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Abstract—Resistive Memory (ReRAM) is promising to be used
as high density storage-class memory by employing Triple-Level
Cell (TLC) and crossbar structures. However, TLC crossbar
ReRAM suffers from high write latency and energy due to the
IR drop issue and the iterative program-and-verify procedure. In
this paper, we propose Tiered-ReRAM architecture to overcome
the challenges of TLC crossbar ReRAM. The proposed Tiered-
ReRAM consists of three components, namely Tiered-crossbar
design, Compression-based Incomplete Data Mapping (CIDM),
and Compression-based Flip Scheme (CFS). Specifically, based
on the observation that the magnitude of IR drops is primarily
determined by the long length of bitlines in Double-Sided
Ground Biasing (DSGB) crossbar arrays, Tiered-crossbar design
splits each long bitline into the near and far segments by an
isolation transistor, allowing the near segment to be accessed with
decreased latency and energy. Moreover, in the near segments,
CIDM dynamically selects the most appropriate IDM for each
cache line according to the saved space by compression, which
further reduces the write latency and energy with insignificant
space overhead. In addition, in the far segments, CFS dynami-
cally selects the most appropriate flip scheme for each cache line,
which ensures more high resistance cells written into crossbar
arrays and effectively reduces the leakage energy. For each
compressed cache line, the selected IDM or flip scheme is applied
on the condition that the total encoded data size will never exceed
the original cache line size. The experimental results show that,
on average, Tiered-ReRAM can improve the system performance
by 30.5%, reduce the write latency by 35.2%, decrease the read
latency by 26.1%, and reduce the energy consumption by 35.6%,
compared to an aggressive baseline.

Index Terms—TLC crossbar ReRAM, IR drop, compression,
Incomplete Data Mapping, flip scheme, write latency and energy

I. INTRODUCTION

Modern data-intensive applications have exhibited increas-
ing demand for large capacity memory, such as graphical
games and big data analytics. However, DRAM, the de facto
choice for constructing main memory, faces short refreshing
interval, low density and scalability challenges. As indicated in
ITRS, the scaling path of DRAM beyond 16nm is not clear [1].
Recently, Non-Volatile Memories (NVMs), e.g., Phase Change
Memory(PCM), Spin-Transfer Torque Magnetic RAM (STT-
MRAM) and Resistive Memory (ReRAM), have emerged
as potential candidates for the storage-class memory due to
their good scalability, high density, low standby power and
non-volatility [2], [3], [4], [5], [6]. Among these candidates,

ReRAM has become more promising due to its higher density
and lower power consumption [4], [5], [6].

ReRAM can store three bits into a single cell with Triple-
Level Cell (TLC) structure to improve the density [7].
Moreover, by employing the unique crossbar array structure,
ReRAM can be constructed with the smallest 4F 2 planar cell
size [8], and thus higher density can be achieved. However,
TLC crossbar ReRAM also faces many challenges in terms
of performance and energy consumption. First, the crossbar
structure suffers from an IR drop issue due to sneak currents
and wire resistance, which causes high leakage energy and
non-uniform access latency in crossbar arrays. Unfortunately,
conventional ReRAM writes conservatively use the worst-case
access latency of all cells, resulting in significant performance
degradation. Second, the iterative program-and-verify (P&V)
procedure of TLC ReRAM incurs high write latency and
energy. Recent study has demonstrated that the write latency
of a 4Mb Single-Level Cell (SLC) ReRAM is only 7.2ns,
while the write latency of Multi-Level Cell (MLC) ReRAM is
160ns and TLC ReRAM has much higher write latency [9].
The write energy of TLC ReRAM is also seven times higher
than that of SLC ReRAM [10], [11]. Therefore, the high write
latency and energy have become the greatest design concerns
in TLC crossbar ReRAM-based memory systems.

Recently, many techniques have been proposed to optimize
the TLC crossbar ReRAM. Double-Sided Ground Biasing
(DSGB) design [4] has been proposed to reduce the IR drops
along wordlines by applying another ground on the other
side of the selected wordline. However, the magnitude of
IR drops depends of both wordlines and bitlines [6]. Due
to the long length and large wire resistance of bitlines, the
IR drops along bitlines are still large, leading to significant
performance degradation and energy waste. Incomplete Data
Mapping (IDM) [10] has been proposed to reduce the write
latency and energy of TLC ReRAM by eliminating certain
high-latency and high-energy states. 0-Dominated Flip Scheme
(0-DFS) [12] has also been proposed to increase the number of
high resistance cells in crossbar arrays and reduce the leakage
energy by flipping the written data with the additional flip flag
bits. However, both IDM and 0-DFS significantly sacrifice the
capacity of TLC ReRAM and the two techniques are limited
by the space overhead.

In this paper, we propose Tiered-ReRAM, a low latency
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Fig. 1: ReRAM cell structure.

and energy efficient TLC crossbar ReRAM architecture, to
overcome the challenges of TLC crossbar ReRAM. Tiered-
ReRAM architecture consists of three components, including
the Tiered-crossbar design, Compression-based Incomplete
Data Mapping (CIDM), and Compression-based Flip Scheme
(CFS): (1) Based on the observation that the magnitude of IR
drops is primarily determined by the long length of bitlines in
DSGB crossbar arrays, Tiered-crossbar design splits each long
bitline into the near and far segments by an isolation transistor,
allowing the near segment to be accessed with decreased IR
drops and latency/energy. Similar to many prior works [13],
[14], [15], [16], [17], Tiered-crossbar design also remaps hot
data to the near segments and cold data to the far segments,
which significantly improves the access performance. (2) We
also observe that most cache lines can be compressed and the
saved space by compression varies greatly. On the other hand,
different IDMs have different tradeoffs in space overhead and
write latency/energy. The IDM that eliminates more states
to encode sacrifices more capacity, but achieves lower write
latency and energy. Therefore, in performance-sensitive near
segments, CIDM delicately applies the compression technique
in conjunction with IDM. CIDM dynamically selects the most
appropriate IDM for each cache line according to the saved
space by compression, which further reduces the write latency
and energy with insignificant space overhead. (3) Although
programming high resistance TLC cells causes higher write
latency (Indicated in Table I), the high resistance cells in
crossbar arrays can effectively reduce the sneak currents
and leakage energy according to Ohm’s law. Flip schemes
(e.g., 0-DFS [12] and CAFO [18]) can be used to increase
the number of high resistance cells in crossbar arrays. We
observe that different word-size flip schemes have different
tradeoffs in effects and space overhead. The flip scheme
that uses smaller word size achieves more high resistance
cells and lower leakage energy, but results in higher space
overhead. Therefore, in performance-insensitive far segments,
CFS subtly combines the compression technique with the flip
scheme. CFS dynamically selects the most appropriate flip
scheme for each cache line according to the saved space
by compression, which ensures more high resistance cells
written in crossbar arrays and effectively reduces the leakage
energy with insignificant space overhead. For each compressed
cache line, the selected IDM or flip scheme is applied on the
condition that the total encoded data size will never exceed
the original cache line size. The contributions of this paper
include:

