
A Performance Study of Lustre File System
Checker: Bottlenecks and Potentials

Dong Dai1, Om Rameshwar Gatla2, and Mai Zheng2

1University of North Carolina at Charlotte, dong.dai@uncc.edu
2Iowa State University, {ogatla, mai}@iastate.edu

Abstract—Lustre, as one of the most popular parallel file
systems in high-performance computing (HPC), provides POSIX
interface and maintains a large set of POSIX-related metadata,
which could be corrupted due to hardware failures, software
bugs, configuration errors, etc. The Lustre file system checker
(LFSCK) is the remedy tool to detect metadata inconsistencies
and to restore a corrupted Lustre to a valid state, hence is critical
for reliable HPC.

Unfortunately, in practice, LFSCK runs slow in large deploy-
ment, making system administrators reluctant to use it as a
routine maintenance tool. Consequently, cascading errors may
lead to unrecoverable failures, resulting in significant downtime
or even data loss. Given the fact that HPC is rapidly marching to
Exascale and much larger Lustre file systems are being deployed,
it is critical to understand the performance of LFSCK.

In this paper, we study the performance of LFSCK to
identify its bottlenecks and analyze its performance potentials.
Specifically, we design an aging method based on real-world
HPC workloads to age Lustre to representative states, and
then systematically evaluate and analyze how LFSCK runs on
such an aged Lustre via monitoring the utilization of various
resources. From our experiments, we find out that the design and
implementation of LFSCK is sub-optimal. It consists of scalability
bottleneck on the metadata server (MDS), relatively high fan-out
ratio in network utilization, and unnecessary blocking among
internal components. Based on these observations, we discussed
potential optimization and present some preliminary results.

I. INTRODUCTION

As one of the most popular parallel file systems (PFSes) in
high-performance computing (HPC), Lustre [1] has dominated
the market share among the top500 supercomputers [2]. While
Lustre is continuously growing in both scale and complexity,
it also becomes more vulnerable to hardware failures, software
bugs, and administrative errors, etc., which may lead to meta-
data inconsistencies [3], [4], [5], [6]. For example, in 2016, a
hardware failure occurred at the High Performance Computing
Center (HPCC) in Texas caused multiple power outages, which
in turn caused severe metadata inconsistencies in the Lustre
deployed and resulted in catastrophic data loss [7].

To help identify and fix the potential metadata inconsistency,
Lustre provides a tool called Lustre file system checker (i.e.,
LFSCK) [8]. Once triggered, it will scan through the file
system to detect and fix issues. Due to the prime importance,
great effort has been put to optimize its performance. For
example, to encourage system administrators to run it more
often, LFSCK has been transformed to an online tool, which
means users do not need to unmount the file system to run the

checker. In addition, LFSCK is optimized to finish quickly and
minimize the disturbance on regular HPC applications.

However, in practice, LFSCK still takes a long time to
examine a well-aged Lustre file system, making system admin-
istrators reluctant to use it as a routine maintenance tool [9].
Consequently, cascading errors may lead to unrecoverable
failures, resulting in significant downtime or even data loss.
Moreover, the lengthy checking and fixing period may also
make the system more vulnerable, because many repairing
operations are not atomic [10]. In fact, although the root cause
is still unclear, the unrecoverable corruption at HPCC [7]
mentioned above was caused by an unexpected interruption
to the lengthy checking of LFSCK. In other words, a slow
LFSCK may increase the window of vulnerability of the PFS.

The performance issue is expected to get worse while HPC
is fast moving toward Exascale and the Lustre deployment
becomes much larger in real systems. However, it still is not
clear that whether its slowness is because of the inherent, phys-
ical limitations of hardware devices, or because of the sub-
optimal design and implementation of LFSCK. This shortage
of knowledge prevents us from projecting whether running
LFSCK is still feasible for future Exascale Lustre, and also
impedes possible redesign or optimizations.

In this paper, we study the performance of LFSCK, with
the goals of investigating the bottlenecks and analyzing its
optimization potentials. Specifically, we utilize a new aging
method based on real-world HPC traces to age the Lustre file
system for representative checking. We evaluate the perfor-
mance of LFSCK with different configurations (e.g., number
of nodes) and aging levels, while monitoring the resource
utilization. We also instrument its source code to analyze the
internal behaviors during checking. Through these systematic
experiments and analysis, we are able to identify the root cause
of the slowness as well the opportunities for performance
optimization. In summary, we draw several key observations:

• LFSCK has neither fully utilized the disk bandwidth nor
the network bandwidth;

• LFSCK has a scalability bottleneck on the metadata
server (MDS);

• the asynchronous threads and pipelines implemented in
LFSCK can easily block each other and slow down the
overall performance;

• LFSCK performance can be improved by decoupling the
tight binding between layout and namespace checking
components.

