algorithm then iteratively attempts to find another

prudent allocation with higher ® by moving tokens from an



l [ di [ d> [ds[[ar[az]as]
Red [ 150 [ 50 [0 [[ 7525 0
Blue | 0 | 150 | 50 || 0 [ 75 | 25
Green | 50 | 0 | 50 [[ 50 | 0 | 50

TABLE II: Configuration of Example 3. All servers have
capacity 100 and all buckets have reservation of 100. d; and
a; are demand and allocation for server 3.

overloaded server to an underloaded one. We refer to such a
token movement as a prudent transfer. Every token moved in
this way increases ® by 1. The algorithm stops when there are
no overloaded servers or there are no prudent transfers from
an overloaded to an underloaded server possible. The resulting
allocation will be optimal.

The prudent transfer of tokens between two servers may be
done either directly or indirectly. To effect a direct transfer,
the donor server must have a sufficient number of tokens of
a bucket and the receiver must have high enough demand for
that bucket to avoid creating strong excess tokens. Specifically,
a prudent transfer of n > 1 tokens of bucket ¢ from server j
to server k requires: (i) a] > n and (i) d¥ — af > n. We
refer to d¥ — a¥ as the spare demand of server k for bucket i,
which indicates the number of tokens of bucket 7 that server
k can accept in a prudent transfer.

Example 2: The token distribution of Example 1 is an initial
prudent allocation in which tokens are distributed in proportion
to the demands. Server 1 has 50 blue tokens that it can donate.
However, server 2 cannot accept any blue tokens since it has
no spare demand. So no blue tokens can be transferred from
server 1 to server 2. On the other hand, server 1 has 75 red
tokens it can donate and server 2 has a spare demand of 25
red tokens. So min{75,25} = 25 red tokens can be transferred
from server 1 to 2 resulting in both servers having 100 tokens
each. After the transfer, ® increases to 200. The reservations
of both buckets are now satisfied.

We now describe a more complicated example where direct
token transfer is not possible.

Example 3: Consider three servers of capacity 100 each and
three buckets: red, blue and green. The demands and initial
token allocations of the buckets are shown in Table [[IL Server
1 is overloaded (125), server 3 is underloaded (75) and server 2
is full (100). The tokens on server 1 and 3 are not compatible:
server 1 can donate red and green tokens but server 3 has no
spare demand for either bucket, and so cannot accept them
in a prudent transfer. On the other hand, server 3 has a spare
demand of 25 for blue tokens but server 1 has no blue tokens
to donate. Hence direct transfer of tokens from 1 to 3 is
not possible. We therefore look for an indirect transfer using
intermediate servers to act as token brokers to create a path
of compatible token transfers. In this example, server 1 can
donate 25 red tokens to server 2 in a prudent transfer; this
would make server 2 overloaded, but it can get rid of these 25
weak excess tokens by transferring 25 blue tokens to server
3. After this brokered transfer, there are no weak or strong

excess tokens and all buckets meet their reservations.

When servers j and k& do not have compatible donor and
receptor tokens an indirect transfer may be possible. In an
indirect transfer of tokens from server j to k, the transfer is
effected with the help of intermediate servers wuy,ug, - - - usg
(called brokers). A broker accepts a token of some bucket and
sends out a token of another bucket. For each of the n tokens
transferred from server j to k: j moves a token of bucket b
to server u; that in turn moves a token of another bucket b;
to server uy. Each server u;, 2 < ¢ < s, accepts a token of
a bucket b;_; from wu;_; and sends a token of bucket b; to
u;1. Finally, u,s sends a token of bucket b, to server k. If the
source server j is overloaded by at least n tokens and the sink
server k is underloaded by at least n then the above transfer
will increase ® by n.

The pseudo-code in Algorithm [2| shows the overview of
pShift algorithm. There are three major steps: initial prudent
allocation of tokens to the servers (Algorithm E]); creation of
the initial Token Movement Map (Algorithm [); iterative im-
provement of ® by prudent transfers of tokens from overloaded
to underloaded servers (Algorithm [5).