• Based on the observation that the magnitude of IR drops
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is primarily determined by the long length of bitlines in
DSGB crossbar arrays, we propose a microarchitectural
design called Tiered-crossbar to split each long bitline
into the near and far segments by an isolation transistor,
which effectively mitigates the IR drop issue and enables
low latency/energy ReRAM.

• We implement CIDM and CFS techniques in the near
and far segments, respectively, by dynamically selecting
the most appropriate IDM or flip scheme for each cache
line according to the saved space by compression, which
further reduces the write latency and energy of TLC
crossbar ReRAM.

• We evaluate the proposed Tiered-ReRAM with compar-
ison to an aggressive baseline. The experimental results
show that, on average, Tiered-ReRAM can improve the
system performance by 30.5%, reduce the write latency
by 35.2%, decrease the read latency by 26.1%, and reduce
the energy consumption by 35.6%.

II. BACKGROUND

A. ReRAM Cell Structure

A ReRAM cell consists of a metal-oxide layer sandwiched
between a top electrode (TE) and a bottom electrode (BE), as
shown in Figure 1a. The state of a ReRAM cell is represented
by its resistance value. For a SLC ReRAM cell, the high
resistance state (HRS) and low resistance state (LRS) are used
to represent logic 0 and logic 1, respectively. In order to switch
the resistance state of a ReRAM cell, an external voltage with
specified polarity, magnitude and duration should be applied
to the cell. The switching from HRS to LRS is referred to as a
SET operation and the switching from LRS to HRS is referred
to as a RESET operation. Due to large resistance differences
between HRS and LRS (Resistance ratio of HRS to LRS can
exceed 1000), ReRAM has the TLC feature to divide the wide
range resistance into eight levels for storing three bits into a
single cell [7], [10], as shown in Figure 1b. Compared with
SLC ReRAM, TLC ReRAM offers higher data density.

B. ReRAM Array Structure

ReRAM array structure can be classified into three types:
1T1R, crossbar and 1TnR. In 1T1R structure, each cell has
a dedicated access transistor so that it can be accessed inde-
pendently without disturbance. However, since the size of an
access transistor is typically much larger than that of a ReRAM
cell, 1T1R structure significantly reduces the area efficiency.

In crossbar structure, all cells are interconnected to each
other without access transistors and a cell only occupies
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Fig. 3: SAP scheme for TLC ReRAM.

an area of 4F 2, which is the smallest planar cell size [8].
Based on whether integrating a dedicated selector into each
cell, the crossbar structure can be classified into 1S1R and
0T1R structures. Figure 2 shows the 1S1R crossbar structure.
Compared with 0T1R cells, 1S1R cells can achieve the same
cell size with higher nonlinearity and smaller sneak currents,
which enables the fabrication of large crossbar arrays.

In 1TnR structure, n cells share 1 access transistor. 1TnR
structure is a tradeoff between 1T1R and 0T1R structures.
Considering the lower fabrication cost and better scalability,
1S1R crossbar structure is more suitable for constructing the
high density storage-class memory. In this work, we select the
512× 512 1S1R crossbar ReRAM as our baseline, which has
been widely used in community [4], [5].

C. IR Drop Issue of Crossbar

To RESET or SET a cell in the crossbar array, the bitline
and wordline connected to the target cell should be activated
with the proper potential (±Vwrite). In addition, the unselected
bitlines and wordlines are set to Vwrite/2 to avoid disturbing
other cells in the array. Figure 2 shows the RESET operation
in the crossbar array. The target cell is applied with full
voltage (Vwrite), referred to as full-selected cell. Other cells on
the selected bitline and wordline are half biased at Vwrite/2,
referred to as half-selected cells. The cells on the unselected
bitlines and wordlines are referred to as unselected cells.
The currents flowing across half-selected cells are commonly
referred to as sneak currents. The sneak currents and wire
resistance introduce large voltage reduction along bitlines and
wordlines, referred to as IR drop issue.

The IR drop issue reduces the voltage drop across the target
cell. Unfortunately, the RESET switching time of a ReRAM
cell is exponentially inverse to the voltage drop across the cell
[4], [19]. Therefore, the IR drop issue significantly increases
the RESET latency. Since ReRAM cells at different locations
of the crossbar array have different IR drops, this characteristic
causes non-uniform access latency in crossbar arrays. Worse
still, the IR drop issue leads to high leakage energy due to the
sneak currents of LRS half-selected cells. Recent study has
demonstrated that in a 100 × 100 crossbar array, only about
1% of the total energy is consumed by the access of the target
cell and about 97% of the total energy is dissipated by the
sneak currents of LRS half-selected cells [20].

