Scalable QoS for Distributed Storage Clusters using Dynamic Token Allocation

Yuhan Peng¹, Qingyue Liu², Peter Varman²
Department of Computer Science¹
Department of Electrical and Computer Engineering²
Rice University

Clustered Storage Systems

Clustered Storage Systems

Bucket QoS

- <u>Bucket</u>: related storage objects
 - Considered as one logical entity
 - Several files or file fragments
- Bucket distributed across multiple storage nodes
- Bucket QoS
 - Differentiate service based on buckets being accessed

Problem Statement

- Provide throughput <u>reservations</u> and <u>limits</u>
 - Reservation: lower bound on bucket's IOPS
 - Limit: upper bound on bucket's IOPS

- QoS requirements are coarse-grained
 - Service time is divided into QoS periods
 - QoS requirements fulfilled in each QoS period

Why Bucket QoS?

- Owners of the files pay for different services
- 🔳 Blue bucket: private files of a free user
 - Low limit
- 🔳 Green bucket: media files of a paid user
 - Low latency
- Red bucket: database files of a paid user
 - High reservation

Challenges

- Buckets are distributed across multiple servers
 - Skewed bucket demands distribution on different servers
 - Time varying bucket demands
- Server capacities
 - May fluctuate with workloads
 - Load on servers can vary spatially and temporally
- QoS requirements are global across servers
 - Many servers can contribute to a bucket's reservations/limit
 - Reservations and limits applied to aggregate bucket service 7

Solution Overview

Coarse-grained Approach

- Use tokens to represent the QoS requirements
 - In each QoS period, each bucket allocated some number of reservation and limit tokens
 - Tokens are consumed when requests are scheduled
 - Scheduler gives priority to requests with reservation tokens
 - Requests which have no limit tokens are ignored

Coarse-grained Approach

- Divide each QoS period evenly into <u>redistribution periods</u>
- Controller runs token allocation algorithm to allocate the tokens at the beginning of each redistribution period
- Servers schedule requests during redistribution periods according to the token distribution

QoS period = 5s, 5 redistribution periods per QoS period.

Related Work

- Most existing approaches use <u>fine-grained</u> QoS
 - Request-level QoS guarantees
 - Compute scheduling meta-data (tags) for each request
 - Servers dispatches I/O requests based on the tags
- Our approach is coarse-grained
 - Guarantee QoS over a QoS period
 - Improves our earlier approach: <u>bQueue</u>¹
 - Uses max-flow/linear programming algorithm
 - High overhead, not scalable

pShift Algorithm

- Progressive Shift algorithm to allocate tokens
 - Smaller runtime overhead
 - Provably optimal token allocation
 - Can be parallelized
 - Can tradeoff accuracy and time using approximation

Token Allocation

- Input
 - Total Reservation and Limit tokens to be allocated
 - # reservation/limit tokens not yet consumed
 - Estimated demands
 - Estimated server capacities
- Output
 - Token distribution
 - For each bucket on each server the number of reservation and limit tokens allocated

Token Allocation

- Two basic constraints:
 - Tokens allocated for a bucket B on a server S should not exceed its demand on that server
 - Excess tokens are called <u>strong excess tokens</u>
 - Total number of tokens allocated to a server should not exceed its capacity
 - Excess tokens are called weak excess tokens
- Effective capacity
 - Tokens expected to consumed
 - # non-excess tokens

Illustration: Basic Constraints

50 Red Strong Excess Tokens
50 Weak Excess Tokens
Effective Capacity = 100

pShift Algorithm

- Use graph to model the token allocation
 - Start from a configuration with no strong excess tokens
 - Distributing tokens according to the demands
 - Removing most # weak excess tokens while not introducing new strong excess tokens
 - Progressive shifting
- Goal: maximizing the effective system capacity

Progressive Shifting

- Moving tokens between servers by <u>shifts</u>
 - Each shift reduce # weak excess tokens, i.e. alleviate the overloaded servers
 - Each shift does not introduce strong excess tokens
 - When no shift can be made, the resulting configuration has the globally maximized effective capacity

Token Movement Map

- Guide the token shifting
- How many tokens can be moved without violating demand restriction

Token Movement Map: Illustration

Token Movement Map: Illustration

Token Movement Map: Illustration

min(the amount I have, your spare demand)

125 Red Tokens

Capacity = 100 IOPS

Demand(red) = 150

50 Red Tokens 50 Green Tokens

Demand(red) = 100 Demand(green) = 100 **50 Green Tokens**

Demand(green) = 100

125 Red Tokens (Overloaded by 25)

Capacity = 100 IOPS

Demand(red) = 150

50 Red Tokens
50 Green Tokens
(Full)

Capacity = 100 IOPS

Demand(red) = 100 Demand(green) = 100 50 Green Tokens (Underloaded by 50)

Demand(green) = 100

Performance Optimizations

- pShift can be parallelized
 - Parallelize the updates on the shift path
- Approximation approach
 - Only consider the buckets with most weights in the token movement map

Performance Evaluation

- Implemented a prototype using socket programming library
- Test platform: a small Linux file cluster
- pShift is robust to different runtime demand changes and fluctuations
- pShift has good result in scalability tests

QoS Evaluation

- Configuration 1
 - 8 servers and 10 buckets
 - Distributed memory caching (memcached)
 - Reservations + Limits

Configuration 1 Simple Round Robin (no QoS)

Configuration 1 pShift

QoS Evaluation

- Configuration 2
 - 8 servers and 200 buckets
 - Random (uncached) reads from a large file
 - Reservations + Limits
 - Workload: Zipf distribution of reservations

Configuration 2 Reservation Specification

Configuration 2 QoS Result

Parallelization Evaluation

- 10000 buckets, 64 servers
- r = 0.9
 - 90% of the total cluster capacity is reserved

 m: the ratio of the total demand of each bucket to its reservation (m ≥ 1)

Parallelization Evaluation

• 5X speedup with 12 threads

Approximation Evaluation

- 10000 buckets, 64 servers
- r = 1.0
 - All of the total cluster capacity are reserved
- m = 1.1
 - Each bucket has a total demand 1.1 times to its reservation
- Try different input parameter s
 - Higher's means the variance of reservations is higher

Approximation Evaluation

Good results even considering only top 5%

Approximation Evaluation

Another 5X speedup by considering top 5%

pShift vs bQueue

1000 buckets, 64 servers

Summary

- pShift: scalable token allocator for QoS
 - Token allocation through progressive shifting
 - Proven to be optimal
 - Small runtime overhead
 - Can be parallelized & approximated

- Future Work
 - Support other QoS requirements such as latency

Backup Slide: Fine-grained v.s. Coarse-grained

	Fine-grained Approaches	Coarse-grained Approaches
How QoS requirements are enforced	Meta-data on each request (e.g. tags)	Global control information (e.g. tokens)
Implementation Complexity	High	Low
Sever Schedulers	Complicated	Simple

Backup Slide: Demand Estimation

- Linear extrapolation
 - N requests received in last redistribution period
 - M requests outstanding at the redistribution
 - Q more redistribution periods left
 - demand = N * Q + M
- Significant demand changes will be caught up in the next redistribution period

N new incoming requests

	\				
	redistribution	redistribution	redistribution	redistribution	redistribution
	period	period	period	period	period
		N	N	N	N
M requests outstanding					43

Backup Slide: Capacity Estimation

- Linear extrapolation (again)
 - R requests completed in last redistribution period.
 - Q more redistribution periods left.

- residual capacity = R * Q.

		•		
redistribution	redistribution	redistribution	redistribution	redistribution
period	period	period	period	period
1	R	R	R	R

R requests completed