Algorithm 2: pShift Algorithm

InitialTokenAllocation();
MakeTokenMovementMap();
ProgressiveShifting();

Algorithm 3: InitialTokenAllocation Function
for each bucket i € B do
D; = Zjes dg;
for eqch bucket (AS B do
L Clg = Az X dz/Dl,

Algorithm 4: MakeTokenMovementMap Function

/I Create a token map vector for each pair of servers
for each j € S do
for each k € S, k # j, do
for each + € B do
L ™, . [i] = min(a{,df —ak);
TMSjvk = ZieB TMLk[’L’];

1) Token Movement Map: For each pair of servers j and k,
we define a token movement vector TM; ;. that specifies for
each bucket the number of tokens that can be moved between
the servers in a prudent transfer. From the discussion in the
previous section, for bucket i this is bounded by the number of
tokens of bucket ¢ at the source server and the spare demand
for 4 at the destination server. That is: TM; x[i] = min(a?, d¥—
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a¥). We also define TMS; 5 as the total number of tokens
of all buckets that can be moved between the servers in a
prudent transfer. Algorithm [4| shows the initialization of the
token movement map, the collection of the token movement
vectors TM;; ;. and TMS; 1., for all pairs of servers j,k € S.

Table [[I]| shows the TM vectors and TMS between each pair
of servers for the configuration of Example 3. For instance,
server 1 can only transfer 25 red tokens to server 2 and cannot
transfer any tokens to server 3, hence TM; 5 = [25,0,0] and
TMS; 2 = 25.

LI 1 l 2 l 3 |
T - [25,0,01/25 [ [0,0,0[/0
[25,0,01 /25 - [0, 25,01 /25
3] [0,0,01/0 | [0,2501/25 -

TABLE III: Token Movement Map for configuration of Ta-
ble [lI} Each entry is TM; ; vector / TMS; ;, from server j
(row) to server k (column).

2) Progressive Shifting: The token transfer problem will
be modeled by a weighted directed graph (called the foken
transfer graph) whose vertices are the servers. There is a
directed edge with weight TMS; ;. from vertex j to vertex k if
the weight is greater than zero. An edge of weight w between
two servers signifies that it is possible to move w tokens from
the source to the destination server without creating strong
excess tokens (i.e. in a direct prudent transfer).

We extend this observation to a path of length [ > 2
from server j to server k going through intermediate vertices
u1, U, - --uj—1. Let the weights of the edges in this path
be wi,ws - - - w;. Denote the smallest weight on this path by
Wpmin. Then it is always possible to construct a prudent transfer
that moves w,,;, tokens from j to the k, by moving wmnp
tokens across each edge in the path i.e. from j to uy, from
w; 10 U1, ¢ = 2,---1— 2, and from u;_; to k. We call such
a path a shift path, and an illustration is shown in Figure
Shift paths can be found using breadth-first search (BFS) on
the token transfer graph.

Wmin = Min {wy, Wz, W3, ..., W}

Fig. 2: Illustration of shift path.

Note that the number of tokens at any intermediate server
u; does not change by the prudent transfer, so no weak excess
tokens are created at u;. Also, since the transfer is prudent no
strong excess tokens are created. Hence the effective server
capacity ¢" of intermediate server u; does not change.

The effective capacity ¢’ of the source server j will not
decrease if it does not become underloaded due to the tokens
moved from it. Correspondingly, the effective capacity ¢* of
the sink server k will increase if it does not become overloaded
due to the tokens transferred into it. As a consequence, the
effective system capacity ® will increase if j is an overloaded

server and k is an underloaded server, and the number of to-
kens transferred does not cause either j to become underloaded
or k to become overloaded.

The iterative step of the algorithm identifies a pair of
servers, overloaded server j and underloaded server k. Let the
amount of overload (i.e. the number of weak excess tokens)
on j be denoted by 7, and let the amount of underload on
k (ie. C* — 3. g al) be denoted by 6*. Let wy,in, denote
the weight of the smallest edge in a chosen shift path between
j and k. We define the shift amount Q = min{’, w,,i,, %}
Then the progressive shifting function will move () tokens
along the shift path. By construction, the resulting allocation
will be prudent and ® will increase by €.

Moving tokens along the shift path changes the configu-
ration. Specifically each server w in the path may have a
change in the allocation a;’ for one or more buckets 7 € B.
This requires recalculating the token movement vectors of all
outgoing and incoming edges from and to w for those buckets
i € B whose token allocations have changed, i.e. TM,, 1]
and TMy, ,[i], k € S.