D. Iterative Program-and-verify of TLC ReRAM

Due to the process variation and statistical characteristics
of TLC ReRAM, it is difficult to apply a generic scheme

TABLE I: Iterations, Latency and Energy of TLC Writes
Target states 111 110 101 100 011 010 001 000
Iterations 1.21 5.27 10.1 15 14.3 9.83 4.68 1.52
Latency (ns) 14.2 95.4 192 290 383 338.3 286.8 255.2
Energy (pJ) 1.8 13.4 24.3 46.8 94 66.4 41.1 33.6

to precisely program a cell into a certain resistance range.
Instead, program-and-verify (P&V) is commonly used for
TLC ReRAM programming. The P&V programming can
either start from a SET or RESET operation, followed by
series of smaller VRESET or ISET pulses. Each VRESET

or ISET is followed by a read operation to verify the state
of the cell. If the resistance of the cell reaches the target
range, the write operation terminates. Figure 3 illustrates the
P&V programming procedure starting from a SET operation.
The iterative P&V procedure results in high write latency
and energy. SET-and-Program (SAP) and RESET-and-Program
(RAP) schemes [10] have been proposed to reach the target
states in fewer iterations, which benefits the write latency and
energy. If the most significant bit (MSB) of the target state is
‘1’, SAP scheme is used to reach the target states. Otherwise,
RAP is applied, as shown in Figure 1b.

However, even with RAP and SAP schemes, the write
latency and energy of TLC crossbar ReRAM are still high.
The number of P&V iterations is highly dependent on the data
written into the cell. Programming some states (e.g., states
‘100’ and ‘011’) requires more iterations, resulting in high
write latency and energy. On the other hand, TLC writes with
VRESET (e.g., ‘000’) lead to higher latency/energy because
the RESET operation is more sensitive to the IR drop issue.
Table I shows the worst-case iterations, latency and energy for
programming different TLC states in DSGB-based crossbar
arrays. The parameters are obtained from Xu’s works [4], [7].

III. MOTIVATION

A. IR Drops in DSGB Design

To reduce the IR drops in crossbar arrays, Double-Sided
Ground Biasing (DSGB) design has been widely adopted in
community [4], [5]. DSGB applies another ground on the other
side of the selected wordline. By doing so, the length of the
worst-case IR drop path has been reduced and the IR drops
along wordlines have been significantly mitigated. However,
the magnitude of IR drops depends of both wordlines and
bitlines [6]. Due to the long length and large wire resistance of
bitlines, the IR drops along bitlines are still large, resulting in
significant performance degradation and energy waste. Unfor-
tunately, most prior studies [5], [13], [14] focus on leveraging
the non-uniform access latency in crossbar arrays caused by
IR drops, failing to optimize the IR drops from the source.

B. Saved Space by Compression Varies

Compression techniques are commonly used to save the
storage space [21], [22], [23], [24]. Frequent pattern compres-
sion (FPC) [25] and base-delta-immediate compression [26]
are two typical compression techniques. FPC is evaluated in
this work due to its high performance and low overhead. FPC
can be used for 32-bit or 64-bit words. Each compressed word



TABLE II: The 64-Bit FPC Patterns with 3-Bit Prefix (Indicated in Red)

Prefix Pattern Encoded Example Compressed Example Encoded Size Saved Space
000 Zero run 0x0000000000000000 0x0 3 bits 61 bits
001 8-bit sign extended 0x000000000000007F 0x17F 11 bits 53 bits
010 16-bit sign extended 0xFFFFFFFFFFFFB6B6 0x2B6B6 19 bits 45 bits
011 Half-word sign extended 0x0000000076543210 0x376543210 35 bits 29 bits
100 Half-word, padded with a zero half-word 0x7654321000000000 0x476543210 35 bits 29 bits
101 Two half-words, each a byte sign extended 0xFFFFBEEF00003CAB 0x5BEEF3CAB 35 bits 29 bits
110 Word consisting of four repeated double bytes 0xCAFECAFECAFECAFE 0x6CAFE 19 bits 45 bits
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is stored with a 3-bit prefix. By employing FPC, a 64-bit word
can be compressed to 3, 11, 19, or 35 bits, and thus 61, 53, 45
or 29 bits storage space can be saved, as shown in Table II.
For a cache line composed of eight 64-bit words, each word is
compressed separately and the saved space varies. The saved
space of the cache line may range from 0 to 488 bits. To
quantitatively show the distribution of compressed cache line
sizes, we implement FPC for the SPEC CPU2006 benchmarks
in our architectural simulator (Detailed description in Section
V). As shown in Figure 4, the compressed cache line sizes
vary greatly. Some cache lines can be compressed to smaller
than one word and more than seven words storage space can
be saved. While some cache lines have more than seven words
after compression, and the saved space is less than one word.

C. Tradeoffs in Different IDMs

Incomplete Data Mapping (IDM) [10] can reduce the write
latency and energy of TLC ReRAM by mapping only part
of TLC ReRAM states into binary digits. IDM uses q states
out of a p-state cell to encode, where q < p. Then r q-state
cells are converted into k binary digits, where qr≈2k. This
scheme is referred to as IDM((p,q),r), as shown in Figure 5.
Different from IDM, Complete Data Mapping (CDM) uses
all the p states to encode. Compared to CDM, IDM achieves
lower write latency and energy by eliminating certain high-
latency and high-energy states of TLC ReRAM, but sacrifices
the capacity of TLC ReRAM.

IDM((p,q),r)

q states out of a p-state cell

r cells k binary digits

krq 2

Fig. 5: IDM((p,q),r) scheme [10].

Write latency= 383ns, Write energy= 322.4pJ, TLC cells= 8

111 110 101 100 011 010 001 000

S7 S6 S5 S4 S3 S2 S1 S0
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Write latency= 255.2ns, Write energy= 197.5pJ, TLC cells= 12

S7S7S7 S6S7S7 S7S6S7 S6S6S7 S7S7S6 S6S7S6 S7S6S6 S6S6S6

Write latency= 95.4ns, Write energy= 182.4pJ, TLC cells= 24

Binary data

CDM

IDM((8, 4), 1)

IDM((8, 2), 1)

Fig. 6: An example for CDM, IDM((8,4),1) and IDM((8,2),1).

