Scalable QoS for Distributed Storage
Clusters using Dynamic Token Allocation

Yuhan Peng’, Qingyue Liu?, Peter Varman?
Department of Computer Science'
Department of Electrical and Computer Engineering?
Rice University

35th International Conference on Massive Storage Systems and Technology (MSST 2019), Santa Clara, CA

T

Clustered Storage Systems

C\ustered Storage Systems

b/\.

Bucket QoS

« Bucket: related storage objects

— Considered as one logical entity

— Several files or file fragments
« Bucket distributed across multiple storage nodes

e Bucket QoS

— Differentiate service based on buckets being accessed

Problem Statement

 Provide throughput reservations and limits

— Reservation: lower bound on bucket's IOPS

— Limit: upper bound on bucket's IOPS

« QoS requirements are coarse-grained

— Service time is divided into QoS periods

— QoS requirements fulfilled in each QoS period

Why Bucket QoS?

« Owners of the files pay for different services
. |=] Blue bucket: private files of a free user
— Low limit

« =] Green bucket: media files of a paid user
— Low latency

« |=] Red bucket: database files of a paid user

— High reservation

Challenges

« Buckets are distributed across multiple servers
— Skewed bucket demands distribution on different servers
— Time varying bucket demands
« Server capacities
— May fluctuate with workloads
— Load on servers can vary spatially and temporally
« QoS requirements are global across servers
— Many servers can contribute to a bucket’s reservations/limit

— Reservations and limits applied to aggregate bucket service 5

Incoming
Requests

Incoming
Requests

Incoming
Requests

Solution Overview

Token
Ly Scheduler

Server Node 1

Token
Scheduler

(....g

Token

Server Node 2

: Controller

Token
Scheduler

Server Node 3

Coarse-grained Approach

« Use tokens to represent the QoS requirements

— In each QoS period, each bucket allocated some
number of reservation and limit tokens

— Tokens are consumed when requests are scheduled

— Scheduler gives priority to requests with reservation
tokens

— Requests which have no limit tokens are ignored

distribution

Y

Coarse-grained Approach

Divide each QoS period evenly into redistribution periods

Controller runs token allocation algorithm to allocate the
tokens at the beginning of each redistribution period

Servers schedule requests during redistribution periods

according to the token distribution
initial

redistribution

Y

redistribution

A 4

redistribution

Y

redistribution

redistribution
period

redistribution
period

redistribution
period

redistribution
period

redistribution
period

1s

1s

1s

1s

1s

QoS period = 5s, 5 redistribution periods per QoS period.

10

Related Work

« Most existing approaches use fine-grained QoS

— Request-level QoS guarantees

— Compute scheduling meta-data (tags) for each request

— Servers dispatches I/O requests based on the tags

« Qur approach is coarse-grained

— Guarantee QoS over a QoS period

— Improves our earlier approach: bQueue'

 Uses max-flow/linear programming algorithm

 High overhead, not scalable

1Yuhan Peng and Peter Varman, "bQueue: A Coarse-Grained Bucket QoS Scheduler", 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2018), Washington DC, USA. 11

pShift Algorithm

 Progressive Shift algorithm to allocate tokens
— Smaller runtime overhead
— Provably optimal token allocation
— Can be parallelized

— Can tradeoff accuracy and time using approximation

12

Token Allocation

* Input
— Total Reservation and Limit tokens to be allocated
« # reservation/limit tokens not yet consumed
— Estimated demands

— Estimated server capacities
» Qutput
— Token distribution

e For each bucket on each server the number of
reservation and limit tokens allocated

13

Token Allocation

e Two basic constraints:

— Tokens allocated for a bucket B on a server S should
not exceed its demand on that server

« Excess tokens are called strong excess tokens

— Total number of tokens allocated to a server should
not exceed its capacity

» Excess tokens are called weak excess tokens

« Effective capacity

— Tokens expected to consumed

— # non-excess tokens

14

lllustration: Basic Constraints

© 100 Red Tokens

Capacity =
100 IOPS Demand(red) = 50

—

50 Red Strong Excess Tokens
50 Weak Excess Tokens
Effective Capacity = 100

15

oShift Algorithm

« Use graph to model the token allocation

— Start from a configuration with no strong excess
tokens

» Distributing tokens according to the demands

— Removing most # weak excess tokens while not
introducing new strong excess tokens