Algorithm [5] gives a pseudo-code of the progressive shifting
function. It iteratively moves tokens between overloaded and
underloaded servers as described above, by exploring shift
paths in increasing order of length. The algorithm terminates
either when there are no overloaded servers or when there is no
shift path. Since moving tokens along a shift path will increase
®, it is obvious that a globally optimal allocation should not
contain any shift path in its token transfer graph. On the other
hand, it can be shown that the converse is also true: i.e. an
allocation with no shift path is optimal. The formal proof is
given in [23]]. Therefore, the progressive shifting function will
terminate with a globally optimal solution that maximizes ®.

Algorithm 5: ProgressiveShifting Function

for [ from 1 to (|S| — 1) do
for each overloaded server P do
while P is still overloaded do
Find a shift path (ug, uq, - - u;—1,u;) from
server P = ug to an underloaded server
u; = @ with length at most [ using BFS;
if no shift paths found then
| break;
Q = min{y",69});
for each pair of adjacent servers (u;, w;+1)
on the shift path do
L Q = min(Q, w;);
for each pair of adjacent servers (u;, ;1)
on the shift path do
Select 2 tokens on u; to move to wu;41;
Update Token Movement Map for all
edges into and out of u; and u;y1;

C. Performance Optimizations



1) Parallelizing pShift: pShift has the opportunity to
achieve better scalability by parallelization. The two most
time-consuming functions are MakeTokenMovementMap and
ProgressiveShifting, and both can be parallelized. The function
MakeTokenMovementMap shown in Algorithm 4] has execu-
tion time complexity of O(|S|*|B|). Since this function is
simply initializing a 2D array of vectors whose entries are
independent, this step can be fully parallelized. For instance,
we can evenly divide one dimension of the array into several
parts and have different threads working on different subar-
rays.

In the function ProgressiveShifting shown in Algorithm [5
the most time-consuming step is the update of the Token
Movement Map for each affected server. The update has
a complexity of O(|S||B|). However, the updates can be
parallelized by evenly partitioning the servers on the path,
and letting different threads work on updating entries in its
partition.

2) Approximation Approach: Another opportunity to ac-
celerate the pShift algorithm is to use an approximation
approach. This is based on the observation that not all buckets
contribute equally in causing overload or reducing underload.
In particular, buckets with a small number of tokens and those
with only a small amount of spare demand do not contribute
much to increasing .

Therefore, instead of maintaining a vector of size |B| for
each edge, pShift need only consider the buckets with the
top M (or fraction f) token counts and spare demands. Then
the controller only considers the reduced information for the
prudent transfers. In practice, we found that in most cases we
only need a small fraction of the buckets to achieve the optimal
or near-optimal ® (see Section [[V-D).

D. Runtime Usage of pShift

In practice, a QoS period is evenly divided into several
redistribution intervals. At the start of each interval, the con-
troller receives from the servers a projection of their status till
the end of the QoS period; specifically it receives the number
of unconsumed tokens (unfulfilled reservations and limits),
the estimated bucket demands, and the estimated remaining
server capacities. The server estimates the demands of a bucket
from the size of its pending queue and the number of its
arrivals in the past interval, and estimates remaining capacity
by extrapolating from its service rate in the past interval. Note
that determining the best estimator is an orthogonal issue that
will be explored in future work.

If there is no significant change from the previous interval
the estimates need not be sent to the controller. The controller
computes the number of R-tokens to be allocated for each
bucket on each server using pShift with the received parameter
values. The new token allocations are sent back to the servers.
The servers then use the new R-tokens for request scheduling
during the next interval. Servers continue to serve requests
with the current token allocations while the new token allo-
cations for the next redistribution interval are being computed

at the controller. L-tokens are handled in a similar manner on
the residual demands and capacities after allocating R-tokens.

IV. PERFORMANCE EVALUATION
A. Experimental Setup

To evaluate the performance of pShift algorithm, we im-
plemented the QoS framework using both simulation and
direct evaluation on a small Linux cluster. For the former, we
create a set of concurrent processes to simulate the storage
servers and the token controller, and use a request generator
process at each server to create the dynamic workload. The
communication overhead is simulated by a built-in delay
function. IO service times are randomly drawn from a uniform
distribution with mean equal to the reciprocal of the server
IOPS capacity and limited variance.

