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Abstract—Persistent memory’s (PM) byte-addressability and
high capacity will also make it emerging for virtualized envi-
ronment. Modern virtual machine monitors virtualize PM using
either I/O virtualization or memory virtualization. However,
I/O virtualization will sacrifice PM’s byte-addressability, and
memory virtualization does not get the chance of PM image
management. In this paper, we enhance QEMU’s memory vir-
tualization mechanism. The enhanced system can achieve both
PM’s byte-addressability inside virtual machines and PM image
management outside the virtual machines. We also design pcow,
a virtual machine image format for PM, which is compatible
with our enhanced memory virtualization and supports storage
virtualization features including thin-provision, base image and
snapshot. Address translation is performed with the help of
Extended Page Table (EPT), thus much faster than image formats
implemented in I/O virtualization. We also optimize pcow consid-
ering PM’s characteristics. The evaluation demonstrates that our
scheme boosts the overall performance by up to 50× compared
with qcow2, an image format implemented in I/O virtualization,
and brings almost no performance overhead compared with the
native memory virtualization.

Index Terms—persistent memory, memory virtualization, stor-
age virtualization, virtual machine, cloud storage

I. INTRODUCTION

Persistent memory (PM) is attached through memory buses
and provides byte-addressability for persistent data. Com-
pared with DRAM, PM’s capacity is several times larger and
cheaper. In order to take advantage of the best performance of
PM in cloud environment, the support for using PM in virtual
machines is also important.

Modern virtual machine monitors (VMMs) like QEMU and
VMware vSphere can virtualize PM through current I/O virtu-
alization or memory virtualization [1] [2]. However, although
PM is already at the boundary of storage and memory, I/O
virtualization and memory virtualization are still separated in
a way. Since traditional storage devices are attached through
I/O bus, storage virtualization features like thin-provision, base
image and snapshot are also implemented along the virtual
I/O stack. However, using virtual I/O stack loses the byte-
addressability of PM. Although directly mapping a PM region
into the virtual machine can preserve the byte-addressability,
this kind of memory virtualization can not get the chance of
PM image management in modern VMMs.

As storage virtualization features are based on the manage-
ment of virtual machine images, we believe it is also necessary
to achieve virtual PM image management when using memory
virtualization for PM. However, it will be more challenging

compared with I/O virtualization, since memory virtualization
today are dominated by hardware-assisted address translation
like AMD’s Nested-Page Table (NPT) and Intel’s Extended
Page Table (EPT) [3]. Both NPT and EPT implement dedicate
second level page tables to accelerate the address translation.
When using PM under the hardware-assisted memory virtu-
alization, once a VMM register a PM region to the host OS
kernel, the control of virtualized memory is handed over to the
host OS and hardware MMU. That is to say, any data access
to virtual PM regions will never pass through VMMs, which
reside in the user space of host servers.

To achieve PM image management, in this paper, we
enhance the native hardware-assisted memory virtualization.
We design an image monitor inside QEMU to manage PM
images created on PM-aware file system. The image monitor
acquires the control opportunity to organize PM image by
handling EPT violations and write-protection violations in user
space.

Data of virtual disks is usually organized in well-formatted
image files. Image formats like qcow2 [4] and VMDK [5],
which support abundant storage virtualization features, are
widely used in cloud environments. However, as most of them
are designed for I/O virtualization, some metadata are not
suitable or not necessary for memory virtualization. On the
other hand, although modern VMMs support creating raw
PM image files for memory virtualization based on virtual
PM regions, the mapping between the raw format images
and virtual PM regions is linear, and no storage virtualization
features can be implemented [1]. Therefore, existing image
formats cannot meet our needs.

Thus, in this paper, we also design an image format for PM
called pcow (short for PM copy-on-write). Like the modern
virtual machine image formats, the pcow format supports thin-
provision, base image and snapshot. Compared with formats
designed for I/O virtualization, we eliminate unnecessary
metadata like address translation tables, and consider the
consistency issue caused by PM’s smaller write atomicity [6].

The contributions of this paper are as follows.

1) We summarize the current schemes of PM virtualization.
2) We enhance the current memory virtualization in QEMU

to support PM image management.
3) We propose the pcow image format, which is compatible

with the enhanced memory virtualization and optimized
for PM.



4) We implement several storage virtualization features
based on the enhanced memory virtualization and pcow.

The paper is organized as follows: We describe the back-
ground in Section II and explain our motivation in Section
III. In Section IV, we describe the idea of the proposed
methods. Section V discusses the implementation details and
the performance optimization for PM. We give experimental
results in Section VI, present the related work in Section VII,
and make the conclusions in Section VIII.

II. BACKGROUND

A. Persistent Memory

Persistent memory (PM), also known as storage class
memory (SCM), is a type of memory device based on non-
volatile memory (NVM) technologies. There are plenty NVM
technologies under development, such as 3D XPoint, PCM
(phase-change Memory) [7], ReRAM (resistive random-access
memory) [8] and STT-MRAM (spin-transfer-torque MRAM)
[9]. Although most PM devices are not mass-produced, a few
technologies like 3D XPoint are preparing for commercial use
[10].