We believe our study is the very first step towards totally new
designs and implementations of Lustre file system checkers
that are scalable for the future Lustre deployment.

The rest of this paper is organized as follow. Section II
introduces the internals of Lustre and LFSCK. Section III
further introduces our methodology. Section IV discusses
the bottlenecks of LFSCK in different scenarios. Section V
reports and analyzes the results of monitoring the internal
data structures and implementation of LFSCK. Section VI
summarizes this study and discusses the future work.

II. INTERNALS OF LUSTRE AND LFSCK

In this section, we introduce the internals of the Lustre file
system and LFSCK based on the public documentation as well
as our analysis of the source code.

A. Lustre File System

A typical Lustre cluster includes one management server
(MGS), one or more metadata servers (MDSes) and many ob-
ject storage servers (OSSes). The management server (MGS)
is very lightweight and normally deployed on one of the
MDSes. More than one MDS can be deployed in a Lustre
file system. One common way is to use two MDS nodes,
where one MDS serves as a standby server to take over
the role of the main MDS upon failures. To the best of our
knowledge, this is the most widely used setup, so we focus on
this setting in this paper. There is a newly introduced feature
called distributed namespace environment (DNE), designed to
improve the performance of accessing large directories [11].
We leave the study of LFSCK on DNE as the future work.

There are mainly three types of metadata stored in Lustre
and they are also what the file system checker needs to check.

First, each entity in the global Lustre file system (such as
file, directory, and data object) is represented by an inode in the
MDT’s local filesystem to hold standard POSIX attributes, and
additional Lustre metadata is stored in an Extended Attribute
(EA) of each inode. Currently, Lustre supports two local
file systems as its back-end: ldiskfs and zfs [12]. Here,
ldiskfs is an extension of the widely used ext4 [13] file
system, hence very popular. In this study, we will focus on
ldiskfs. Following such a design, it is clear that Lustre
needs to maintain the mapping metadata between a global
entity and a local inode. Lustre utilizes an important auxiliary
data structure, called Object Index to record the mapping
information. Such a data structure exists on both metadata
servers (MDSes) and object storage servers (OSSes).

Second, Lustre provides users and applications the POSIX
interfaces, which require to maintain certain namespace meta-
data of the system, such as the tree-structure namespace,
the per-file and per-directory attributes, users, groups, and
quota metadata. Lustre mainly relies on the metadata servers
(MDSes) to store these metadata. As we just described, each
file and directory in the global Lustre namespace will be
represented by a local inode in ldiskfs on MDS.

The third important Lustre metadata is the data distribution
information or referred as data layout metadata, which is
specifically for parallel file systems. In Lustre, clients write

files in a RAID-0 manner (striped round-robin) across one or
more OST objects, based on the stripe count and stripe size
assigned when the file is created. To know the location of each
file’s data, each MDT inode stores the stripe count, stripe size,
object identifier(s), and other file layout metadata with each
MDS inode.

S1 S3 …S2

A

MDS

LDISKFS

OSS

inode

…,…EA EA

inode

OITable

S1 S3

EA

object

OITable LDISKFS

OSS
S2

EA EA

object

OITable LDISKFS

EA

Fig. 1. Lustre Metadata Management Architecture. Due to space limitation,
we only plot one master metadata server and two object storage servers.

In Fig. 1, we summarize the architecture of Lustre metadata
management. As shown in the figure, each global file in Lustre
is mapped to a local inode in ldiskfs of the metadata server
(MDS) and striped into multiple internal objects stored on
remote object storage servers (OSSes). Each internal object
on the OSS is also represented as a single local inode. The
Object Index are stored on both MDS and OSSes to facilitate
the mapping between Lustre entities to local file system inode.