For the actual implementation, we built a prototype on
a small cluster of 9 Linux servers connected using QDR
InfiniBand (40 Gb/s). Each server node is equipped with an
Intel Xeon Processor E5-2640 v4 [24] CPU with 10 two-way
hyper-threaded cores. In our implementation, one thread on
each server is responsible for inserting the generated requests
to the bucket queues. A second thread at the server runs the
Token Scheduler that implements the round-robin scheduling
policy. Finally, each storage node uses an independent thread
to communicate with the controller node. We use the send
and recv primitives from the socket programming library to
handle the communication between the controller and the
storage nodes, and OpenMP interface to implement the parallel
threads.

Two backend servers were used in the evaluation. The
first is the well-known distributed memory caching system
memcached [25]] and the second is a conventional block-based
Linux storage server. In the first case, each server runs a mem-
cached daemon that is pre-populated with 10,000 objects of
size 4KB each. The requests on each server are generated by an
independent YCSB workload generator [26]], which generates
the core workload A [27] that gives a 50 — 50 mix of gets and
puts. An initial profile run was used to determine that each
server had an average throughput of roughly 50, 000 requests
per second (RPS). All buckets are continuously backlogged on
their active servers with 5 outstanding requests. The scheduler
chooses requests from the bucket queues and invokes the
memcahced server with a get or put command. For the storage
backend, requests consist of random 4KB reads from a 1GB
file created on the server. Using 5 concurrent request threads,
each server is initially profiled and found to have an average
throughput of roughly 1000 IOPS.

We describe our experimental results below. In Sec-
tions TV-B] we show that pShift can meet reservations and
enforce limits in the face of dynamically changing workloads
and large numbers of buckets. In Section [[V-C| we report the
measured run times of the parallelized controller algorithm on
the Linux server for different numbers of threads and buckets.
In Section results on the tradeoff between run times and
accuracy for the approximation controller algorithm on the
Linux server are reported. Finally in Section [[V-E| we report



the results of the evaluation on Linux scheduler to show the
workings of the pShift approach in a real system.

B. QoS Evaluation

Experiment 1: We use the simulator to show how pShift
handles reservation QoS with a large number of buckets
and a dynamically changing workload. There are 64 servers
and 10,000 buckets. Each server has an average capacity of
20,000 IOPS, and we run the pShift algorithm for a full QoS
period of bHsec; the throughput per QoS period is therefore
roughly 100, 000 IOs. We divide each QoS period into 5 token
redistribution intervals i.e. a token redistribution is triggered
every lsec using statistics gathered for the last interval.

Each server’s throughput of 100,000 IOs (per QoS period)
is fully reserved by all the buckets. This causes the greatest
stress on the scheduler since there is no spare capacity that can
compensate for errors in the token distribution. The reservation
of the buckets follows a Zipf distribution with exponent factor
s = 0.5, as shown in Figure [B(a) The Zipf distribution
simulates a common scenario in practice where most buckets
have a relatively low reservation while a few highly-accessed
buckets have a much higher reservation. In the figure, there is a
factor of 100 between the highest and lowest reservations. All
buckets are assumed to have unbounded limits. Each bucket is
active on 8 servers at any time. The total demand of a bucket is
set to 1.5 times to its reservation. The average request arrival
rate for the bucket over all servers is the total demand divided
by the length of the QoS period. To stress the pShift algorithm,
the demands of each bucket are also distributed among the
eight servers using a Zipf distribution with exponent factor of
s = 0.5. IO requests for a bucket on a server are generated
at a uniform rate proportional to the demand on the server.
Buckets may change their demands at random times within the
QoS period. When a demand change is triggered, the bucket
randomly selects eight servers (which may or may not intersect
with the current set), and redistributes the total demand to
them based on a Zipf distribution. In the initial experiment,
a bucket may change its demands up to 2 times in the QoS
period. Figure 3(b)] shows the times of demand changes of the
sample of the buckets. For instance, bucket 6100 has its first
demand change early in the 1st interval (around 0.065s).