PM is byte-addressable and can be accessed by load/store
instructions like DRAM, and non-volatile like block devices.
While using PM can get the benefits of using both memory and
storage, we also have to face the common issues of memory
or storage:
• As memory, like DRAM, we have to face cache coher-

ence and atomic visibility [6] [11] issues when program-
ming with PM.

• As storage, PM also have the issues like data durability
and crash consistency. As the program interface and
write atomicity changed, we should switch to cache flush
instructions (like clflush) to make the recently changed
data persistence from CPU cache to PM [12]. To maintain
the order of cache flush instructions or store instructions
in non-TSO (total store order) architecture (like ARM)
[13], a cache flush or store instruction should also have
a fence instruction (sfence or mfence) followed. Facing
power failure or system crash, we also need to consider
the crash consistency issues [14] in the context of PM
[15].

According to SNIA’s NVM programming model [16], in
order to take advantage of both storage and memory char-
acteristics of PM, we should access PM in NVM.PM.FILE
mode. According to this mode, all or part of a PM file is
directly mapped as a virtual memory region to user-space
applications, then the applications can directly load/store the
PM region. The data durability is assured after the file system
or the applications issue cache flush instructions. The feature
implements NVM.PM.FILE is called direct access (DAX) in
both Windows and Linux. File systems with DAX feature
supported are called PM-aware file system [6]. Linux’s XFS
and ext4 already support being mounted with DAX enabled.

As virtual machine images are backed by files on host OS
file systems, the image isolation is achieved based on the

isolation of files. In this paper, we also achieve the isolation
between PM images with the help of a PM-aware file system,
ext4, which is DAX enabled.

B. Storage Virtualization

Storage virtualization is a process to manage the mapping
relationship between physical storage resources and logical
views. Several features are commonly implemented based on
storage virtualization. For example,
• Storage pooling aggregates small storage devices into

a large storage pool, which facilitates storage resource
management by a centralized controller.

• Thin-provision tends to promise users a large storage
space while allocating much smaller space at the begin-
ning. Subsequent allocations will be done as the actual
usage increases.

• Snapshot protects data at specific time points as read-
only using copy-on-write technology. It provides user the
option to roll back to any snapshot point.

• Base image (also called template) provides the oppor-
tunity to build a new image based on images created
before. This feature makes the deployment and backup
much easier. And for cloud providers, this feature saves
the storage costs [17].

Since most storage devices are connected to slow I/O buses,
most of these features are implemented in VMMs’ virtual I/O
stacks.

C. Using PM in Virtual Machines

As displayed in Fig. 1, technically, considering storage
devices of block device form or PM form, we can achieve
four kinds of virtualization in the forms of “virtual device–
physical device” relationship. The four forms of virtualization
can be implemented through I/O virtualization or memory
virtualization:

Host Device

Block Device

PM

Block Device

PM PM

PM

Block Device

Block Device

Guest Device

Memory Virtualization

I/O Virtualization

(Byte-addressable)

Fig. 1: Forms of storage device virtualization in modern
VMMs. Only virtualizing PM under VMMs’ memory virtu-
alization (“PM–PM” form) can achieve byte-addressability in
virtual machines.

I/O virtualization: Through I/O virtualization, we can
achieve “block device–block device” or “block device–PM”
virtualization. In this situation, an image files on physical
devices is formatted by a VMM and virtualized as a block
device in a virtual machine. “Block device–block device” is



the mostly used form for virtual machine storage, but it does
not involve PM. The “block device–PM” form loses the byte-
addressability of PM, and its complex software stack of I/O
virtualization can cause serious performance loss [18].

Memory virtualization: Through memory virtualization,
we can achieve the “PM–block device” and “PM–PM” forms.
In this situation, a file on a block device or a PM can
be mapped as a memory region of a virtual machine. With
hardware-assisted memory virtualization, the two-level page
tables are managed by guest OS and host OS respectively,
and all the address translations are performed by the hardware
MMU. As PM-aware file systems provide mmap interface with
DAX feature, we can create image files on PM-aware file
systems and map them to virtual machines. Through this kind
of “PM–PM” form virtualization, both byte-addressability and
data persistence of PM are maintained in the virtual machine.
However, in this way, we lose the storage virtualization
features implemented in I/O virtualization. Thus, this paper
focus on the methods of implementing storage virtualization
features in “PM–PM” form.

III. MOTIVATION

To use PM in virtual machines, modern VMMs either virtu-
alize PM images as block devices through I/O virtualization,
or directly map them into virtual machines through memory
virtualization. Take virtual machines based on QEMU-KVM
as an example, Fig. 2 depicts how the PM will be accessed
with the two forms of PM virtualization.

Fig. 2 (a) depicts I/O virtualization. To achieve storage
virtualization features like snapshot and thin-provision, QEMU
leverages an I/O layer as image format driver. All virtual
machine image formats supported by QEMU are developed
based on this layer. However, the “block device–PM” form
has many drawbacks: 1) the block device interfaces in virtual
machines will lose the byte-addressability of physical PM. 2)
The mismatch between the virtual (512 bytes) and physical
(8 bytes) write atomicity makes it difficult to guarantee the
crash consistency of applications within the virtual machine.
Although this problem can be solved by some host OS features
like Block Translation Table (BTT) [19], the advantages of
using PM will be further weakened as more middle layers
will be introduced. 3) Performance will be dropped because
software latency of the I/O layers have already become non-
negligible for high-end NVMe SSD devices [20], let alone the
faster PM. Related test results in Section VI will also verify
the performance degradation of using I/O virtualization for PM
(“block device–PM” form).