B. Lustre File System Checker (LFSCK)

Overall, LFSCK includes two stages. In the first stage,
LFSCK on the MDS will drive the OSS nodes in the filesystem
to conduct checking and possible fixes in parallel. After the
first stage on the MDS finishes, all OSSes will start the second
stage to resolve orphan and missing objects detected in the
file system. Although the repairing could take a considerable
amount of time given the number of inconsistency found,
normally the inconsistency in an operable file system should
be rather small and the first checking phase would dominate
the runtime and be more critical to the overall performance.
This is true especially when we consider LFSCK as a routine
maintenance tool. So, in this study, we only focus on the
checking cost by running LFSCK on a healthy Lustre file
system. Another reason for doing so is the repairing phase
may change its behaviors significantly toward different failure
scenarios, measuring and comparing their performance would
be hard to be general.

The essential workload for Lustre file system checker is
to scan and check the metadata of all stored data files. The
metadata checking is based on the redundant metadata stored
in different places. As we have described, Lustre has three
types of metadata: mapping metadata, namespace metadata,
and data layout metadata. For each of them, there will be
corresponding reference metadata to be used for checking:

• For mapping metadata, each mapping from a Lustre File
Identifier (FID) to a local file system inode will have a
corresponding metadata stored in the local inode to point
back to the Lustre entity it represents.

• For namespace metadata, each directory or file inode
will have a corresponding linkEA stored in the inode
pointing back to the parent directory FID.

• For data layout metadata, on metadata server, each Lustre
file needs to store the locations of all its stripes; while on
the object storage server, each object will store the FID
of its corresponding Lustre file as redundant reference.

To check these redundant metadata, LFSCK runs on both
metadata servers (MDSes) and object storage servers (OSSes)
to check the mapping metadata; runs on MDSes to check the
namespace metadata; and runs on both MDSes and OSSes to
check the data layout metadata.

IO Scrub OIT Engine

Layout Pipeline

Namespace Pipeline

Layout
Assistant

Namespace
Assistant

Preload Window

thread thread

thread

thread

Fig. 2. Lustre file system checker (checking phase) on MDS.

Lustre designs and implements LFSCK as several kernel
threads connected with kernel buffers. We show the overall
flow of the checking phase on MDS in Fig. 2. There are in total
four kernel threads running concurrently. The Scrub thread is
to check the mapping metadata on all servers. To maximize the
performance, it is designed to sequentially scan the local disks
and iterate all the local inodes. The OIT Engine thread is the
main LFSCK engine. It also iterates all the local inodes. But,
it is kept always slower than the Scrub thread. The maximal
difference between the iterators of Scrub and OIT Engine is
defined as a constant SCRUB_WINDOW_SIZE (default value
is 1024). If the Scrub thread goes too fast, it will stop and
wait for OIT Engine.

While OIT Engine iterates all the local inodes, it will detect
whether it is a file or directory and start layout checking or
namespace checking respectively. For either case, the engine
will formulate a checking request and put it into the layout
pipeline buffer or the namespace pipeline buffer. The layout
and namespace assistant threads are both started by the main
engine and run asynchronously. They will retrieve the check-
ing request from the pipeline buffers and conduct the real
checking. For the layout checking, it indicates sending the
RPC requests to corresponding OSSes and checking the back-
reference metadata stored on the striped object’s metadata.
For the namespace checking, it indicates reading subdirs
and subfiles’ metadata from local disk and check them. The
size of layout and namespace pipeline buffers is by default
initialized from a constant LFSCK_ASYNC_WIN_DEFAULT
(default value is 1024), but can be modified when start a
LFSCK run. The buffers are managed in a classic consumer-
producer way. It will block the producer or the consumer given
the buffer is full or empty.

The flow of the checking phase on OSS is much simpler.
It runs the Scrub thread as the MDS does, while at the same

time, serves RPC requests from MDS about random objects’
back-reference metadata.

As we described in this section, the Lustre metadata man-
agement and LFSCK are rather complex. During checking,
local disks, network, remote disks are all used and potentially
limit the performance. This makes identifying the bottlenecks
and optimize LFSCK quite challenging.