Figure shows the number of requests being completed
by all buckets in each of the redistribution intervals. From the
figure we can see that, as expected, the number of requests
completed by a bucket at the end of the last interval is highly
consistent with its reservation. Quantitatively, 99.5% of the
buckets meet at least 95% of their reservation. Furthermore,
since the servers perform reservation requests in a round-robin
fashion, buckets with smaller reservations will complete earlier
and free up server capacity for use by buckets with larger
reservations. The effect can be seen clearly in the figure, where
during the last two intervals, the servers are mainly processing
requests of the buckets with smaller indexes (i.e. those with
higher reservations).

Figure also shows the adaptivity of the algorithm
to sharp demand changes. For instance, several red needles
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(a) The Zipf distribution of buckets’ reservation requirements with the
exponent factor s = 0.5, sorted from high to low. Each bucket is assigned
a weight w; = 1/i-5 from the set of weights {w; : j = 1,---|B|}
with probability (1/3%-%)/(5>, 1/i%-5). Then the aggregate capacity of
the servers is distributed to the buckets in proportional to their weights
as their reservations. The bucket reservations are roughly in the range of
(120, 13000), and the y-axis has a logarithmic scale.
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Fig. 3: The result of the simulator-based QoS evaluation:
reservations, demand change times, and 1Os for a sample of
the buckets. The figures show the results for every 50" bucket.



(representing IOs in the 2nd interval) can be seen in the blue
(1st interval) region. This means that these buckets received
less service than their peers in the first interval. This happens
because of a sudden drop in the demands of this bucket at
some servers and an increase in others because of locality
changes. Servers with reduced demand will not be able to
consume their reservation tokens in this interval. The unused
capacity however is not wasted and will be used by buckets
which have both demand and tokens on the server. Even if
all tokens with demand at the server have been consumed, the
additional capacity is used to serve requests without tokens.
These opportunistic requests will still be counted towards the
reservation requirements of the corresponding bucket, and the
controller will correct for these additional I0s by reducing
its target remaining reservation. In the next interval, the
coordinator will allocate additional tokens to the buckets that
were underserved in the first interval and direct them to the
new server, and reduce the total number of tokens to buckets
which received opportunistic 10s. For instance, bucket 6100
that has its first demand change early in the 1st redistribution
interval, receives less service in the first interval but catches
up by the end of the second one.
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Fig. 4: The average error of pShift with different number of
demand changes and different number of active servers of each
bucket.

Experiment 2: In this experiment we study the effect of two
parameters on QoS accuracy: the number of servers on which
the buckets are active (IN4) and the number of times the
demand of a buckets changes in a QoS period (Np). The
accuracy measure is the fraction of buckets that miss 5% or
more of their reservation in the QoS period.

Inaccuracy in the reservations achieved may arise due to
intrinsic error. The intrinsic error arises because for certain
data distributions it is impossible to meet the reservations
irrespective of the scheduling strategy. For example, consider
a situation where two buckets with reservations of 100 IOPS
each have high demand on a single server and no demand on
any of the other servers. If the capacity of the server is 100
IOPS then clearly at most one of the buckets can meet its
reservation, and the intrinsic error is greater than 0. Intrinsic
errors are manifested in pShift as weak excess tokens on some

overloaded server(s) that cannot be moved to any underloaded
server because of lack of demand for the buckets on the latter.
When there is no runtime demand change, pShift guarantees
that all reservations will be met whenever such an allocation
is possible. Hence, any error in this situation is an intrinsic
error that cannot be avoided.

Figure [4] also shows the average measured error for Ny =
{2,4,8} and Np = {0,1,2,5,10}. Each bar is the average of
5 runs; the variation was less than 10%. We found the error is
almost always 0 for N4 > 8 and so are not reported. The bar
for Np = 0 represents intrinsic errors; in this case the optimal
allocation determined by pShift is still insufficient to meet all
reservations. For a given number of active servers, the error
grows initially as the number of demand changes increases,
but levels off and becomes insensitive to additional demand
changes. This is because demand changes that occur within a
reallocation interval tend to average out or in any case have
no worse an effect than one large demand change early in the
interval. On the other hand, as the demands of a bucket get
spread out over several servers, albeit in a skewed Zipf-like
distribution, the error decreases. Note the errors also include
intrinsic error, which no scheduling algorithm can avoid. It
can be seen that a higher N4 reduces the intrinsic error.
Characterization and bounds on intrinsic errors are deferred
to future work.