Fig. 2 (b) shows that in memory virtualization, memory
accesses from guest applications require two address transla-
tions. A guest virtual address (GVA) will be translated to guest
physical address (GPA) by a normal page table walk, and the
second EPT or NPT page walk translates the GPA to host
physical address (HPA) [21]. However, this two-dimensional
translation only involves the two page tables managed by the
guest OS and the host OS, and does not involve the VMM,
which resides in the host user space. Despite the fact that
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Fig. 2: I/O virtualization, memory virtualization and the pro-
posed enhanced memory virtualization.

in this way we can take advantage of the byte-addressing
feature, we cannot add an extra layer to the data path like
I/O virtualization for image management.

As PM possesses data durability, storage virtualization fea-
tures are also expected for virtual PM in cloud environments.
Thus, we propose to enhance the current memory virtual-
ization, and achieve the image management by dynamically
manage the second level page table (NPT or EPT, we use EPT
in this paper). Fig. 2 (c) depicts our general idea. Compared
with the native memory virtualization, an image monitor is
added to the VMMs, which is responsible for the management
of the PM images and the related address mapping in EPT.

IV. DESIGN

Fig. 3 depicts the overview of the enhanced memory
virtualization. PM image files are created on the PM-aware
file system and formatted by the proposed pcow format. To
virtualize PM region in virtual machines, the PM images are
non-linearly mapped in granularity of fixed-size clusters. In
order to provide the storage virtualization features, the overall
design consists of an image monitor inside QEMU and the
pcow format. The image monitor is used to monitor and handle
the demand for image expansion and copy-on-write. The pcow
format is designed for PM images and can work with the image
monitor to achieve storage virtualization.

A. Image Monitoring

On the startup of a virtual machine, the image monitor will
map the data clusters of a pcow image file according to its
logical address recorded in metadata, and mark virtual PM
regions mapped from read-only clusters as write-protection.
And for areas that has not been accessed, “fake” PM regions
without PM image clusters backed (also called anonymous
page in Linux) will be mapped to the virtual machines. After
the virtual machine is started, there will be two handlers in
image monitor in charge of access monitoring:

a) Image expansion handler: For raw PM image files
already supported by modern VMMs, the mapping between
virtual PM regions and image file offsets is linear, which
requires the length of the image file equals to the size of the
provisioned virtual PM. As thin-provision feature requires the
image files grow with the actual demand, we turn to use a
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Fig. 3: Overview of the enhanced memory virtualization for
PM image management.

strategy we call “fake” mapping. In a word, areas that have
not been accessed are mapped as “fake” regions at the begin-
ning, and will be replaced by “real” regions backed by PM
image clusters when accessed. The “fake” mapping strategy
takes advantage of modern OS virtual memory system’s lazy-
allocation strategy, which means memory is not allocated until
the first access to the mapped address. When these “fake”
PM regions are accessed by guest applications for the first
time and image expansion is demanded, an EPT violation will
be raised, which will subsequently call a page fault handler
in OS kernel. Leveraging the userfaultfd system call
provided by the recent version of Linux, page fault handlers
can be registered in user space. In the image monitor, we
register a user-space page fault handler as expansion handler.
The expansion handler polls userfaultfd events caused
by EPT violations, and remaps the faulting “fake” regions to
newly allocated PM image clusters.

b) Copy-on-write handler: Features like snapshot or base
image usually use copy-on-write to protect the read-only
data. In our scheme, read-only areas are mapped with write-
protection. Accessing the write-protected pages will cause
permission violations, and a SIGSEGV signal will be raised.
As signals can interrupt the normal procedure of the corre-
sponding thread, the handler can get the chance of doing copy-
on-write. Therefore, we register a SIGSEGV signal handler
for the vCPU threads to trap the permission violations. The
handler is called copy-on-write handler and integrated in the
image monitor. When doing copy-on-write, write-protected
data will be copied to newly allocated data clusters. The new
clusters will be mapped to the violation address without write-
protection and cover the original write-protected region.

B. Pcow: a Format for PM Images
The pcow image format is designed for PM, which supports

several storage virtualization features including thin-provision,
snapshot and base image. The pcow image files are created
on the PM-aware file systems. Data and metadata are stored
in fixed-size clusters, and new clusters are created in an ap-
pending manner. As pcow leverages EPT and hardware MMU
to perform “logical–physical” address translation, dedicated
translation tables commonly implemented in virtual disk image
formats [18] [22] are no longer maintained by pcow. We switch
to use a full mapping strategy. During the startup of virtual
machines, the pcow images will be opened and all the data
clusters will be mapped non-linearly to the virtual PM, and
the “logical–physical” information will stay in the host OS in
the form of EPT. At runtime, the EPT will be updated by the
two handlers in image monitor when the EPT violations or
permission violations happened.