III. METHODOLOGY

A. Evaluation Platform

To make our evaluation and analysis meaningful and re-
peatable to the community, we utilized the NSF CloudLab
platform (i.e., Wisconsin Cluster) instead of a particular in-
hourse HPC cluster to conduct all tests [14]. We started the
experiment using c220g1 nodes, each of which has two Intel
E5-2630 CPUs, 128GB memory, two 1.2 TB 10K RPM hard
disks, one Intel DC S3500 480GB SSD, and 10GB Intel NIC
network connections. To run the experiment, we also created
a profile and needed disk images in CloudLab. We also plan
to release the profile for others to repeat the experiment. The
new disk image has CentOS 7.3 and Lustre 2.10.4 installed. In
all the experiments, we deployed the Lustre cluster with one
metadata management server (MDS) and eight object storage
servers (OSSes). Although the scale could be larger, from our
evaluation results, we believe such a scale is already capable
of revealing the performance characteristics and potential bot-
tlenecks of LFSCK. Also, using smaller cluster can minimize
the resource consumption as the aging and testing may take a
considerable amount of time.

B. Aging Method

Since LFSCK runs on an aged file system, we need to
properly create files and directories on the Lustre file system
before running our experiments. This is actually a non-trivial
task as the generated directory structure, files number, file
sizes, and many other factors may affect how the file system
and its checker work [15], [16]. In this study, we leveraged
the I/O traces of a real-world supercomputer to age our
Lustre file system. Specifically, we utilized the Darshan [17]
logs collected from the Intrepid supercomputer at Argonne
National Lab in 2013 [18], [19]. It contains the I/O traces
of over 50% applications running in Intrepid that year. Each
Darshan log file records a summary of the per-file I/O activities
done by a single HPC application. We leveraged two key
I/O metadata from the logs: 1) CP_SIZE_AT_OPEN, which
indicates how large the file was when the application opened it;
2) CP_BYTES_WRITTEN, which indicates how many bytes
were written to the file by this application. By adding this
two numbers, we get a rough guess on the size of the file
after running the application. There could be some inaccuracy
as the newly written bytes do not necessarily add to the file
size. But, for our aging purpose, we consider such an error
is acceptable, plus that, one file might be accessed multiple
times by different applications, the later access will have an
accurate CP_SIZE_AT_OPEN to correct previous guess and
keep the errors controllable.

Darshan anonymized the file’s full path for privacy reason.
Hence, we can not re-generate the exact directory structure of
the file system, and have to generate it manually. Specifically,
each time, we selected a random number of files (1 → 100)
from all the files and put them into a directory generated with
a random depth (1 → 10). These parameters are all tunable,
so that users can generate the directory structure as they want,
such as generating huge directories.

One thing worth noting is that the number and size of files
collected from the Intrepid cluster are far too large to fit into
our local experimental cluster. For example, there are files that
are over 1TB each, while the total capacity of our 8 OSS Lustre
cluster totals only 8TB. To age the Lustre filesystem using the
collected workload, while limiting the amount of space used
by each file, we set the stripe count of files to n*1MB, and all
files that are larger than 8MB are striped over all 8 OSTs, with
only 8MB of data stored for each file. In terms of metadata
management this is equivalent to storing the full amount of
data for each file.

In a production deployment, Lustre typically stores files
with a stripe count of 1 to 4 for most files, though some large
files may be striped over hundreds or thousands of OSTs for
performance and capacity reasons. Using the maximum stripe
count of 8 for a majority of files allows exploring LFSCK
performance bottlenecks more easily.

C. Monitoring Framework

We build a framework to monitor the disk and network
usage of all nodes in the Lustre cluster while running LF-
SCK. The framework leverages iostat [20] to monitor the
storage devices on all MDS and OSS nodes where Lustre was
mounted. Similarly, we use netstat to monitor the utiliza-
tion of the network cards in the cluster used by Lustre [21].
By default, the framework uses 1 second as the interval to
output the states of the resource utilization.

IV. LFSCK BOTTLENECKS: EVALUATIONS AND ANALYSIS

In this section, we present our experimental results of
running LFSCK and analyze its bottlenecks. We first discuss
its scalability issues and then dig deeper into its internal
implementation issues.

A. Scalability Bottlenecks

In the first experiment, we keep the number of OSS nodes
unchanged, but increase the number of files in the system.
In other words, we evaluate the LFSCK performance with
an increasing number of inodes being used in the system.
Specifically, we increase the used inodes from 0.4 million
to 2.3 million. As shown in Figure 3, when the used inodes
(the x-axis) increases, the execution time of LFSCK increases
almost linearly. Note that in production HPC systems it is not
uncommon to have over billions of files, the scalability issue
would thus be more severe than our results indicate.