C. Parallelization Evaluation

In this section, we show the speedup of the parallelization
optimization for the pShift algorithm. We used the parallel for
primitive in OpenMP to parallelize the two hot-spot regions
discussed in Section [II=C1l

We use 64 servers and 10,000 buckets with the same Zipf
demand and active server specification as in Section [[V-B
Each server’s throughput in the QoS period is 100,000 and
each bucket is active on 8 servers. However, we vary the
following two variables:

« 7 : the fraction of the total cluster capacity being reserved,
ie. (3,ep Ri)/(X;cs C7). Note that 0 <7 < 1.

o m : the ratio of the total demand of each bucket to its
reservation, i.e. D;/R;. Note that m > 1.

During the experiments, we found that the execution time
of pShift increases with higher r and smaller m. If m is small
there will be less spare demands at a server reducing the
number of tokens that can be moved along an edge. Similarly,
if 7 is high, servers will overload more easily and underloaded
servers will have less spare capacity to accept tokens. The
execution times of pShift with r = 1.0 and » = 0.9, with
different number of working threads, and different m values
are shown in Figure and Figure From the figures we
can see by using 12 threads, we can achieve up to 5x speedup
and absolute runtimes in tens of milliseconds.

As a comparison, for the problem size of this scale, bQueue
takes 2-3 minutes to complete, an overhead that renders it
unusable for the QoS period of the order of seconds. Figure
shows the comparison of the controller’s execution time of
pShift and bQueue with a smaller problem size of 100 to 1000
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Fig. 7: The controller execution time of pShift comparing
against bQueue, with 100 to 1000 buckets, 64 servers, r = 1.0
and m = 1.1.

buckets while keeping the number of servers to be 64, and r =
1.0, m = 1.1. From the figure, we can see with a fixed number
of servers, bQueue’s execution time grows quadratically with
the number of buckets, while pShift only grows linearly. This is
the main reason that pShift runs faster than bQueue. Additional
discussions are provided in Section [V]

D. Approximation Evaluation

In this section, we evaluate the efficiency and accuracy of
the approximation approach. To make a comparison, we main-
tain the configuration of Section[I[V-C| We choose r = 1.0 and
m = 1.1 since this is the stress case that takes most execution
time, and use 12 threads as well. Before beginning to shift the
tokens we filter the data and retain only the top M buckets
with most tokens and the top M buckets with the highest spare
demands. We choose M = {100, 200, 500, 1000, 2000, 5000}.
Moreover, we tried different reservation distributions by using
different exponent factors s in generating the Zipf distribution.
We tried s = {0,0.1,0.25,0.5,1,2}, where a smaller s
implies less variation in the reservations of different buckets.
In particular, s = 0 denotes a uniform distribution.

Recall that the goal of the shift steps is to reduce the number
of weak excess tokens. Figure [6(a)] shows the percentage of
weak excess tokens removed by using different M and s. Form
the figure, we can see that though there are 10000 buckets,
considering only the top 2000 (20%) buckets is enough to
remove all the weak excess tokens, even with the uniform
reservation distribution. Moreover, we can still remove more
than 70% weak excess tokens using only the top 500 (5%)
buckets. One can also see that for a fixed M we remove
more weak excess tokens when the skew in the reservation
distribution increases, reaching 100% success with just 1—5%



of the buckets. Since skewed distributions are more likely in
practice, the approximation will be especially useful in these
cases.

The benefit of the approximation approach is that it can
further accelerate the execution time of the pShift algorithm.
Figure shows the running time of the pShift algorithm
with different M. It can be seen that we can achieve another
5x speedup on top of the parallelization approach while still
keeping the accuracy at a reasonable threshold.

E. Linux Evaluation

In this section, we describe results on the Linux cluster in
three experiments. Experiment 3 uses a small configuration
with static demands to show how pShift meets reservations
and limits. We then consider dynamically varying demands in
Experiment 4. These experiments are done using memcahced
as the backend server. Finally, Experiment 5 shows the results
using file 10.