Different IDMs have different tradeoffs in space overhead
and write latency/energy. The more states the IDM eliminates,
the lower write latency/energy the TLC ReRAM achieves, and
the larger capacity the TLC ReRAM sacrifices. Figure 6 is an
example to show the tradeoffs in different IDMs. We assume
the binary data to write are ‘111’, ‘110’, ‘101’, ‘100’, ‘011’,
‘010’, ‘001’ and ‘000’. When using the CDM encoding, the
eight resistance states (‘S7’, ‘S6’, ‘S5’, ‘S4’, ‘S3’, ‘S2’, ‘S1’
and ‘S0’) can store all the binary data and only 8 TLC cells
are required. When applying the IDM((8,4),1) encoding, four
latency/energy critical states (‘S4’, ‘S3’, ‘S2’ and ‘S1’) are
eliminated and 12 TLC cells are required to store all the binary
data. Although IDM((8,4),1) consumes 50% more capacity
than CDM, it reduces the write latency and energy by 33.4%
and 38.7%, respectively. When employing the IDM((8,2),1)
encoding, only two low latency/energy states (‘S7’ and ‘S6’)
are used and 24 TLC cells are needed to store all the binary
data. Compared with CDM, IDM((8,2),1) costs twice more
capacity, however it reduces the write latency and energy
by 75.1% and 43.4%, respectively. Therefore, the IDM that
eliminates more states to encode can sacrifice more capacity
for more write latency/energy reduction.

D. Tradeoffs in Different Word-size Flip Schemes

High resistance cells in crossbar arrays can effectively
reduce the sneak currents and leakage energy according to
Ohm’s law. To ensure more high resistance TLC cells in cross-
bar arrays, we should guarantee that more Most Significant
Bits (MSBs) of TLC cells are ‘0’ during the write operation.
Flip Schemes can be used to increase the number of ‘0’ MSBs,
such as 0-Dominated Flip Scheme (0-DFS) [12] and CAFO
[18]. 0-DFS is a row-only flip scheme. 0-DFS flips the data
with a flip flag bit ‘0’ if the number of 0s in the data is smaller
than or equal to N/2, where N is the word size of the 0-DFS.
N can be 2, 4, 8 or 16. Different from 0-DFS, CAFO can
simultaneously flip the rows and columns to achieve the most
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‘0’ MSBs. However, CAFO has much higher implementation
overhead than 0-DFS. Thus, we evaluate 0-DFS in this work.

Different word-size 0-DFSs have different tradeoffs in ef-
fects and space overhead. The smaller word size the 0-DFS
uses, the more ‘0’ MSBs the 0-DFS achieves, and the larger
space overhead the 0-DFS causes. If the word size is 2-bit,
every 2 bits require a flip flag bit and the 0-DFS can achieve
the most ‘0’ MSBs. But the space overhead of the 2-bit word-
size 0-DFS is 50%. If the word size is 16-bit, many data
patterns that have more than eight 0s can’t be flipped. In this
case, the effect of the 0-DFS is the worst and the least ‘0’
MSBs can be achieved. However, the space overhead of the
16-bit word-size 0-DFS is only 6.25%. Therefore, the 0-DFS
that uses smaller word size can achieve more ‘0’ MSBs with
higher space overhead.

IV. TIERED-RERAM ARCHITECTURE

A. Overview

In this paper, we propose Tiered-ReRAM architecture to
reduce the write latency and energy of TLC crossbar ReRAM.
Figure 7 illustrates the overview of the proposed design.
Tiered-ReRAM consists of three components, including the
Tiered-crossbar design, Compression-based IDM (CIDM) and
Compression-based Flip Scheme (CFS). The Tiered-crossbar
design is performed in the ReRAM array level, aiming to
fundamentally optimize the IR drops along bitlines based on
DSGB design. CIDM is implemented in the ReRAM controller
as Path ¬, which delicately combines the compression tech-
nique with IDM and further reduces the write latency/energy
with insignificant space overhead. CFS is performed in the
ReRAM controller as Path ­, which applies the compression
technique in conjunction with the flip scheme and reduces the
leakage energy with insignificant space overhead. Next, we
elaborate the design details of Tiered-ReRAM architecture.

TABLE III: Parameters in Our ReRAM Circuit Model
Metric Description Value
A Crossbar array size: A wordlines× A bitlines 512
Rwire Wire resistance between adjacent cells 2.82Ω
RLRS Resistance of a LRS cell 100KΩ
Kr Nonlinearity of a LRS ReRAM device 10
Ks Nonlinearity of the selector 3000
VW Full selected voltage during write 3.2V
CR Capacity ratio of near segments to far segments 1:3
− Voltage biasing scheme DSGB
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B. Tiered-crossbar Design

Double-Sided Ground Biasing (DSGB) design [4] uses
another ground on the other side of the selected wordline to
reduce IR drops along wordlines (Figure 8a). However, due to
the long length and large wire resistance of bitlines, IR drops
along bitlines are still large and the write latency/energy is still
high. Shorter bitlines have the smaller wire resistance and IR
drops, resulting in decreased write latency/energy, but require
lots of write drivers (WD) and sense amplifiers (SA) for a
given ReRAM capacity (Figure 8b).

Based on DSGB design, to mitigate IR drops along bitlines
with insignificant cost, we propose a microarchitectural design
called Tiered-crossbar. Tiered-crossbar splits each long bitline
into two shorter segments using an isolation transistor, as
shown in Figure 8c. The segment directly connected to the
WD/SA is referred to as the near segment, and the other
segment is referred to as the far segment. To access a ReRAM
cell in the near segment, the isolation transistor on the selected
bitline is turned off, so that only the bitline in the near
segment incurs IR drops. Therefore, cells in the near segment
have smaller IR drops and lower write latency/energy. On the
other hand, to access a cell in the far segment, the isolation
transistor on the selected bitline is turned on. In this case,
the entire length of the bitline is connected to the WD/SA,
similar to DSGB design (Figure 8a). Therefore, cells in the far
segment have the same write latency/energy as DSGB design
(Assume the resistance of the isolation transistor is negligible
when it’s turned on). Compared with the latency optimized
crossbar array (Figure 8b), Tiered-crossbar array can decrease
the additional transistors by 90.9% (WD and SA require 11
transistors per nanowire).

