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Bucket QoS

« Bucket: related storage objects

— Considered as one logical entity

— Several files or file fragments
« Bucket distributed across multiple storage nodes

e Bucket QoS

— Differentiate service based on buckets being accessed



Problem Statement

 Provide throughput reservations and limits

— Reservation: lower bound on bucket's IOPS

— Limit: upper bound on bucket's IOPS

« QoS requirements are coarse-grained

— Service time is divided into QoS periods

— QoS requirements fulfilled in each QoS period



Why Bucket QoS?

« Owners of the files pay for different services
. |=] Blue bucket: private files of a free user
— Low limit

« =] Green bucket: media files of a paid user
— Low latency

« |=] Red bucket: database files of a paid user

— High reservation




Challenges

« Buckets are distributed across multiple servers
— Skewed bucket demands distribution on different servers
— Time varying bucket demands
« Server capacities
— May fluctuate with workloads
— Load on servers can vary spatially and temporally
« QoS requirements are global across servers
— Many servers can contribute to a bucket’s reservations/limit

— Reservations and limits applied to aggregate bucket service 5
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Coarse-grained Approach

« Use tokens to represent the QoS requirements

— In each QoS period, each bucket allocated some
number of reservation and limit tokens

— Tokens are consumed when requests are scheduled

— Scheduler gives priority to requests with reservation
tokens

— Requests which have no limit tokens are ignored
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Coarse-grained Approach

Divide each QoS period evenly into redistribution periods

Controller runs token allocation algorithm to allocate the
tokens at the beginning of each redistribution period

Servers schedule requests during redistribution periods

according to the token distribution
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QoS period = 5s, 5 redistribution periods per QoS period.
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Related Work

« Most existing approaches use fine-grained QoS

— Request-level QoS guarantees

— Compute scheduling meta-data (tags) for each request

— Servers dispatches I/O requests based on the tags

« Qur approach is coarse-grained

— Guarantee QoS over a QoS period

— Improves our earlier approach: bQueue'

 Uses max-flow/linear programming algorithm

 High overhead, not scalable

1Yuhan Peng and Peter Varman, "bQueue: A Coarse-Grained Bucket QoS Scheduler", 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2018), Washington DC, USA. 11



pShift Algorithm

 Progressive Shift algorithm to allocate tokens
— Smaller runtime overhead
— Provably optimal token allocation
— Can be parallelized

— Can tradeoff accuracy and time using approximation
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Token Allocation

* Input
— Total Reservation and Limit tokens to be allocated
« # reservation/limit tokens not yet consumed
— Estimated demands

— Estimated server capacities
» Qutput
— Token distribution

e For each bucket on each server the number of
reservation and limit tokens allocated

13



Token Allocation

e Two basic constraints:

— Tokens allocated for a bucket B on a server S should
not exceed its demand on that server

« Excess tokens are called strong excess tokens

— Total number of tokens allocated to a server should
not exceed its capacity

» Excess tokens are called weak excess tokens

« Effective capacity

— Tokens expected to consumed

— # non-excess tokens

14



lllustration: Basic Constraints

© 100 Red Tokens

Capacity =
100 IOPS Demand(red) = 50

—

50 Red Strong Excess Tokens
50 Weak Excess Tokens
Effective Capacity = 100
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oShift Algorithm

« Use graph to model the token allocation

— Start from a configuration with no strong excess
tokens

» Distributing tokens according to the demands

— Removing most # weak excess tokens while not
introducing new strong excess tokens

* Progressive shifting

« Goal: maximizing the effective system capacity

16



Progressive Shifting

« Moving tokens between servers by shifts

— Each shift reduce # weak excess tokens, i.e. alleviate
the overloaded servers

— Each shift does not introduce strong excess tokens

— When no shift can be made, the resulting
configuration has the globally maximized effective
capacity
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Token Movement Map

 Guide the token shifting

« How many tokens can be moved without
violating demand restriction
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Token Movement Map: Illustration

100 Red Tokens 75 Red Tokens

Demand(red) = 150 Demand(red) = 100




Token Movement Map: Illustration

100 Red Tokens 75 Red Tokens
50 Green Tokens 25 Green Tokens

Spare Demand(red) = 50
Spare Demand(green) =0

Spare Demand(red) = 25
Spare Demand(green) = 125

Demand(red) = 150 Demand(red) = 100
Demand(green) = 50 Demand(green) = 150
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Token Movement Map: Illustration

100 Red Tokens 75 Red Tokens
50 Green Tokens 25 Green Tokens
(73)
—>
Spare Demand(red) = 50 Spare Demand(red) = 25
Spare Demand(green) =0 Spare Demand(green) = 125
0.0

Demand(red) = 150 Demand(red) = 100
Demand(green) = 50 Demand(green) = 150

min(the amount | have, your spare demand)
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Progressive Shifting: lllustration
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Progressive Shifting: lllustration
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Progressive Shifting: lllustration
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Progressive Shifting: lllustration

25 25
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Progressive Shifting: lllustration
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Performance Optimizations

« pShift can be parallelized
— Parallelize the updates on the shift path
« Approximation approach

— Only consider the buckets with most weights in the
token movement map
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Performance Evaluation

Implemented a prototype using socket
programming library

Test platform: a sma

| Linux file cluster

pShift is robust to di

ferent runtime demand

changes and fluctuations

pShift has good result in scalability tests
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QoS Evaluation

 Configuration 1
— 8 servers and 10 buckets
— Distributed memory caching (memcached)

— Reservations + Limits
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Configuration 1

Simple Round Robin (no QoS)
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Configuration 1
pShift
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QoS Evaluation

 Configuration 2
— 8 servers and 200 buckets
— Random (uncached) reads from a large file

— Reservations + Limits

« Workload: Zipf distribution of reservations
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Configuration 2
Reservation Specification
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Configuration 2

QoS Result
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Parallelization Evaluation

* 10000 buckets, 64 servers
e =09

— 90% of the total cluster capacity is reserved

« m: the ratio of the total demand of each bucket
to Its reservation (m > 1)
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Parallelization Evaluation

5X speedup with 12 threads
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Approximation Evaluation

10000 buckets, 64 servers

r="10

— All of the total cluster capacity are reserved
m = 1.1

— Each bucket has a total demand 1.1 times to its
reservation

Try different input parameter s

— Higher s means the variance of reservations is higher
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Approximation Evaluation

« Good results even considering only top 5%
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Approximation Evaluation

Another 5X speedup by considering top 5%
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pShift vs bQueue

1000 buckets, 64 servers
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Summary

 pShift: scalable token allocator for QoS
— Token allocation through progressive shifting
— Proven to be optimal
— Small runtime overhead

— Can be parallelized & approximated

e Future Work

— Support other QoS requirements such as latency
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Backup Slide:
Fine-grained v.s. Coarse-grained

Fine-grained Coarse-grained
Approaches Approaches
How QoS Meta-data on each| Global control
requirements are request information
enforced (e.g. tags) (e.g. tokens)
Implementation High Low
Complexity
Sever Schedulers Complicated Simple
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Backup Slide: Demand Estimation

 Linear extrapolation

— N requests received in last redistribution period

— M requests outstanding at the redistribution

— Q more redistribution periods left

— demand =N*Q + M

« Significant demand changes will be caught up in the next
redistribution period
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Backup Slide: Capacity Estimation

* Linear extrapolation (again)

— R requests completed in last redistribution period.

— Q more redistribution periods left.

— residual capacity = R* Q.
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