* Progressive shifting

« Goal: maximizing the effective system capacity

16

Progressive Shifting

« Moving tokens between servers by shifts

— Each shift reduce # weak excess tokens, i.e. alleviate
the overloaded servers

— Each shift does not introduce strong excess tokens

— When no shift can be made, the resulting
configuration has the globally maximized effective
capacity

17

Token Movement Map

 Guide the token shifting

« How many tokens can be moved without
violating demand restriction

18

Token Movement Map: Illustration

100 Red Tokens 75 Red Tokens

Demand(red) = 150 Demand(red) = 100

Token Movement Map: Illustration

100 Red Tokens 75 Red Tokens
50 Green Tokens 25 Green Tokens

Spare Demand(red) = 50
Spare Demand(green) =0

Spare Demand(red) = 25
Spare Demand(green) = 125

Demand(red) = 150 Demand(red) = 100
Demand(green) = 50 Demand(green) = 150

20

Token Movement Map: Illustration

100 Red Tokens 75 Red Tokens
50 Green Tokens 25 Green Tokens
(73)
—>
Spare Demand(red) = 50 Spare Demand(red) = 25
Spare Demand(green) =0 Spare Demand(green) = 125
0.0

Demand(red) = 150 Demand(red) = 100
Demand(green) = 50 Demand(green) = 150

min(the amount | have, your spare demand)

21

Progressive Shifting: lllustration

125 Red Tokens

b

Capacity =
100 IOPS

~—

Demand(red) = 150

50 Red Tokens

b

Capacity =
100 IOPS

"

Demand(red) = 100

)

Capacity =
100 IOPS

N~

22

Progressive Shifting: lllustration

125 Red Tokens 50 Red Tokens

(Overloaded by 25) (Underloaded by 50)

(Full)
Capacity = Capacity = Capacity =
100 IOPS 100 IOPS 100 IOPS

~—

—

~—

Demand(red) =150 _Demand(red) =100

23

Progressive Shifting: lllustration

125 Red Tokens
(Overloaded by 25)

O [50]

(50)

50 Red Tokens

(Full)

C

Capacity =
100 IOPS

—

Demand(red) = 150

(50)

(Underloaded by 50)

)

Capacity =
100 IOPS

—

Demand(red) = 100

Capacity =
100 IOPS

—

24

Progressive Shifting: lllustration

25 25

125 Red Tokens 50 Red Tokens 50 Green Tokens

(Overloaded by 25) o0 G“?EE"T)OKG"S (Underloaded by 50)

50 50
()> (50)

Capacity = Capacity = i Capacity =
100 IOPS 100 IOPS 100 IOPS

— — —

Demand(red) = 100
Demand(green) =100

Demand(red) = 150 Demand(green) = 100

25

Progressive Shifting: lllustration

100 Red Tokens 75 Red Tokens

(Full) (Underloaded by 25)

(Full)
Capacity = Capacity = Capacity =
100 IOPS 100 IOPS 100 IOPS

~—

—

~—

Demand(red) =150 _Demand(red) =100

26

Performance Optimizations

« pShift can be parallelized
— Parallelize the updates on the shift path
« Approximation approach

— Only consider the buckets with most weights in the
token movement map

27

Performance Evaluation

Implemented a prototype using socket
programming library

Test platform: a sma

| Linux file cluster

pShift is robust to di

ferent runtime demand

changes and fluctuations

pShift has good result in scalability tests

28

QoS Evaluation

 Configuration 1
— 8 servers and 10 buckets
— Distributed memory caching (memcached)

— Reservations + Limits

29

Configuration 1

Simple Round Robin (no QoS)

Num of Requests Done

70000

60000

50000

40000

30000

20000

10000

0

QoS Period

B Bucket 1
® Bucket 2
" Bucket 3
® Bucket 4
® Bucket 5
® Bucket 6
% Bucket 7
“ Bucket 8
Bucket 9
% Bucket 10