In Tiered-crossbar design, the capacity ratio of the near
segments to the far segments is 1:3. To quantitatively show
the effectiveness of Tiered-crossbar design, we build a detailed
circuit model for the 512×512 TLC crossbar array according
to Kirchhoff’s Current Law [6], [12], [27]. The key parameters
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TABLE IV: The Most Appropriate IDM
Saved space (bit) Encoding method 2-bit IDM flag

[341, 488] IDM((8,2),1) 11
[170, 341) IDM((8,4),1) 10
[85, 170) IDM((8,6),2) 01

[0, 85) CDM 00

derived from the HfOx-based cells [19] and IBMs MIEC
device [28] are presented in Table III. We obtain the worst-
case voltage drops of the near and far segments from the circuit
simulation. Then we get the worst-case write latency/energy
according to the relationship between the voltage drop and
write latency/energy [19]. Figure 9 illustrates the worst-case
write latency/energy of the near and far segments in Tiered-
crossbar design. The results show that compared to the far
segments, the near segments can achieve 60% write latency
reduction and 58% write energy reduction. Therefore, Tiered-
crossbar design allows the near segments to be accessed with
decreased latency and energy. In addition, similar to many
prior works [13], [14], [15], [16], [17], [29], [30], [31], Tiered-
crossbar design also remaps hot data to the near segments and
cold data to the far segments, which significantly improves
the access performance. In this work, we adopt the dynamic
mapping method [13] to improve the access performance.

C. Compression-based IDM

With the frequent pattern compression (FPC) technique
[25], the saved space of a cache line may range from 0 to
488 bits. According to the saved space of each cache line,
there exists the most appropriate IDM for the compressed
data. For example, when IDM((8,2),1) is applied for the cache
line that saves more than 340 bits by compression, the total
encoded data size will not exceed the original cache line size.
Moreover, IDM((8,2),1) can achieve more write latency/energy
reduction than other IDMs. In this case, IDM((8,2),1) is the
most appropriate encoding. However, when IDM((8,2),1) is
applied for the cache line that only saves 170 to 340 bits
by compression, the total encoded data size will exceed the
original cache line size, resulting in high space overhead.
Instead, IDM((8,4),1) is the most appropriate encoding in this
case. To make full use of the saved space by compression for
more latency/energy reduction, we should dynamically select
the most appropriate IDM for each cache line according to the
saved space by compression.
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Fig. 10: Encoding procedure of CIDM.
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Fig. 11: Decoding procedure of CIDM.

Considering that hot data in the near segments of Tiered-
crossbar arrays are sensitive to the access performance, we
propose compression-based IDM (CIDM) in the near segments
to further reduce the write latency/energy. CIDM dynamically
selects the most appropriate IDM for each cache line according
to the saved space by compression. Although a cache line is
compressed word by word, the write latency of the cache line
is determined by the slowest cell. Therefore, we implement
CIDM at the cache line granularity. After the compression
of the cache line, the saved space of each word is added
up to calculate the total saved space. Then CIDM selects the
IDM that eliminates as many latency/energy critical states as
possible on the condition that the total encoded data size will
never exceed the original cache line size. Thus, the compressed
cache lines in the near segments are encoded through different
IDMs. Table IV presents the most appropriate IDM for each
cache line according to the saved space by compression. For
simplicity, we evaluate three kinds of IDMs in this work, e.g.,
IDM((8,2),1), IDM((8,4),1) and IDM((8,6),2). A 2-bit IDM
flag is required for each cache line to denote the encoding
method. ‘11’, ‘10’, ‘01’ and ‘00’ are used to represent IDM((8,
2), 1), IDM((8, 4), 1), IDM((8, 6), 2) and CDM, respectively.
In addition, each word needs one bit to indicate whether the
word is compressed or not, e.g., ‘1’ for the compressed word
and ‘0’ for the uncompressed word. Therefore, an additional
8-bit compression flag is required for each 8-word cache line.

CIDM consists of the CIDM encoder module on the write
path and the CIDM decoder module on the read path. As
shown in Figure 7, the CIDM encoder and decoder modules
are embedded inside the ReRAM controller as Path ¬.

Write Path. When the near segments receive a write request
from the processor, the CIDM encoder works as Figure 10



TABLE V: The Most Appropriate 0-DFS
Saved space (bit) Encoding method 3-bit 0-DFS flag

[74, 488] 2-bit word-size 0-DFS 000
[40, 74) 4-bit word-size 0-DFS 001
[21, 40) 8-bit word-size 0-DFS 010
[11, 21) 16-bit word-size 0-DFS 011
[0, 11) Without 0-DFS 100

illustrates. First, the incoming cache line is passed through the
compression logic to attempt data compression. Each word is
compressed with FPC technique. The 8-bit compression flag
is set to denote whether each word is compressed or not. The
eight compressed words are stored contiguously and then the
total saved space of the eight words is calculated. Second, the
compressed cache line is encoded with the most appropriate
IDM according to the total saved space by compression. The
2-bit IDM flag is set to represent the encoding method. The
uncompressible cache lines are directly sent to the write circuit
without the compression and IDM encoding.

Read Path. When the near segments receive a read request
from the processor, the CIDM decoder works as Figure 11
depicts. The 512-bit cache line with the corresponding IDM
flag and compression flag is first read out. Then the 512-bit
cache line is decoded by the IDM decoder module according
to the IDM flag. After that, the decoded cache line is decom-
pressed word by word according to the compression flag and
the prefix of each word.

D. Compression-based Flip Scheme

Although programming high resistance TLC cells causes
higher write latency (Indicated in Table I), the high resistance
TLC cells in crossbar arrays can effectively reduce the sneak
currents and leakage energy. 0-Dominated Flip Scheme (0-
DFS) [12] can be used to ensure more high resistance TLC
cells in crossbar arrays by increasing the number of ‘0’ MSBs
during the write operation. However, different word-size 0-
DFSs have different tradeoffs in effects and space overhead.
The 0-DFS that uses smaller word size can achieve more ‘0’
MSBs with higher space overhead. With the frequent pattern
compression (FPC) technique [25], the saved space of a cache
line may range from 0 to 488 bits. According to the saved
space of each cache line, there exists the most appropriate 0-
DFS for MSBs of the compressed data. For example, when
the cache line saves more than 73 bits by compression, the
size of the compressed cache line is smaller than 439 bits.
For the compressed cache line, there are at most 146 MSBs
to be written into TLC cells. In this case, the 2-bit word-size
0-DFS is the most appropriate encoding method because the 2-
bit word-size 0-DFS can achieve the most ‘0’ MSBs. Besides,
the total encoded data size will not exceed the original cache
line size. However, when the cache line only saves 11 to 20
bits by compression, the data size of the 2-bit word-size 0-DFS
encoding will exceed the original cache line size, leading to
high space overhead. Instead, the 16-bit word-size 0-DFS is the
most appropriate encoding method in this case. To make full
use of the saved space by compression for more leakage energy
reduction, we should dynamically select the most appropriate
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Fig. 12: Encoding procedure of CFS.
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0-DFS for each cache line according to the saved space by
compression.