Following is how pcow supports storage virtualization fea-
tures:

a) Thin-provision: New pcow images are very small. As
the actual virtual PM usage increase, new clusters will be
appended to the end of image file, then the image monitor
will map the new clusters to the virtual PM non-linearly.

b) Snapshot: When a snapshot is taken, a special snap-
shot cluster will be appended to the end of the pcow image.
After a snapshot is taken, new data clusters will be continually
appended to the image after the snapshot cluster, data before
the snapshot cluster will become read-only. Any write access
to the read-only area will cause a copy-on-write operation of
the image monitor. When more than one snapshots are taken,
only the data after the last snapshot cluster is appendable
and writable. By truncating an image file from anyone of the
snapshot clusters, we can achieve the purpose of rolling back
to a specific snapshot time point.

c) Base image: The base image feature is similar to
the snapshot feature. The difference is the read-only part and
writable part are stored in separated image files. The base
image feature allows to create a writable image based on read-
only images. Images also can be chained together and only the
last image can be written. To record the relationship between
the writable images and their read-only base image, we add
a field in the super cluster named base_image_name to
record its base image path.

Fig. 4 is an example of pcow image. Each image or the area
after a snapshot is started with a super cluster or a snapshot
cluster. And the metadata of data clusters are stored in their
corresponding meta clusters. We also define a meta cluster
and its managed data clusters as a segment. Given a cluster
size, the max segment size will be determined. When the
current segment is full, new meta cluster will be created and
subsequent data clusters’ metadata will be stored in the new
meta cluster. The image in Fig. 4 consists of three files and can
be mapped as a PM region in VMs. Each file is appendable
and smaller than the virtual PM size at the beginning, which
indicates the thin-provision feature. These files are created on
a PM-aware file system and chained together using the base
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Fig. 4: An example of a pcow image that uses the three
storage virtualization features (thin-provision, snapshot and
base image).

image feature, in which the topmost one is the current image.
Only the clusters after the current image’s last snapshot is
mapped into VMs as writable area.

V. IMPLEMENTATION DETAILS

Our prototype is implemented in QEMU version 3.0 in
about 2k lines of code. The host machine is an x86 server
with Linux kernel version 4.16. The image monitor resides
in QEMU and is used to virtualize pcow image files as PM
regions in virtual machines. In this section we describe details
and related optimization of the prototype.

A. Pcow Metadata Layout

Table I and Table II shows the metadata layouts of super
cluster and meta cluster respectively. Although the pcow image
format organizes data and metadata in fixed-size clusters just
like other virtual machine image formats, it is designed from
the ground up with PM characteristics in mind.

In super cluster described by Table I, we gather all the
metadata in cacheline size (64 B), which is CPU cache
friendly. The cur_segment_num denotes the meta cluster
or segment number and will be updated frequently. However,
as cur_segment_num occupies only 4 B, it can be updated
atomically by 8 B memory write. The meta cluster described

TABLE I: Super cluster layout of pcow.

Field Name Size Usage
cluster_size 4 B Cluster size in KB.
max_cluster_n 4 B Maximum number of clusters.

cur_segment_num 4 B Allocated segment (meta cluster) number.
magic_string 4 B Pcow magic string.

base_image_name 48 B File name of the base image.
padding Fill the remaining space of the cluster.

TABLE II: Meta cluster layout of pcow.

Field Name Size Usage
cluster_counter 4 B Number of data clusters in this segment.

padding 60 B Fill to cacheline size.
cow_bitmap 4 B Fine-grained copy-on-write bitmap.

data_cluster_num 4 B Logical data cluster number.
cow_bitmap 4 B Fine-grained copy-on-write bitmap.

data_cluster_num 4 B Logical data cluster number.
cow_bitmap 4 B Fine-grained copy-on-write bitmap.

data_cluster_num 4 B Logical data cluster number.
...

by Table II consists of a cluster_counter and data entries
of the corresponding segments. Each data entry consists of a
4 B cow_bitmap and a 4 B data_cluster_num. The
data_cluster_num represents the sequence number of the
data cluster in the virtual PM address space. The virtual PM
address thus can be represented by data_cluster_num×
cluster_size. The cow_bitmap is used for the fine-
grained copy-on-write optimization for PM, which will be
described in Section V-D. All of the fields in meta cluster
need to be updated on new data cluster allocation or doing
copy-on-write. Fortunately, all fields can be updated under the
8 B write atomicity.

B. Image Mapping at Startup

As our enhanced memory virtulization performs address
translation with the help of EPT, we need to map the data
clusters to the appropriate location of the virtualized address
space at startup. Thus, at startup, for each pcow image, image
monitor scans all the meta clusters and super clusters to map
and register the virtualized address space to EPT.
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Fig. 5: Initial memory address space mapping.