In the second experiment, we keep the total number and
size of files unchanged, but increase the number of OSS nodes.
Specifically, we start with a Lustre with 2 OSS nodes, and then
increase the OSS nodes to 4 and 8. For each setup, we maintain

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Used inodes (Millions)

0

100

200

300

400

500

Ru
nt

im
e

(S
ec

on
ds

)

LFSCK Runtime

Fig. 3. The trend of LFSCK performance as the number of inodes increases.

the same number of used inodes via our aging tool (i.e., 0.88
million). Table. I shows the execution time of LFSCK in the
three cases. We can see that as the number of OSS nodes
grows from 2 to 8, LFSCK takes much longer time (1.50X)
to finish. In this experiment, the number of files and the
corresponding used capacity do not change, only the number
of file stripes increases as more OSS nodes are included (due
to increasing the stripe count to always place all files on all
OSTs). This indicates that striping all files over all OSS nodes
could slow down LFSCK performance significantly, and is
not recommended for production systems. This observation
also may imply the potential scalability challenge of running
LFSCK in the future Exascale Lustre deployment, where the
number of OSS nodes and the number of file stripes could
both be huge.

TABLE I
EXECUTION TIME OF LFSCK (IN SECONDS) ON LUSTRE WITH DIFFERENT

NUMBER OF OSS NODES

of OSS Nodes 2-OSS 4-OSS 8-OSS
Execution Time 144.8 170.5 (1.18X) 218.4 (1.50X)

B. Internal Bottlenecks

After observing the scalability issues of LFSCK, we further
investigate where is the performance bottleneck internally. In
this set of experiments, we use a Lustre with eight OSS nodes.
We age the Lustre to a level that 2.5 million inodes were taken
and 4.8 TB of the storage capacity was used. Also, we monitor
the disk and network utilization of all Lustre nodes during the
entire execution of LFSCK as described in Section III. Due to
the space limitation, we only show the results on the MDS and
one OSS in this section. Other OSSes have similar behaviors.

We plot the results in in Fig. 4. In this particular run, LFSCK
finishes in about 500 seconds by looking at the execution log.
This can also be seen through the idle disks and networks
from the figure.

In subfigure (a), we can observe that the MDS node has
disk read activities until after 500 seconds, while in (b) the
OSS node only has read operations in the first 90 seconds.
As we described in Section II, OSS plays two roles in file
system checking. First, it iterates local inodes to verify its
Object Index. Second, it answers the requests from MDS about
layout of a file to conduct layout checking. Therefore, the early

0 100 200 300 400 500
0

10000

20000

30000

40000

50000
- Fig. (a) MDS Disk Read (KB/s)

0 100 200 300 400 500
0

10000

20000

30000

40000

50000
- Fig. (b) OSS Disk Read (KB/s)

0 100 200 300 400 500
0

50000
100000
150000
200000
250000
300000

- Fig. (c)

MDS Network Send (packets/s)
OSS Network Recv (packets/s)

0 100 200 300 400 500
0

100000
200000
300000
400000
500000
600000

- Fig. (d)

MDS Network Recv (packets/s)
OSS Network Send (packets/s)

Fig. 4. Resource utilizations while running file system checker. The x-axis shows the time in second, the y-axis for ”disk read” shows the I/O bandwidth
in KB/s, the y-axis for ”network” shows the network packets in packets/s. We did not show the write I/Os because they are not caused by file system checking.

finish of disk I/Os on OSS implies two points: 1) verifying the
Object Index could be very efficient, as it finishes quickly on
the OSS node and the I/O bandwidth keeps at 40 MB/s; 2)
serving the layout checking requests from MDS may need no
disk I/Os at all. This is possible as the inodes metadata are
much smaller than the actual data size. After iterating all of
them in previous stage, the server will be able to buffer them
in memory, significantly reducing the future disk I/Os.

This figure also exposes the performance issue of LFSCK
internally. First, in both MDS and OSS nodes, the network
and disk bandwidth are not fully utilized. On our evaluation
platform, all nodes are having the same hard disk, which
easily provides over 100 MB/s read/write performance towards
sequential I/Os when formatted as ext4. However, during LF-
SCK, the I/O bandwidth on MDS never exceeds 20 MB/s and
on OSS nodes barely reach 40 MB/s. As previous description,
in the first stage of file system checking, the OSSes basically
run the Object Index Scrub (OI-Scrub) to iterate local inodes
sequentially. The slowness might just come from the fact that
the inode tables are small and discontiguous on the disks. But,
the disk accesses on MDS is even slower than the OI-Scrub.
Based on LFSCK implementation shown in Fig. 2, this should
because of the slower OIT engine, which is blocked by one of
the connected two pipelines (layout and namespace). Hence,
either layout checking or namespace checking should be slow
in this case and drag down the overall performance.