Considering that cold data in the far segments of Tiered-
crossbar arrays are not sensitive to the access performance,
we propose compression-based Flip Scheme (CFS) in the far
segments to reduce the sneak currents and leakage energy. CFS
dynamically selects the most appropriate 0-DFS for each cache
line according to the saved space by compression. Similar to
CIDM, CFS is also implemented at the cache line granularity.
CFS calculates the total saved space after the compression of
the cache line, and then selects the 0-DFS that applies as small
word size as possible on the condition that the total encoded
data size will never exceed the original cache line size. Thus,
the MSBs of the compressed cache lines in the far segments
are encoded with different word-size 0-DFSs. Table V presents
the most appropriate 0-DFS for each cache line according to
the saved space by compression. A 3-bit 0-DFS flag for each
cache line is used to denote the encoding method, e.g., ‘000’
for the 2-bit word-size 0-DFS, ‘001’ for the 4-bit word-size 0-
DFS, ‘010’ for the 8-bit word-size 0-DFS, ‘011’ for the 16-bit
word-size 0-DFS and ‘100’ for no 0-DFS.

CFS consists of the CFS encoder module on the write path
and the CFS decoder module on the read path. As shown in
Figure 7, the CFS encoder and decoder modules are embedded
inside the ReRAM controller as Path ­.

Write Path. When the far segments receive a write request
from the processor, the CFS encoder works as Figure 12
shows. The incoming cache line is first sent to the FPC
compression logic to attempt data compression. The 8-word
cache line is compressed word by word. The 8-bit compression
flag is set to indicate whether each word is compressed or not.
CFS contiguously stores the eight compressed words and then
calculates the total saved space of the eight words. CFS also



TABLE VI: Simulation Configurations
Parameter Value

CPU 4-Core, out of order, 3GHz, 192-entry recoder
buffer, 8 issue width

L1 Cache Private, 16KB I-cache, 16KB D-cache, 2-way
assoc, 2-cycle access latency

L2 Cache Private, 1MB, 64B cache line, 8-way assoc,
20-cycle access latency

L3 cache Shared, 16MB, 64B cache line, 16-way assoc,
50-cycle access latency

Main memory 8GB, DDR3-1333, 4 channel, 2 ranks/channel,
32 banks/rank, 1024 crossbar arrays/bank

ReRAM
Timing(ns)

tRCD(18), tCL(15), tCWD(13), tFAW(30),
tWTR(7.5), tWR(refer to Figure 9)

reads out the MSBs of the compressed data. After that, CFS
selects the most appropriate 0-DFS for the MSBs according to
the total saved space by compression. For the sake of decoding,
the flip flag bits are stored at the end of the cache line.
The MSBs of the compressed cache lines are encoded with
different 0-DFSs. The 3-bit 0-DFS flag is set to represent the
encoding method. The uncompressible cache lines are directly
sent to the write circuit without the compression and 0-DFS
encoding.

Read Path. When the far segments receive a read request
from the processor, the CFS decoder works as Figure 13
depicts. First, the 512-bit cache line with the corresponding
0-DFS flag and compression flag is read out. Then the 512-bit
cache line is decoded by the 0-DFS decoder module according
to the 0-DFS flag and the flip flag bits. After that, the decoded
cache line is decompressed word by word according to the
compression flag and the prefix of each word.

V. EXPERIMENTAL METHODOLOGIES

At the circuit level, we use our ReRAM circuit model
to achieve the write latency and energy parameters of the
near and far segments, as shown in Figure 9. We also use
NVsim [32] to obtain the power, latency and area parameters
of additional circuits. Then we add these parameters to our
architectural simulator.

At the architecture level, we use GEM5 [33] with the
integration of NVMain [34] as our simulator to evaluate the
proposed techniques. The detailed simulation configurations
are presented in Table VI. Most ReRAM-related memory
timing parameters are obtained from the prior work [4]. The
write latency (tWR) parameters of the near and far segments
are derived from the circuit simulation (Refer to Figure 9).
We select 10 benchmarks from SPEC CPU2006 with different
memory Read Per Kilo Instructions (RPKI) and memory Write
Per Kilo Instructions (WPKI) rates, as shown in Table VII. We
run all the selected benchmarks for 500 million instructions
to warm up caches and then run 1 billion instructions for
the proposed techniques. We choose DSGB [4]+IDM((8,6),2)
[10] as the aggressive baseline, which applies IDM((8,6),2) in
DSGB-based crossbar arrays to reduce write latency/energy.
The comparison configurations are listed as follows:

• baseline: Apply IDM((8,6),2) in DSGB-based crossbar
arrays to reduce write latency/energy.

TABLE VII: RPKI and WPKI of SPEC CPU2006 Benchmarks

Benchmark Description RPKI WPKI
cactusADM Four copies of cactusADM 6.82 6.61
astar Four copies of astar 2.04 1.05
mcf Four copies of mcf 2.24 1.23
bwaves Four copies of bwaves 10.14 9.62
bzip2 Four copies of bzip2 2.32 1.17
wrf Four copies of wrf 8.18 7.88
milc Four copies of milc 1.28 1.12
gobmk Four copies of gobmk 1.65 1.44
libquantum Four copies of libquantum 7.31 7.06
sjeng Four copies of sjeng 8.32 8.13

• Tiered-crossbar: Apply the Tiered-crossbar design.
• CIDM: Apply the compression-based IDM technique in

the whole crossbar array based on Tiered-crossbar.
• Tiered-ReRAM: Apply the compression-based IDM in the

near segments and the compression-based flip scheme in
the far segments based on Tiered-crossbar.