For example, Fig. 5 depicts a pcow image consists of two
image files, in which the current image is based on the base
image, and the current image consists of a snapshot and
the currently writable part (Fig. 5a). For readability, each
data cluster is labelled with its data_cluster_num in the
figure. As displayed, the writable part, the snapshot part and
the base image part can be represented by three logical address
spaces (Fig. 5b) according to the logical address that derived
from data_cluster_num and cluster_size. Then the
multiple logical address spaces are merged into one (Fig. 5c),
which is finally mapped to a virtual machine as a virtual PM
region.



It should be noted that the logical address spaces may
overlap between each other. Thus when the merging step is
performed (Fig. 5b to Fig. 5c), there should be priorities. For-
tunately, for the base image or snapshot feature, the priorities
are straightforward. Among multiple images, the priorities are
based on dependencies. Base images have lower priorities than
current images. Within an image file, the priorities are based
on snapshot time. The priorities of more recent snapshots are
higher, and the last writable part have the highest priority.
Taking Fig. 5 as an example, the clusters labelled 0 and 3 of
the base image are overlaid by the current image’s cluster 0
and cluster 3 in the merged address space. And the cluster
labelled 5 of the snapshot part is overlaid by the cluster in
writable part.

As for the implementation, data clusters are mapped in the
reverse order of priority, and the earlier mapped low priority
address spaces will be covered by the latter mapped high
priority address spaces.

Algorithm 1 Data cluster allocation procedure.
Input:

virt_addr is the demanded PM virtual address aligned to cluster size.
base_addr is the virtual address where the PM region begins.

Ensure:
cluster_offset is the file offset of the newly allocated data cluster.

1: function NEW CLUSTER(virt_addr)
2: max_cluster_per_seg← (cluster_size− 64)/8
3: if cluster_counter ≥ max_cluster_per_seg then
4: /* Allocate a meta cluster for the new segment. */
5: fallocate(pcow_fd, cluster_size)
6: init new meta()
7: cur_segment_num← cur_segment_num+ 1
8: clflush(&cur_segment_num, cacheline_size)
9: sfence() // Ensure the durability and order.

10: end if
11: /* Allocate a new data cluster. */
12: fallocate(pcow_fd, cluster_size)
13: cow_bitmap← 0x00000000 // Initiate the new data entry’s cow bitmap.
14: data_cluster_num← (virt_addr− base_addr)/cluster_size
15: clflush(&data_cluster_num, cacheline_size)
16: sfence()
17: cluster_counter← cluster_counter+ 1
18: clflush(&cluster_counter, cacheline_size)
19: sfence()
20: cluster_off← file_len+ cluster_size
21: return cluster_off
22: end function

Algorithm 2 Main procedure of the Expansion handler.
Input:

virt_addr is the demanded PM virtual address aligned to cluster size.
1: function IMAGE EXPANSION(virt_addr)
2: new_cluster_off← NEW CLUSTER(virt_addr)
3: /* Map the new allocated data cluster to the demanded address. */
4: mmap(virt_addr, pcow_fd, new_cluster_off)
5: end function

Algorithm 3 Main procedure of the Copy-on-write handler.
Input:

virt_addr is the accessed PM address under protection (aligned to cluster size).
1: function COPY ON WRITE(virt_addr)
2: new_cluster_off← NEW CLUSTER(virt_addr)
3: /* Map the new allocated data cluster to a temporary address. */
4: tmp_addr ← mmap(virt_addr, pcow_fd, new_cluster_off)
5: memcpy(tmp_addr, virt_addr, cluster_size)
6: clflush(&tmp_addr, cluster_size)
7: /* Remap the temporary buffer to the accessed protected address */
8: remap(tmp_addr, virt_addr, cluster_size)
9: end function

C. Detailed Procedures at Runtime

As described in Section IV-A, when guest applications
attempt to access the “fake” address regions without PM
image backed, the host OS kernel will raise an EPT violation.
And when guest applications try to write a page with write-
protection, it will cause the host OS to generate a SIGSEGV
signal which is handled by the copy-on-write handler. We now
describe the detailed implementations. The main procedures of
the expansion handler and copy-on-write handler in Fig. 3 are
shown in Algorithm 2 and Algorithm 3 respectively, and the
two procedures are both based on Algorithm 1, which is the
data cluster allocation procedure.

Algorithm 1 shows how the image monitor creates a new
data cluster. As indicated by Line 2, a meta cluster can manage
max_cluster_per_seg data clusters. So in Line 3 to 10,
a new meta cluster should be allocated first if the current
segment is full. After extending the file by fallocate
system call (Line 12), we also need to initialize the data
entry in the active meta cluster (Line 13 to 19). Noted that
the metadata update order should not be changed for crash
consistency. Besides, metadata on PM should be flushed by
clflush and sfence after each update. Considering the
PM is slower than DRAM, for efficiency, we also cache some
of the metadata in DRAM, which is omitted in Algorithm 1.

Algorithm 2 is implemented in the expansion handler, it will
be executed when an user-space page fault (userfaultfd)
event is polled. It calls the NEW_CLUSTER function defined
in Algorithm 1, and map the new data cluster to the faulting
address.