C. Layout Checking Bottleneck

In LFSCK, the layout checking is driven by the metadata
server. MDS sends requests to all OSSes and collects their
replies for checking. This can be seen in Fig 4 (c), where
the MDS sent around eight times more packets than one OSS
received. Such a multiple may further increase when more
OSSes are deployed and more larger files are stored in the
system, which leads to potential scalability issue. In addition,
from Fig. 4 (c) and (d), we can see that MDS receives as many
as twice packets than it sends out. This is because that multiple
OSSes are replying to the MDS at the same time. Such a fan-

out ratio can saturate the MDS network even earlier (on the
receiving side) when the Lustre scales.

To exactly show the network bottlenecks of layout checking,
we measure the network transmission speed of LFSCK again,
but with all metadata on MDS and OSS nodes were buffered
in memory already. As shown in Fig. 5, LFSCK took around
130 seconds to finish in this ideal case (i.e., all metadata
are in memory). During the execution, both send/recv packets
per second are kept as a constant, relatively high number on
the MDS node. Particularly, it received over 600K packets
per second (the red curve) and sends over 250K packets per
second (the blue curve). Similarly, in this case, MDS received
double packets compared to what it send. This may lead to
a situation where the sending bandwidth of MDS is still far
way from its upper bound, but the receiving bandwidth is
saturated. As a result, the layout checking could be blocked
despite of the under-utilized sending bandwidth, hurting the
overall performance of LFSCK.

0 20 40 60 80 100 120 140
0

100000

200000

300000

400000

500000

600000

700000

MDS Network Send (packets/s)
MDS Network Recv (packets/s)

Fig. 5. Network packets on MDS with metadata buffered.

By further looking at the network transmission speed on
MDS in Fig. 4 and Fig. 5, we can see that during the particular
LFSCK run in Fig. 4, the network has not become a bottleneck
yet. Both incoming and outgoing bandwidth are far below its
physical limitation. However, this under-utilization of network
bandwidth could change if there are more OSSes deployed or
more large files stored. For example, if there are 16 OSSes
and 1 MDS, and all files are striped over all 16 OSSes, during
time frame 400s → 500s, the MDS will probably receive

double packets (more than 700K packets/sec) to keep up with
the OIT Engine. Such a throughput is more than the network
transmission limit shown in Fig. 5 (i.e., 600K packets/s). In
this case, the OIT engine could be slowed down by the network
transmission.

D. Namespace Checking Bottlenecks
In LFSCK, the namespace checking only happens on the

metadata server and involves disk accesses to local inodes if
needed. Fig. 4 already shows that the disk read bandwidth on
MDS was very low (e.g., lower than 7.5 MB/s for about 300
seconds) while on OSS nodes, the disk read bandwidth keeps
around 40 MB/s. This may be caused by the slow namespace
checking.

0 50 100 150 200 250 300 350 400
0

5000

10000

15000

MDS Disk Read (KB/s)

Fig. 6. Disk bandwidth on MDS during namespace checking.

To verify this, we examine the read bandwidth on MDS
when only run the namespace checking part of LFSCK. In
this case, there is no layout checking, so there is no I/O
activities on OSS nodes or network transmissions between
MDS and OSS nodes. As shown in Fig. 6, running namespace
checking alone takes around 400 seconds and still incurs the
similar low disk bandwidth (i.e., lower than 17.5 MB/s and
keeps at 7.5 MB/s for a long time). One potential reason for
such low performance is that the namespace checking incurs
many random I/Os, which can not be served efficiently by the
devices. Taking Fig. 4 into consideration, we can conclude
that it is the slow namespace checking blocks the OIT Engine
and slows down the layout checking in this experiment. Note
that in our experiment the MDS was running on HDD. As the
random I/O performance on SSDs is much higher than that
on HDDs, replacing HDDs with SSDs may help alleviate the
random I/O bottleneck of the namespace checking.