VI. EXPERIMENTAL RESULTS

A. Overhead Analysis

Additional circuit overheads. We use NVsim [32] to
evaluate the power, latency and area overheads of Tiered-
ReRAM, which mainly come from the additional isolation
transistors, encoders, decoders and multiplexers. The transistor
device characteristics are derived from Narasimha’s work [35]
and scaled down to 22nm technology. The results show that the
isolation transistors only incur 20.5pW power, 150ps latency
and 0.37% area overheads in a 512×512 crossbar array, which
are acceptable. In the CIDM and CFS encoders, the latency
of FPC compression is 2ns and the latency of IDM/0-DFS
encoding is 1ns. In the CIDM and CFS decoders, the latency
of FPC decompression is 1ns and the latency of IDM/0-DFS
decoding is smaller than 1ns. FPC and IDM cost 10K gates in
total, which only causes 0.1% logic overhead. The multiplexers
used to calculate the total saved space of the compressed
cache line incur 1.75ns latency. The additional control logic
to determine the near/far segments access only costs 280ps
latency. Note that Tiered-ReRAM can look up the write latency
table in parallel to the write operation. During the long-latency
write operation, the memory controller can terminate the write
operation according to the table lookup result. Therefore, the
write latency table lookup doesn’t incur latency overhead.

Storage overhead. In the CIDM technique, the additional
2-bit IDM flag is required to denote the selected IDM encoding
method. The additional 8-bit compression flag is needed to in-
dicate whether the eight words of a cache line are compressed
or not. Therefore, the CIDM technique incurs 1.95% storage
overhead in the near segments. In the CFS technique, the
additional 3-bit 0-DFS flag is required to represent the selected
0-DFS encoding method. Similar to the CIDM technique, the
additional 8-bit compression flag is also needed in the CFS
technique. Thus, the CFS technique results in 2.15% storage
overhead in the far segments. Besides, the write latency table
has 16 entries and each entry requires 16 bits. Therefore, the
table incurs 32B storage overhead for the memory controller.
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Fig. 14: The average IPC speedup.
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Fig. 15: The average memory write latency.

In addition, in order to remap hot data to the near segments and
cold data to the far segments in the Tiered-crossbar design, the
address remapping table is required in the memory controller
and the table causes 256KB storage overhead for the 8GB
TLC ReRAM.

B. System Performance

We use the IPC (Instructions Per Cycle) speedup to evaluate
the system performance. The IPC speedup is defined as
follows.

IPCspeedup = IPC
IPCbaseline

Figure 14 shows the average IPC speedup of different design
configurations with the results normalized to baseline. By
applying our proposed techniques step by step, on average,
Tiered-crossbar, CIDM and Tiered-ReRAM can improve the
system performance by 26.1%, 32.6% and 30.6%, respectively.
CIDM achieves the best performance because both the Tiered-
crossbar design and the compression-based IDM technique in
the whole crossbar array can significantly reduce the write
latency. Compared to CIDM, Tiered-ReRAM has 2% fewer
performance improvements because the CFS technique in
Tiered-ReRAM programs more high resistance cells in the far
segments and slightly increases the write latency. However,
Tiered-ReRAM effectively reduces the sneak currents and
leakage energy through these high resistance cells.

C. Write Latency

Figure 15 illustrates the average write latency of different
design configurations. The results are normalized to baseline.
We can observe that our proposed techniques can significantly
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Fig. 16: The average memory read latency.
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Fig. 17: The average memory energy consumption.

reduce the write latency. On average, Tiered-ReRAM achieves
35.2% write latency reduction over baseline. Compared to
baseline, Tiered-crossbar can achieve 27.4% write latency
reduction due to the effectiveness of the Tiered-crossbar
design. Compared to Tiered-ReRAM, CIDM gets 3.5% more
write latency reduction because the CFS technique in Tiered-
ReRAM slightly increases the write latency of the far segments.
However, Tiered-ReRAM can effectively decrease the sneak
currents and leakage energy through the CFS technique.

D. Read Latency

Since the Tiered-crossbar design and compression-based
IDM technique can significantly reduce the write latency, the
write service time is also reduced and read requests benefit
from the waiting time reduction. Therefore, the overall read
latency is also shortened. Figure 16 depicts the average read
latency of different design configurations with the results
normalized to baseline. The results show that, on average,
Tiered-ReRAM decreases the read latency by 26.1% compared
to baseline. Compared to Tiered-crossbar, Tiered-ReRAM gets
2.5% more read latency reduction due to the CIDM technique
of the near segments in Tiered-ReRAM. On the other hand, due
to the CFS technique of the far segments in Tiered-ReRAM,
CIDM has 1.5% more read latency reduction than Tiered-
ReRAM.

E. Energy Consumption

The energy consumption in Tiered-ReRAM mainly comes
from five sources: read operations, write operations, isolation
transistors, encoders and decoders. Although the isolation
transistors, encoders and decoders consume additional energy,
Tiered-ReRAM can still decrease the energy consumption due



to the significantly reduced read and write latency. Moreover,
the CFS technique in the far segments of Tiered-ReRAM
effectively reduces the leakage energy.

Figure 17 illustrates the average energy consumption of
different configurations with the results normalized to base-
line. The results show that, on average, Tiered-crossbar, CIDM
and Tiered-ReRAM reduce the energy consumption by 25.4%,
28.9% and 35.6%, respectively. Compared to CIDM, Tiered-
ReRAM can achieve 6.7% more energy reduction. That’s
because the CFS technique in Tiered-ReRAM increases the
number of high resistance ReRAM cells in crossbar arrays and
significantly decreases the sneak currents and leakage energy.