Experiment 3:

In this experiment, we show how pShift handles reservations
and limits with a simple and steady configuration of 4 buckets
and 4 servers. We initially focus on reservations; each bucket
has a reservation of 30,000 RPS and an essentially unbounded
limit (200,000 RPS was used in the experiment). Buckets 1,
2, 3, 4 are continuously backlogged on servers {1}, {1,2},
{1,2,3} and {1,2,3,4} respectively with 5 outstanding re-
quests. We choose a QoS period of 1 second. For the token
allocation, we redistribute tokens every 200ms i.e. we have
5 token redistributions in each QoS period. Theoretically, if
no QoS controls are applied, the round-robin scheduler will
give buckets 1, 2, 3, 4 throughputs in the ratio of (1/4) :
(1/44+1/3): (1/44+1/34+1/2): (1/4+1/3+1/24+1) =
3:7:13 : 25, which results in average throughputs of 12500,
29166, 54166, and 104166 RPS, respectively. On the other
hand, when QoS controls are applied, the reservations of all
buckets are expected to be met.

Figures [8(a)| and [8(b)] show the results of the execution,
which matches our theoretical analysis. Figure [8(a)] shows
the throughput of the buckets without QoS controls and the
results match the predicted throughputs closely. In Figure [8(b)]
the throughputs with reservation controls are shown. Bucket
1’s throughput, which was well below its reservation, now
increases to match the required 30,000 RPS. Looking at
Figure [B(b)] we can see that bucket 4 reaches its reservation
first (at roughly 400ms) since it gets service on all servers. At
that point it loses priority in scheduling and the other buckets
get increased service; this can be seen most dramatically by
the change in the slope of bucket 1 at that time.

Finally we set the limit of each bucket to be 60,000 RPS.
Figure shows the execution results. We can see that both
reservations and limits are met by all the buckets. Figure
looks similar to Figure [B(b)| in the interval 0 to 0.6s, where
the servers are basically doing reservation requests. Beyond
this time bucket 4 gradually slows down as it meets its limit
threshold in each sub-interval, yielding to buckets that are
further away from their limit.
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Fig. 8: The number of requests done for pShift and simple
round robin schedulers in Experiment 3.

Experiment 4:

We now show how pShift guarantees QoS on the cluster
when demands change dynamically. We use a larger configura-
tion of 8 servers and 10 buckets. Each bucket has a reservation
of 30,000 RPS and a limit of 50,000 RPS. Each bucket
randomly chooses a number between 2 to 6 active servers;
at every demand change instant, a fresh set of active servers
(between 2 and 6) is chosen. We allow 5 demand changes
for each bucket. We run 4 consecutive QoS periods with 5
redistributions in each period.



Figures O(a)] and P(b)| show the dynamic throughput for
both scenarios. From the figures, we can see with the simple
round robin scheduler, the QoS is not guaranteed, as some
buckets (e.g. buckets 5,7 and 8) in QoS period 1 did not
meet their reservations, and some buckets (e.g. buckets 3 and
4) received throughput exceeding their limits. In contrast, by
using the pShift scheduler, both reservation and limit QoS was
guaranteed in all intervals for all buckets.

Finally, we tested a bigger problem size using 200 buckets.
On average without QoS controls, 68.5% of the buckets met
their reservations and 83.5% did not go beyond their limits.
In contrast, when using pShift, 99.6% of the buckets met their
reservations and none exceeded their limits. By running the
QoS controller for 15 minutes, we found on average, the
communication in every 1s QoS period takes 9ms, i.e. the
average communication overhead is around 0.9%.
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we also assign each bucket a limit equal to 1.5 times its
reservation.

1000
900 ‘
800
700
600
500
400
300
200
100
0

Reservations

HOMNUM—AO N LW HONWLM AN MADAON~NUDM
HANMETTNDOMNODOIDOANNMTOONDOD
R e B B B B B B B I B B )

Bucket ID

(a) The Zipf distribution of buckets’ reservation requirements.

1000
900
800
700
600
500
400
300
200
100

0

Num of Requests Done

— o

NLOMADN M A DN
AN IO O 00D

105
113
121
129
137
145
153
161
169
177
185
193

Bucket ID

(b) The number of requests being completed in the first QoS period.

1000
900
800
700
600
500
400
300
200
100

Num of Requests Done

QoS Period

(b) The number of requests being completed with pShift scheduler.

Fig. 9: Total number of request completed for pShift and
simple round robin scheduler in Experiment 4.