E. Tight Binding of Layout and Namespace Checking
Since namespace checking only runs on MDS and involves

a large amount of random disk accesses, it can easily become
the performance bottleneck as shown in earlier test. However,
this is not always the case. It depends on how fast the local
data accesses are (e.g., using SSD vs. using HDD), how many
OSSes are deployed, and how files are stripped in Lustre (e.g.
lower stripe count vs. higher stripe count) etc. For example,
if there are 16 OSSes instead of 8 OSSes, and the default
stripe count is 16 (all files can be allocated on all OSSes),
the MDS network might not be able to send/receive enough
layout checking requests, hence block the OIT Engine. Or, if
the metadata are already pre-loaded into memory or the MDS
is running on fast NVMe SSDs, the namespace checking could
be extremely fast, making layout checking the bottleneck.

In addition, a more complicated scenario is when the
performance of layout checking and namespace checking

dynamically changes during LFSCK. For example, a names-
pace checking may encounter a huge directory and block the
OIT Engine, which consequently starves the layout checking.
While, on the other hand, a layout checking request may be
handled by a slow OSS or go through a temporally congested
network switch. This will starve the namespace checking. In
a word, the tight binding between namespace checking and
layout checking may lead to frequent blocking, and thus may
negatively affect the performance of LFSCK.

As discussed in section II-B, such a tight binding is closely
related to two LFSCK parameters: SCRUB_WINDOW_SIZE
and LFSCK_ASYNC_WIN_DEFAULT. Being able to dynami-
cally adjust these two values based on current bottleneck might
soften the binding. However, as current Lustre infrastructure
does not support real-time inspection of the bottleneck nor
online adjusting of these parameters during LFSCK runs, we
plan such evaluation in the future work. In this paper, as
a preliminary result, we will first show what to expect for
the performance improvement if the bind can be completely
removed (see Section V-A).

V. LFSCK PERFORMANCE POTENTIALS

From the experiments in the previous sections, we have
identified several bottlenecks of LFSCK: metadata server
(MDS) scalability bottleneck, high fan-out ratio in the MDS
network, and the tight binding of different internal compo-
nents. Correspondingly, these would also be the places where
potential re-designs and optimization can be applied, such
as: 1) the receiving over sending ratio on MDS network
can be reduced via data compression when the OSS nodes
reply; 2) namespace checking and layout checking can be
decoupled while still leverage each others buffers. In the next
subsection, we show the preliminary result if the binding
between namespace checking and layout checking could be
completely removed.

A. Performance with Binding Removed

We expect that the tight binding of different LF-
SCK internal components could be alleviated by dynam-
ically adjusting two parameters: SCRUB_WINDOW_SIZE,
LFSCK_ASYNC_WIN_DEFAULT. Although current Lustre
does not support such feature yet, the potential benefit can
actually be validated just using existing LFSCK infrastructure.
Specifically, instead of running both namespace and layout
checking together, we can run layout checking first and run
namespace checking immediately afterward (note that the
order is important). In this way, the namespace checking and
layout checking are decoupled. Since our metadata server has
128GB memory, it can easily buffer most of the metadata
scanned during layout checking, which emulates the effect
that if the buffer is effectively managed without having any
starving or full.

We conducted the experiment on the same well-aged Lustre
file system as shown in Fig. 4. Our results show that the
performance benefit is obvious. By executing the layout check-
ing and the namespace checking sequentially, we are able to
reduce the execution time of LFSCK to around 200 seconds,

0 25 50 75 100 125 150 175 200
0

10000

20000
MDS Disk Read (KB/s)

0 25 50 75 100 125 150 175 200
0

100000

200000

MDS Network Send (packets/s)

Fig. 7. Performance of LFSCK with optimization. The figure shows the
disk and network activities when running the layout checking immediately
followed by the namespace checking.

less than half of original run (500 seconds), which just ran both
checking together. We show the detailed resource utilization in
this new run in Fig. 7. It shows the performance benefit comes
from higher disk I/O and network bandwidths during LFSCK,
although there is still room for further optimization. Note that
such a performance gain is based on the ideal, extreme case
where all metadata can be buffered in memory during layout
checking. For a large-scale Lustre deployment, this is unlikely
to be realistic. Therefore, we expect dynamically adjusting
the two parameters to soften the binding could be a desirable
optimization, and we leave it as future work.