VII. RELATED WORK

A. Mitigating IR drop issue

The IR drop issue of crossbar arrays significantly increases
the write latency and energy, impeding the development of
ReRAM-based memory systems. Numerous works focus on
mitigating the IR drop issue of crossbar arrays. Xu et al.
[4] proposed Double Sided-Ground Biasing (DSGB) design
to reduces the IR drops along wordlines by applying another
ground on the other side of the selected wordline. However,
DSGB fails to consider the IR drops of the long bitlines, result-
ing in significant performance degradation and energy waste.
Different from DSGB design, the proposed Tiered-crossbar
design splits each long bitline into the near and far segments
by an isolation transistor, which fundamentally reduces the IR
drops of the near segments. In addition, the Tiered-crossbar
design only incurs 0.37% area overhead based on DSGB
design. Zhao et al. [36] proposed the 1TnR V-ReRAM design
to decrease the IR drops by changing the directions of access
lines and reorganizing the peripheral circuitry. Shevgoor et al.
[37] proposed a novel sample and hold circuit to mitigate the
impact of IR drops on read operations. Zhang et al. [12] and
Wen et al. [5] proposed to reduce the IR drops by optimizing
the data patterns and writing more 0s into SLC crossbar arrays.
Different from the these works, our proposed techniques aim
to optimize the write operation of TLC crossbar arrays.

B. Leveraging Non-uniform Access Latency

Since ReRAM cells at different locations of the crossbar
array suffer from different IR drops, this characteristic causes
non-uniform access latency in crossbar arrays. Conventional
ReRAM writes use the worst-case access latency of all
cells, resulting in significant performance degradation. Many
works focus on leveraging the non-uniform access latency in
crossbar arrays to improve the access performance. Based on
the observation that the access latency of crossbar arrays is
relevant to the distance between selected row and and write
drivers, Zhang et al. [13] proposed the Leader design to
partition each crossbar array into fast and slow regions by
rows. Then static mapping and dynamic mapping methods
were proposed to remap hot data to fast regions and cold
data to slow regions, which significantly improves the access
performance. In Tiered-crossbar design, we also adopt the
dynamic mapping method. Compared with the Leader design,

Tiered-crossbar fundamentally mitigates the IR drop issue of
the near segments, providing much better performance for
the near segments. Based on the observation that the access
latency of crossbar arrays varies even in the same row, Zhang
et al. [14] proposed a fine-grained region partition and address
remapping scheme to further improve the access performance.

In other memory technologies, there are also numerous
works leveraging the non-uniform access latency to improve
performance. Son et al. [15] proposed to design some fast
banks with shorter bitlines for faster data sensing and closer
placement to the chip I/O for faster data transfers. Lee et
al. [16] proposed to partition each DRAM subarray into fast
and slow regions using the isolation transistors. Due to the
irregularity in the manufacturing process, Chang et al. [17]
exploited the access latency variation of DRAM subarrays.
All these works allocated hot data to fast regions to improve
the access performance.

C. Incomplete Data Mapping

Incomplete Data Mapping (IDM) can effectively reduce the
write latency and energy of TLC ReRAM. Based on the obser-
vation that programming different TLC states costs different
latency and energy, Niu et al. [10] proposed IDM((8,6),2)
method by eliminating two latency/energy critical states. In
IDM((8,6),2), two 6-state cells are used to denote 5 digit bits
because log26

2 ≈ 5. Although IDM((8,6),2) can reduce the
write latency and energy of TLC ReRAM, it incurs 20% space
overhead. Palangappa et al. [11] proposed to combine data
compression techniques with the expansion coding (Similar
to IDM) to reduce write latency and energy of TLC NVM.
However, the space overhead of the expansion code is fixed
and the saved space by compression can’t be fully utilized.
Different from the two techniques, the proposed CIDM tech-
nique dynamically selects the most appropriate IDM for each
cache line according to the saved space by compression, which
makes full use of the saved space by compression for more
write latency/energy reduction.

D. Flip Scheme

Generally, flip Schemes are used in memory technologies
to reduce the bit flips. Flip-N-Write [38] and FlipMin [39]
were proposed to reduce the bit flips of PCM writes. Flip-
N-Write flips the new data if the number of different bits
is more than half with comparison to the old data. FlipMin
first uses the coset code to encode each possible input data
vector into 256 different vectors, and then selects the vector
with the minimum bit flips to write. Some other flip schemes
can achieve specific effects. Zhang et al. [12] proposed 0-
DFS to increase the number of 0s in SLC crossbar arrays
for reducing the sneak currents. 0-DFS is a row-only flip
scheme. 0-DFS flips the data with a flip flag bit ‘0’ if the
number of 0s in the data is smaller than or equal to N/2,
where N is the word size of 0-DFS. CAFO [18] was originally
proposed to reduce the write costs of the asymmetric memory.
CAFO flips all the rows and columns that incur a positive
gain from the cost model. CAFO can also be used to increase



the number of 0s. By simultaneously flipping the rows and
columns, CAFO can achieve the most 0s. However, all the
flip schemes cost high storage overhead due to the flip flag
bits. Different from these previous works, the proposed CFS
technique subtly combines data compression technique with
the flip scheme to store the flip flag bits with the saved space
by compression. CFS dynamically selects the most appropriate
flip scheme for each cache line according to the saved space by
compression and reduces the leakage energy with insignificant
space overhead.

VIII. CONCLUSION

In this paper, we propose Tiered-ReRAM architecture to
reduce the write latency and energy of TLC crossbar ReRAM.
Tiered-ReRAM is composed of Tiered-crossbar, CIDM and
CFS designs. To reduce the IR drops in DSGB crossbar arrays,
Tiered-crossbar splits each long bitline into the near and far
segments by an isolation transistor. Tiered-crossbar allows
the near segments to be accessed with decreased latency and
energy. To further reduce the write latency and energy, CIDM
is proposed in the near segments by dynamically selecting the
most appropriate IDM for each cache line according to the
saved space by compression. To ensure more high resistance
cells written into crossbar arrays and reduce the leakage
energy, CFS is proposed in the far segments by dynamically
selecting the most appropriate flip scheme for each cache line
according to the saved space by compression. The experimen-
tal results show that, Tiered-ReRAM can improve the system
performance by 30.5%, reduce the write latency by 35.2%,
decrease the read latency by 26.1%, and reduce the energy
consumption by 35.6%, compared to an aggressive baseline.
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