Experiment 5:

Finally, we show how our storage prototype with pShift
guarantees reservation and limit QoS when doing block file
IO. In this experiment, we have 8 servers and 200 buckets,
and 80% of the total server capacities are being reserved, i.e.
r=(Y,ep Ri)/(X;es C?) = 0.8. The bucket reservations
(shown in Figure @ and demands follow the same Zipf
distribution that we used in the simulation, and each bucket
allows 2 demand changes in the QoS period as before. Here
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(c) The number of requests being completed in the second QoS period.

Fig. 10: The reservation distribution and the number of re-
quests being completed in Linux QoS evaluation.

We set the QoS periods to be 5 seconds, and in each
QoS period we do 5 token allocations, i.e. each redistribution
interval is 1 second. We run the server for two QoS periods
(i.e. 10 seconds) and record the QoS result as the number
of requests being completed in each redistribution interval.
Servers continue to serve IOs as the controller is computing
new token allocations.



Figure [T0(b)| and Figure shows the number of requests
being done in both QoS periods. From the figures, we can see
pShift provides the reservation and limit QoS in a reasonable
manner. The needles, similar as those shown in the simulation,
indicate how pShift handles demand changes. Quantitatively,
only one bucket (0.5%) missed its reservation by more than
1%, and no bucket exceeded its limit.

V. DISCUSSION

In this section, we compare pShift with the related existing
approaches and show the advantages of pShift. We also discuss
two common design issues in practice and give our suggested
solutions.

Coarse-grained Approaches: The token allocation problem
has been modeled previously using max-flow and linear pro-
gramming [22]. Both models have the same goal as pShift:
maximizing the number of reservations that can be met.
However, pShift has a much smaller overhead, both in actual
runtime and in theoretical complexity. pShift achieves its
scalability and speed by modeling the token allocation problem
as a two-level problem. It first works on the token transfer
graph which only includes servers (whose number of vertices
is O(|S|)) to find out the shift path, and then use the token-
movement map to figure out which buckets to move their
tokens. In contrast, both max-flow and linear programming
are working on graphs or inequality constraints with per-
server, per-bucket information simultaneously, which have a
very much higher complexity of O(|S||B]).

Fine-grained Approaches: In principle one can extend
the fine-grained distributed client QoS algorithms based on
tags [[17]], [19] to provide bucket QoS by forwarding each
request to a dedicated bucket controller, which then tags
the requests so that it can be scheduled properly. However,
forwarding each request through an additional server increases
request latencies. Furthermore, the tradeoff for achieving accu-
rate QoS at a fine granularity is to limit the number of requests
the controller can keep outstanding at the servers, so that tags
accurately reflect IO completion rates. This can potentially
limit the system throughput as well.

Local Priorities: In many situations, buckets may have dif-
ferent priorities, which could be quantified by bucket weights.
In such cases, our approach is to incorporate the priorities at
a local level in each server during scheduling. Therefore we
adopt the round-robin scheduler to act like a weighted round-
robin scheduler. The scheduler continues to prioritize requests
with reservation tokens over any requests not backed by a
token. Within this umbrella, it gives priority to the requests
in proportion to their weights. The reservation guarantees are
unaffected by this change but high priority buckets would tend
to receive lower latency for their requests.

Demand and Capacity Estimation: In practice, the demand
of most buckets may not change too frequently. In such cases,
instead of having evenly divided redistribution periods, we can
use a dynamic sliding window to estimate the demand changes,
and trigger token reallocation only if demands change beyond

a threshold. Similar approaches can be applied for capacity
estimation. By using dynamic estimation, we can reduce the
communication overhead as well. The detailed studies are left
for future work.

VI. CONCLUSIONS

In this paper, we present pShift, a scalable token allocation
algorithm for distributed storage clusters. pShift uses a novel
token shifting approach to handle the resource balancing
between different servers. pShift has a smaller runtime over-
head than existing approaches and can be directly integrated
to coarse-grained token-based QoS frameworks. Furthermore,
pShift can be further accelerated using parallelization and
approximation. Our performance results show pShift is able
to provide distributed bucket QoS on a large scale with good
accuracy, and is robust to several dynamic workload behaviors.
In future work, we will focus on studying the effect of using
dynamic redistribution intervals, as well as distributing the
token control algorithm to further improve the scalability.
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