
Scalable QoS for Distributed Storage 
Clusters using Dynamic Token Allocation

Yuhan Peng1, Qingyue Liu2, Peter Varman2

Department of Computer Science1

Department of Electrical and Computer Engineering2

Rice University

1
35th International Conference on Massive Storage Systems and Technology (MSST 2019), Santa Clara, CA



Clustered Storage Systems

2



Clustered Storage Systems

3



Bucket QoS

• Bucket: related storage objects 

– Considered as one logical entity

– Several files or file fragments

• Bucket distributed across multiple storage nodes

• Bucket QoS

– Differentiate service based on buckets being accessed

4



Problem Statement

• Provide throughput reservations and limits

– Reservation: lower bound on bucket’s IOPS 

– Limit: upper bound on bucket’s IOPS

• QoS requirements are coarse-grained

– Service time is divided into QoS periods

– QoS requirements fulfilled in each QoS period

5



Why Bucket QoS?

• Owners of the files pay for different services

• Blue bucket: private files of a free user

– Low limit

• Green bucket: media files of a paid user

– Low latency

• Red bucket: database files of a paid user

– High reservation

6



Challenges

• Buckets are distributed across multiple servers

– Skewed bucket demands distribution on different servers

– Time varying bucket demands

• Server capacities 

– May fluctuate with workloads

– Load on servers can vary spatially and temporally

• QoS requirements are global across servers

– Many servers can contribute to a bucket’s reservations/limit

– Reservations and limits applied to aggregate bucket service 7



Solution Overview

8



Coarse-grained Approach

• Use tokens to represent the QoS requirements

– In each QoS period, each bucket allocated some 
number of reservation and limit tokens

– Tokens are consumed when requests are scheduled 

– Scheduler gives priority to requests with reservation 
tokens

– Requests which have no limit tokens are ignored

9



Coarse-grained Approach

• Divide each QoS period evenly into redistribution periods

• Controller runs token allocation algorithm to allocate the 
tokens at the beginning of each redistribution period

• Servers schedule requests during redistribution periods 
according to the token distribution

10



Related Work
• Most existing approaches use fine-grained QoS 

– Request-level QoS guarantees

– Compute scheduling meta-data (tags) for each request

– Servers dispatches I/O requests based on the tags

• Our approach is coarse-grained

– Guarantee QoS over a QoS period

– Improves our earlier approach: bQueue1 

• Uses max-flow/linear programming algorithm

• High overhead, not scalable

11
1 Yuhan Peng and Peter Varman, "bQueue: A Coarse-Grained Bucket QoS Scheduler", 18th IEEE/ACM International 

Symposium on Cluster, Cloud and Grid Computing (CCGrid 2018), Washington DC, USA.



pShift Algorithm

• Progressive Shift algorithm to allocate tokens

– Smaller runtime overhead

– Provably optimal token allocation

– Can be parallelized

– Can tradeoff accuracy and time using approximation

12



Token Allocation

• Input

– Total Reservation and Limit tokens to be allocated

• # reservation/limit tokens not yet consumed

– Estimated demands

– Estimated server capacities

• Output 

– Token distribution

• For each bucket on each server the number of 
reservation and limit tokens allocated 13



Token Allocation

• Two basic constraints:

– Tokens allocated for a bucket B on a server S should 
not exceed its demand on that server

• Excess tokens are called strong excess tokens

– Total number of tokens allocated to a server should 
not exceed its capacity

• Excess tokens are called weak excess tokens

• Effective capacity

– Tokens expected to consumed

– # non-excess tokens
14



Illustration: Basic Constraints

15



pShift Algorithm

• Use graph to model the token allocation

– Start from a configuration with no strong excess 
tokens

• Distributing tokens according to the demands

– Removing most # weak excess tokens while not 
introducing new strong excess tokens

• Progressive shifting

• Goal: maximizing the effective system capacity

16



Progressive Shifting

• Moving tokens between servers by shifts

– Each shift reduce # weak excess tokens, i.e. alleviate 
the overloaded servers 

– Each shift does not introduce strong excess tokens

– When no shift can be made, the resulting 
configuration has the globally maximized effective 
capacity

17



Token Movement Map

• Guide the token shifting

• How many tokens can be moved without 
violating demand restriction

18



Token Movement Map: Illustration

19



Token Movement Map: Illustration

20



Token Movement Map: Illustration

21



Progressive Shifting: Illustration

22



Progressive Shifting: Illustration

23



Progressive Shifting: Illustration

24



Progressive Shifting: Illustration

25



Progressive Shifting: Illustration

26



Performance Optimizations

• pShift can be parallelized

– Parallelize the updates on the shift path

• Approximation approach

– Only consider the buckets with most weights in the 
token movement map

27



Performance Evaluation

• Implemented a prototype using socket 
programming library 

• Test platform: a small Linux file cluster

• pShift is robust to different runtime demand 
changes and fluctuations

• pShift has good result in scalability tests

28



QoS Evaluation

• Configuration 1

– 8 servers and 10 buckets

– Distributed memory caching (memcached)

– Reservations + Limits

29



Configuration 1
Simple Round Robin (no QoS)

30



Configuration 1
pShift

31



QoS Evaluation

• Configuration 2

– 8 servers and 200 buckets

– Random (uncached) reads from a large file

– Reservations + Limits

• Workload: Zipf distribution of reservations

32



Configuration 2
Reservation Specification

33



Configuration 2
QoS Result

34



Parallelization Evaluation

• 10000 buckets, 64 servers

• r = 0.9

– 90% of the total cluster capacity is reserved

• m: the ratio of the total demand of each bucket 
to its reservation (m ≥ 1)

35



Parallelization Evaluation

• 5X speedup with 12 threads

36



Approximation Evaluation

• 10000 buckets, 64 servers

• r = 1.0

– All of the total cluster capacity are reserved

• m = 1.1

– Each bucket has a total demand 1.1 times to its 
reservation

• Try different input parameter s

– Higher s means the variance of reservations is higher

37



Approximation Evaluation

• Good results even considering only top 5%

38



Approximation Evaluation

• Another 5X speedup by considering top 5%

39



pShift vs bQueue

• 1000 buckets, 64 servers

40



Summary

• pShift: scalable token allocator for QoS

– Token allocation through progressive shifting

– Proven to be optimal

– Small runtime overhead

– Can be parallelized & approximated

• Future Work

– Support other QoS requirements such as latency

41



Backup Slide:
Fine-grained v.s. Coarse-grained

Fine-grained
Approaches

Coarse-grained
Approaches

How QoS 
requirements are 

enforced

Meta-data on each 
request

(e.g. tags)

Global control 
information
(e.g. tokens)

Implementation 
Complexity

High Low

Sever Schedulers Complicated Simple

42



Backup Slide: Demand Estimation

• Linear extrapolation

– N requests received in last redistribution period

– M requests outstanding at the redistribution

– Q more redistribution periods left

– demand = N * Q + M

• Significant demand changes will be caught up in the next 
redistribution period

43



Backup Slide: Capacity Estimation

• Linear extrapolation (again)

– R requests completed in last redistribution period.

– Q more redistribution periods left.

– residual capacity = R * Q.

44