30

Configuration 1
pShift

Num of Requests Done

70000

60000

50000

40000

30000

20000

10000

QoS Period

B Bucket 1
® Bucket 2
® Bucket 3
® Bucket 4
® Bucket 5
¥ Bucket 6
“ Bucket 7
“ Bucket 8
“ Bucket 9
" Bucket 10

31

QoS Evaluation

 Configuration 2
— 8 servers and 200 buckets
— Random (uncached) reads from a large file

— Reservations + Limits

« Workload: Zipf distribution of reservations

32

Configuration 2
Reservation Specification

1000

900

800

-
-
7

600
500
0

SUOTJCAIISIY

300
200

100

¢ol
S8l
LLI
691
[91
eCl
Syl
LEl
6CI1
14!
ell
SOT
L6
68
I8
eL
59
LS
(4
Iy
(33
$¢C
L1

Bucket ID

33

Configuration 2

QoS Result

1000

900

S o o o o <O
o ©C o O O O O
0 >~ O n T o0 A

UO(] $1S9NDbAY Jo winN

100

ol
o8l
LLT
691
191
391
SPl
LET
6Cl
[Tl
eIl
SOI1
L6
68
I8
eL
<9
LS
oY
Iy
(3
$¢C
L1

Bucket ID

34

Parallelization Evaluation

* 10000 buckets, 64 servers
e =09

— 90% of the total cluster capacity is reserved

« m: the ratio of the total demand of each bucket
to Its reservation (m > 1)

35

Parallelization Evaluation

5X speedup with 12 threads

0.05 -
0 -

045

£

E 04 -

= 0.35 -

S 03 - ™ | thread

g 0.25 - m 2 threads
L

rﬁ 0.2 - ® 4 threads
E 0.15 - ® § threads
§ 0.1 - ® 12 threads
g

@)

m=1.1 m=1.25 m=1.5 m=2

36

Approximation Evaluation

10000 buckets, 64 servers

r="10

— All of the total cluster capacity are reserved
m = 1.1

— Each bucket has a total demand 1.1 times to its
reservation

Try different input parameter s

— Higher s means the variance of reservations is higher

37

Approximation Evaluation

« Good results even considering only top 5%

120

100

Percentage of Weak Excess Tokens Removed

80

60

40 -

20 -

100 200 500 1000 2000 5000

Number of Buckets Considered for Top Demands and Spare Capacities

Es=0
ms=0.1
ms=0.25
Bs=0.5
Hs=1

ms=2

38

Approximation Evaluation

Another 5X speedup by considering top 5%

0.16

0.14

0.12

j=
f—

Controller Execution Time (s)
o
o
o0

0.06

0.04

0.02 . . I
0 l

1000 2000 5000 10000

Number of Buckets Considered for Top Demands and Spare Capacities

39

pShift vs bQueue

1000 buckets, 64 servers

Controller Execution Time (s)

1.6

1.4

/

1.2 /
1

0.8 /
0.6

0.4 /
0.2

omﬂ_ﬂ —d————h——4

100 200 300 400 500 600 700 800 900 1000

Number of Buckets

== bQueue
== pShift

Summary

 pShift: scalable token allocator for QoS
— Token allocation through progressive shifting
— Proven to be optimal
— Small runtime overhead

— Can be parallelized & approximated

e Future Work

— Support other QoS requirements such as latency

41

Backup Slide:
Fine-grained v.s. Coarse-grained

Fine-grained Coarse-grained
Approaches Approaches
How QoS Meta-data on each| Global control
requirements are request information
enforced (e.g. tags) (e.g. tokens)
Implementation High Low
Complexity
Sever Schedulers Complicated Simple

42

Backup Slide: Demand Estimation

 Linear extrapolation

— N requests received in last redistribution period

— M requests outstanding at the redistribution

— Q more redistribution periods left

— demand =N*Q + M

« Significant demand changes will be caught up in the next
redistribution period

l

redistribution
period

redistribution
period

redistribution
period

redistribution
period

redistribution
period

M requests outstanding

A

43

Backup Slide: Capacity Estimation

* Linear extrapolation (again)

— R requests completed in last redistribution period.

— Q more redistribution periods left.

— residual capacity = R* Q.

redistribution
period

redistribution
period

redistribution
period

redistribution
period

redistribution
period

1

R

R requests completed

R

R

R

44