Algorithm 3 describes the procedure of copy-on-write,
which is the key procedure of snapshot and base image
features. This procedure resides in the copy-on-write handler
and will be called when write-protected area is written and
a SIGSEGV signal is raised. In this procedure, a new data
cluster is first allocated and mapped to a temporary address
(Line 2 to 4). Then read-only data will be copied to the new
cluster (Line 5 to 6). Finally, the temporary address will be
remapped to the address causing the SIGSEGV signal (Line
8). Note that, as applications in virtual machines may access
the same protected memory areas concurrently, thus a signal
may be raised as another signal of the same address is under
copy-on-writing. As a protected area should only be copied
once, we should do some checks to decide whether to handle
or to ignore a signal. The checking process is implemented
based on a hash table in DRAM, which introduces negligible
overhead and is not listed in Algorithm 3 for conciseness.

D. Optimization for PM

a) Pre-allocation: As the two key procedures (image
expansion and copy-on-write) of the enhanced memory vir-
tualization are both based on cluster allocation, Algorithm
1 is a critical part of overall performance. To optimize the
performance, we use a dedicate cluster allocation thread,
several clusters are allocated in the background before the
expansion is required. Using pre-allocation, only Line 13 to



16 of Algorithm 1 will be executed when images need to be
expanded.

b) Fine-grained Copy-on-write: As data is organized by
fixed cluster size in pcow images, in general, copy-on-write
should be done in the granularity of data clusters, which
is shown in Algorithm 3 Line 5 to 6. However, as many
applications take advantage of PM’s byte-addressability [13]
[23] [24] , the accessed area on PM is usually small. Therefore
we propose to use finer-grained copy-on-write instead of
copying the entire cluster at once. We only copy 4 KB (the
memory page size) where the SIGSEGV signal occurs.

This optimization implies that the copy-on-write granularity
and cluster size will not be identical. However, we believe
larger cluster size is still necessary, because: 1) Cluster size
matters more to the cluster allocation, and applications usually
allocate a related large continuous PM region and then access
in tiny granularity. Smaller cluster size will introduce more
allocation overhead. 2) Smaller cluster size will cause more
virtual memory areas maintained in OS, which increases the
DRAM usage and slow down the page table construction
process. 3) Smaller cluster will also slow down the startup
process, as more meta clusters should be scanned and more
data clusters should be mapped.

For slow devices like HDDs or low-end SSDs, a 4 KB copy
usually not worth as the hardware access latency is far larger
than the transfer time spend for a data cluster [25]. However,
as PM has ultra-low latency, the transfer time will dominate
the data copy process even for relatively small data size, which
is verified in Section VI-D.

We maintained a 4 B cow_bitmap in each data entry as
displayed in Table II. Each bit represents the 4 KB copied sta-
tus of a cluster. As there are 32 bits for each cluster, pcow with
fine-grained copy-on-write optimization supports the cluster
size up to 128 KB. The Algorithm 3 is optimized as Algorithm
4. After the fine-grained 4 KB copy (Line 7 to Line 9) and
before remapping (Line 15), the data cluster’s cow_bitmap
is updated (Line 11 to Line 13). The corresponding bit of the
copied 4 KB unit will be set to 1 in the cow_bitmap. For
efficiency, the metadata of clusters not fully copied are cached
in DRAM, which is not listed in Algorithm 4.

Algorithm 4 Fine-grained Copy-on-write handler .
Input:

virt_addr_4k is the accessed PM address under protection (aligned to 4 KB).
loc_in_cluster is the location number of the 4 KB unit in its cluster.

1: function FINEGRAINED COW(virt_addr_4k)
2: cluster_off← CLUSTER PARTIAL COPIED(virt_addr_4k)
3: if cluster_off = NULL then
4: cluster_off← NEW CLUSTER(virt_addr_4k)
5: end if
6: /* Map the new allocated data cluster to a temporary address. */
7: tmp_addr ← mmap(virt_addr_4k, pcow_fd, cluster_off)
8: memcpy(tmp_addr, virt_addr_4k, 4096)
9: clflush(&tmp_addr, 4096)

10: /* Update the copy-on-write bitmap of the data entry. */
11: cow_bitmap |= 1 << loc_in_cluster
12: clflush(&cow_bitmap, cacheline_size)
13: sfence()
14: /* Remap the temporary buffer to the accessed protected address */
15: remap(tmp_addr, virt_addr_4k, 4096)
16: end function

VI. EVALUATION

A. Experimental Setup
In this section, we evaluate the prototype we implemented

in QEMU 3.0. All experiments are conducted on an x86 server,
whose detailed configuration is listed in Table III. As PM
devices are not broadly available, we reserve 48 GB DRAM of
the server as an emulated PM partition [26]. The PM partition
is formatted as an ext4 file system and mounted with the DAX
option.

TABLE III: Server Configurations.

CPU Intel Xeon E5-2609 1.70 GHz ×2
CPU cores 8 ×2
Processor cache 32 KB L1i, 32 KB L1d, 256 KB L2, 20 MB L3
DRAM 80 GB
PM 48 GB (emulated by DRAM)
OS CentOS 7.0, kernel version 4.16.0 (same in VMs)
VMM QEMU version 3.0.0
File system ext4 (mounted with DAX option)

We compare our scheme (“PM–PM” form, denoted as pcow)
with several baseline schemes, including a block device backed
by a qcow2 image created on the PM partition (“block device–
PM” form, denoted as qcow2) and a native virtual PM region
without any storage virtualization feature (“PM–PM” form,
denoted as raw). Some of the experiments are also performed
directly on the host server’s PM partition (denoted as host).