VI. CONCLUSION AND FUTURE WORK

In this study, motivated by the slowness of LFSCK, we have
conducted series of experimental studies on its performance to
identify the root cause of the slowness as well the opportunities
for performance optimization. Although as an online file sys-
tem checking tool, LFSCK is designed to work with potential
rate limits to avoid affecting the applications, we consider
it is still worth exploring how to make LFSCK best utilize
the available resources. We believe this study is the first step
towards a new design for future Exascale Lustre file system
checker. As the future work, we would like to investigate more
potential bottlenecks on larger scale production systems, and
implement the proposed optimizations in LFSCK/Lustre to
improve the performance.

ACKNOWLEDGMENT

We thank the anonymous reviewers and Andreas Dilger (our
shepherd) for their insightful feedback. This work was sup-
ported in part by NSF under grants CCF-1717630, 1853714,
1718336. Any opinions, findings, and conclusions expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES

[1] “Lustre File System,” http://opensfs.org/lustre/.
[2] “Top500 Supercomputers: NOVEMBER 2018,” https://www.top500.org/

lists/2018/11/.
[3] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,

G. R. Goodson, and B. Schroeder, “An analysis of data corruption in
the storage stack,” Trans. Storage, vol. 4, no. 3, pp. 8:1–8:28, Nov.
2008. [Online]. Available: http://doi.acm.org/10.1145/1416944.1416947

[4] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A
study of linux file system evolution,” in Presented as part of the
11th USENIX Conference on File and Storage Technologies (FAST 13).
San Jose, CA: USENIX, 2013, pp. 31–44. [Online]. Available: https:
//www.usenix.org/conference/fast13/technical-sessions/presentation/lu

[5] J. Cao, S. Wang, D. Dai, M. Zheng, and Y. Chen, “PFault: A General
Framework for Analyzing the Reliability of High-Performance Parallel
File Systems,” in Proceedings of the 32nd ACM International Confer-
ence on Supercomputing, ser. ICS’18, 2018.

[6] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey et al.,
“Fail-slow at scale: Evidence of hardware performance faults in large
production systems,” ACM Transactions on Storage (TOS), vol. 14, no. 3,
p. 23, 2018.

[7] “HPCC Power Outage Event at Texas Tech,” http://www.ece.iastate.edu/
∼mai/docs/failures/2016-hpcc-lustre.pdf, 2016.

[8] “LFSCK: an online file system checker for Lustre,” http://git.lustre.org/
?p=fs/lustre-release.git;a=blob;f=Documentation/lfsck.txt.

[9] LFSCK High Performance Data Division - OpenSFS, http://wiki.lustre.
org/images/c/c6/Zhuravlev LFSCK LUG-2013.pdf.

[10] O. R. Gatla, M. Hameed, M. Zheng, V. Dubeyko, A. Manzanares,
F. Blagojevic, C. Guyot, and R. Mateescu, “Towards robust file
system checkers,” in Proceedings of the 16th USENIX Conference
on File and Storage Technologies, ser. FAST’18. Berkeley, CA,
USA: USENIX Association, 2018, pp. 105–121. [Online]. Available:
https://www.usenix.org/system/files/conference/fast18/fast18-gatla.pdf

[11] C. Faber, “Lustre DNE (Distributed Namespace) Basics,” UNIXgr, https:
//www.unixgr.com/ lustre-dne-distributed-namespace-basics/ , 2014.

[12] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum,
“The zettabyte file system,” in Proc. of the 2nd Usenix Conference on
File and Storage Technologies, vol. 215, 2003.

[13] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
“The new ext4 filesystem: current status and future plans,” in Proceed-
ings of the Linux symposium, vol. 2, 2007, pp. 21–33.

[14] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications,” ;
login:: the magazine of USENIX & SAGE, vol. 39, no. 6, pp. 36–38,
2014.

[15] K. A. Smith and M. I. Seltzer, “File system aging—increasing the rele-
vance of file system benchmarks,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 25, no. 1. ACM, 1997, pp. 203–213.

[16] S. Kadekodi, V. Nagarajan, and G. A. Gibson, “Aging gracefully with
geriatrix: A file system aging suite,” 2016.

[17] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale i/o workloads,” in Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International Conference on.
IEEE, 2009, pp. 1–10.

[18] “Intrepid,” http://www.top500.org/system/176322.
[19] “Darshan Trace Data, 2013,” http://www.mcs.anl.gov/research/projects/

darshan/data/.
[20] “iostat(1) - Linux man page,” https://linux.die.net/man/1/iostat.
[21] “netstat(8) - Linux man page,” https://linux.die.net/man/8/netstat.