On the host, images of pcow, qcow2 and raw are all created
on the PM partition. The cluster size of pcow and qcow2 are set
to 64 KB. In guest, PM regions virtualized by pcow and raw
are also formatted by ext4 with DAX. As the qcow2 images
serve as block devices in guest, they are mounted as ext4
without the DAX option.

B. Micro-benchmarks
We make some micro-benchmarks using fio [27] to under-

stand the basic performance metrics of the proposed scheme.
Fio’s mmap engine uses mmap/memcpy interfaces, which
can take advantage of the DAX feature to bypass OS’s page
cache and achieve the best performance of PM. Thus, we
use the mmap engine for pcow, raw and host. As qcow2
does not support DAX, we use pvsync engine and set the
direct option to eliminate the impacts of page cache. To
understand the difference introduced by pvsync engine, we
also test pcow using pvsync engine. In Fig. 6, we use the -dax
and -blk suffixes to denote mmap engine and pvsync engine
respectively. All test data are generated and accessed randomly
by fio, each data set is 20 GB, and the results are averaged
over 30s executions.

a) Latency: We run fio in a single-threaded mode and
small 4 KB random requests are submitted one at a time.
The test results are displayed in Fig. 6 (a). The latency of
the native memory virtualization (raw-dax) increases about
4 µs compared to the host (host-dax) . Our scheme (pcow-
dax) brings almost no overhead compared with raw-dax. As
expected, qcow2-blk, as is implemented in I/O virtualization, is
50 times slower than memory virtualization. Even the latency
of pcow-blk is 20 times better than qcow2-blk.
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Fig. 6: Micro-benchmarks. The suffixes dax and blk indicate respectively the mmap engine and pvsync engine of fio.

b) Bandwidth: The bandwidth is measured using 16 fio
threads and the request size is 1 MB. As shown in Fig. 6 (b),
pcow-dax achieves 91% and 69% of the host-dax’s read and
write bandwidth respectively, while qcow2-blk only achieves
21% and 4.4% respectively. Even pcow-blk is 4 times better
than qcow2-blk.

c) IOPS: The IOPS (short for I/O operations per second)
is measured using 16 fio threads and 4 KB request units.
Although IOPS of host-dax is over 6000k and 4000k in read
and write test respectively, which are about 5 times better
than raw-dax, our scheme does not bring additional overhead
compared with raw-dax. And the read and write IOPS of pcow-
dax are still 50 times and 350 times better than those of qcow2-
blk respectively. Write performance drops sharply when pcow-
blk is used, which indicates DAX is important for PM.

Through these measurements, we can see that although
memory virtualization (raw and pcow) results in some degra-
dation penalty compared with host, I/O virtualization (qcow2)
severely drops the performance by hundreds of times. In addi-
tion, while PM virtualized qcow2 only supports block device
interfaces, our scheme can take full advantages of PM’s byte-
addressability. In summary, by enhancing the native memory
virtualization, our scheme provides the storage virtualization
features with almost no performance loss.

C. Copy-on-write Performance

The mirco-benchmarks mentioned above are conducted
without copy-on-write. As copy-on-write is the key procedure
of many storage virtualization features (such as pcow’s snap-
shot feature and base image feature), we further compare the
performance with copy-on-write involved between pcow and
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Fig. 7: Copy-on-write performance of pcow and qcow2.

qcow2. To produce copy-on-write requests, we first generate
20 GB test data in one image, and then create another image
backed by it (denoted as base image) or take a snapshot on it
(denoted as snapshot). We use fio to overwrite on the 20 GB
read-only data. Both copy-on-write latency and copy-on-write
IOPS are tested. The test results are shown in Fig. 7.

a) Latency: The copy-on-write latency is measured using
a single fio thread and 4 KB write requests. In Fig. 7
(a), pcow’s latency is about 200 µs in both base image and
snapshot, while the results of qcow2 is about 600 µs and 1100
µs. Our scheme is 3 to 5 times better than the qcow2 format.

b) IOPS: In Fig. 7 (b), IOPS with copy-on-write is also
tested using 16 random access fio threads, and pcow is also
3 to 5 times better than qcow2.

D. Optimization Decomposition

As described in Section V-D, we optimize the image ex-
pansion and copy-on-write procedure by pre-allocation and
finer-grained copy-on-write. To understand the performance
improvement, we test the latency breakdowns with the opti-
mization enabled or disabled.
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Fig. 8: Optimization Decomposition.

a) Pre-allocation: To measure the image expansion la-
tency, we append a file on virtual PM regions using fio
and measured the latency breakdown of pcow. As the qcow2
format also support this optimization, we also test the qcow2
with or without pre-allocation. As shown in Fig. 8 (a), with
pre-allocation, the pcow’s cluster allocation latency is almost
eliminated (from 45 µs to 1 µs), and the total latency is
reduced by 34 µs. The qcow2’s expansion latency is reduced



by 31 µs with pre-allocation. The overall expansion latency
of pcow is 140 µs lower than qcow2.

b) Fine-grained Copy-on-write: As shown in Fig. 8 (b),
pcow’s copy-on-write latency without fine-grained optimiza-
tion is 385 µs. With fine-grained copy-on-write, although
additional metadata updating latency (61 µs) is introduced, the
overall copy-on-write time is still decreased by 179 µs. With
fine-grained optimization, pcow’s latency is 3 times lower than
qcow2.

E. Real-world Workloads

We further measure the performance of real-world key-
value workloads in raw, pcow and qcow2 schemes. We select
Redis [28], a widely used key-value store, to evaluate the
performance. The Redis version we use is optimized for
PM (denoted as Redis-PMDK) [29] based on the Persistent
Memory Development Kit (PMDK) [30].
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Fig. 9: Redis performance. The suffixes pba and aof indicate
respectively the pointer-based AOF (PBA) mode optimized for
PM and the native AOF mode.

Data persistence of native Redis is implemented as Ap-
pend Only File (AOF), which flushes the changed data to
an AOF file. Redis-PMDK implements pointer-based AOF
(PBA), which improves the performance by utilizing PM’s
byte-addressability. We perform evaluation in AOF mode and
PBA mode.

We use Redis-benckmark [31] to compare the perfor-
mance between pcow, raw and qcow2. For raw and pcow,
we record the operation per second (OPS) in both PBA and
AOF mode. For qcow2, as PBA is not supported, we only

record its OPS performance in AOF mode. The suffixes -pba
and -aof indicate PBA mode and AOF mode respectively.
We test two types of workloads, one only involves query
(GET, PING INLINE, LRANGE 100, LRANGE 300 and
LRANGE 500), and another involves update (SET, INCR,
LPUSH, LPOP and MSET). For each workload, 100000
requests are submitted by 10 clients concurrently.

Fig. 9 (a) shows the OPSs of query workloads. The OPSs
are almost the same, because Redis is an in-memory key-
value storage system, and all query workloads are practically
handled in DRAM [28]. The test results of update workloads
are displayed in Fig. 9 (b). The OPS performance between
pcow and raw are equally matched. The OPS of pcow-pba is
better than that of pcow-aof, and achieves 94%, 99%, 98%,
101% and 78% of raw-pba in SET, INCR, LPUSH, LPOP
and MSET workloads respectively. The OPS of pcow is much
higher than qcow2, as the OPS of qcow2-aof only achieves
16%, 14%, 16%, 14% and 36% of pcow-aof in SET, INCR,
LPUSH, LPOP and MSET workloads respectively.

The test results indicate that, with abundant storage virtu-
alization features implemented, our scheme is still compatible
with the real-world application’s optimization for PM in virtual
machines, and the write performance is much better than the
qcow2 format.

VII. RELATED WORK

PM virtualization: Modern VMMs are adding support for
persistent memory virtualization. QEMU starts to support the
use of virtual PM since version 2.6.0 by simply leveraging file-
backed memory mapping and current memory virtualization
mechanisms [1]. Recently, VMware released vSphere v6.7,
which starts to support PM device in both persistent memory
mode and block device mode [2]. However, both QEMU and
vSphere cannot maintain storage virtualization features and
PM’s byte-addressability at the same time.

Liang et al. [32] proposed a PM virtualization solution
named VPM. VPM provides full-virtualization and para-
virtualization interfaces for guest system by extending the
VMM. However, VPM mainly focuses on the performance
improvement and cost-efficiency of using PM in virtual ma-
chines but neglects PM image management.

Compared with existing work, this paper focuses on provid-
ing an effective management for virtual PM while maintaining
PM performance and byte-addressability.

Image format optimization: Modern virtual machine im-
age formats provide convenience for storage resource man-
agement, but degrade the performance due to their complex
metadata. There is a lot of work aiming to optimize the image
formats. Chen et al. [18] mitigated the sync amplification
caused by qcow2 by journaling and proper prealloction. Tang
[22] designed a new high-profermance virtual image format,
namely FVD, which introduces new features like copy-on-read
and prefetching. However, all these solutions are committed to
optimizing traditional I/O virtualization. The proposed pcow
format in this paper is designed for PM images and is
optimized considering PM’s characteristics.



Others: Linux is also supporting storage virtualization
features for PM in its device-mapper layer [33]. However,
only linear target and striped target support the DAX feature
at present. Our scheme is implemented in VMMs, which is
orthogonal to device-mapper and provides more features.

There are also many existing works provide virtualization
for flash storage [34] [35]. Our work dedicates to enhance the
native memory virtualization and bring storage virtualization
features for virtual PM rather than flash-based block devices.

VIII. CONCLUSIONS

As persistent memory is blurring the boundary between
memory and storage, we in this paper bring several storage
virtualization features into virtual machine’s memory virtu-
alization. The implemented prototype provide snapshot, base
image and thin-provision features for PM images with their
byte-addressability and ultra-low latency maintained.

The source code of this work is released on GitHub 1. In the
future, we aim to develop more storage virtualization features
for PM, such as data deduplication and encryption.
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