
Towards Virtual Machine Image Management
for Persistent Memory

MSST 2019

Jiachen Zhang, Lixiao Cui, Peng Li, Xiaoguang Liu, Gang Wang
Nankai-Baidu Joint Lab, Nankai University

• Background & Motivation

• Design & Optimization

• Performance Evaluation

Agenda

• Background & Motivation

• Design & Optimization

• Performance Evaluation

Agenda

Intel’s DIMM form persistent memory

• DIMM form device based Non-Volatile Memory (NVM) technologies.
• Also known as Storage Class Memory (SCM).
• Compared with DRAM :

• Higher capacity
• Non-volatile data storage

• Compared with external block storage:
• Byte-addressable
• Ultra-low latency (<1 us)

What is Persistent Memory (PM)?

Background | Motivation | Overview

Block Storage Virtualization

• Virtual Machine Monitor (VMM)
emulate a virtual disk inside the virtual
machine.

• Virtual disk is backed by an image file
created on the host file system.

• Virtual disk emulation and image file
management are handled by VMM’s
block I/O virtualization mechanism.

Background | Motivation | Overview

PM Device Virtualization

I/O virtualization Memory virtualization

Background | Motivation | Overview

Not byte-addressable
512 B granularity

Byte-addressable &
High Performance

Which one should we choose?
I/O virtualization Memory virtualization

PM Device Virtualization

Background | Motivation | Overview

QEMU’s Block IO Virtualization QEMU’s Memory Virtualization

Storage virtualization
features:
(e.g. qcow2)

• thin-provision
• snapshot
• Base image (template)

Storage virtualization
not implemented!

Background | Motivation | Overview

Not byte-addressable Byte-addressable &
High Performance

Data Access Path of the Two Mechanisms

• Thin-provision tends to promise users a large storage space while allocating
much smaller space at the beginning.

• Snapshot protects the data as read-only after a snapshot is taken. It provides
user the option to roll-back the image to any snapshot point.

• Base image is also called template, it provides the opportunity to build a new
image based on images created before.

Storage Virtualization Features

Background | Motivation | Overview

Byte-addressability
(PM form in Guest)

Storage Virtualization
(Image management in host)

I/O Virtualization Memory Virtualization

✔✘

✘✔

✔

✔

Byte-addressable &
High Performance

Storage virtualization
features

Our Scheme

Background | Motivation | Overview

Byte-addressable &
High Performance

Storage virtualization
features

Challenge:
Data access by-pass the VMM when using memory virtualization.

Opportunity:
PM can take advantage of hardware-assisted address translation designed for

memory virtualization (nPT or EPT) to perform the translation between virtual PM
address and image file offset.

Background | Motivation | Overview

Design a VM image format called
Pcow (short for PM Copy-On-Write).

Three storage virtualization features
implemented with help of Image
Monitor and the Pcow format:

• Thin-provision
• Snapshot
• Base image (templete)

Background | Motivation | Overview

Enhance QEMU’s memory virtualization
mechanism by an Image Monitor.

• Background & Motivation

• Design & Optimization

• Performance Evaluation

Agenda

Image Monitor | Pcow Format | Details | Optimization

Expansion handler
• Expands the image file on demand.
• The basis of thin-provison, snapshot

and base image features.
• An user-space page fault handler

(Linux’s new userfaultfd feature).

Copy-on-write handler
• Protects read-only data from being

written using copy-on-write.
• The basis of snapshot and base

image features.
• An SIGSEGV signal handler. (Raised

when writing to a write-protection
area)

①
②③

Image Monitor | Pcow Format | Details | Optimization

Expansion handler
• Expands the image file on demand.
• The basis of thin-provison, snapshot

and base image features.
• An user-space page fault handler

(Linux’s new userfaultfd feature).

Copy-on-write handler
• Protects read-only data from being

written using copy-on-write.
• The basis of snapshot and base

image features.
• An SIGSEGV signal handler. (Raised

when writing to a write-protection
area)

Expansion handler

Virtual PM

Image File

①

①

②

②③

③

① Guest Apps touch a page with no
PM image file backed, the Expansion
Handler is invoked.
② Pcow format driver allocates a new
block at the end of the pcow image file.

③ Expansion Handler maps the newly
allocated block to the fault address.

Image Monitor | Pcow Format | Details | Optimization

①

②③

Image Monitor | Pcow Format | Details | Optimization

Expansion handler
• Expands the image file on demand.
• The basis of thin-provison, snapshot

and base image features.
• An user-space page fault handler

(Linux’s new userfaultfd feature).

Copy-on-write handler
• Protects read-only data from being

written using copy-on-write.
• The basis of snapshot and base

image features.
• An SIGSEGV signal handler. (Raised

when writing to a write-protection
area)

Copy-on-write Handler

Virtual PM

Image File

①

②

③

Snapshot 1
(read-only)

① Guest Apps access an read-only
page, the Copy-on-write Handler is
invoked.
② Pcow format driver allocates a new
block at the end of the image file and
do COW.
③ Copy-on-write Handler maps the
COWed block to the write permission
violation address.

①

②③

Image Monitor | Pcow Format | Details | Optimization

Image Monitor | Pcow Format | Details | Optimization

• Data and meta-data is organized in fixed-size clusters.
• New clusters are created in an appending manner.
• Much more concise compared with IO virtualization formats like qcow2.

Pcow Image File Layout

• Necessary clflush and sfence instructions are used to maintain for
the crash consistency of meta-data.

Image Monitor | Pcow Format | Details | Optimization

• Some meta-data that needs to be updated frequently is stored in
one cacheline size.

Image Monitor | Pcow Format | Details | Optimization

• Thin-provision: The image file is very much when created.

• Base image: A current image file is created based on the 2 base image file.

• Snapshot: The current image file consists of 2 snapshot part a writable part

A Pcow Image Example

Base Image files

Current Image file

Image Monitor | Pcow Format | Details | Evaluation

Pcow Mapping at Startup

Logical
Address Spaces

Virtual PM
Address Space

Pcow
Image FIles

• Writeable area can be read or write by the Guest Apps.

• Write to the write-protected area will invoke the Copy-on-write Handler.

• Read / write the userfaultfd area will invoke the Expansion Handler.

• Copy-on-write Handler and Expansion Handler do image file operations and
update the EPT page table.

Pcow Updating at Runtime

Image Monitor | Pcow Format | Details | Optimization

Image Monitor | Pcow Format | Details | Optimization

• Dedicated cluster allocation thread is use for cluster pre-allocation.
• Decreases the image expansion latency by 45 us.

Pre-allocation

Image Monitor | Pcow Format | Details | Optimization

• Copy 4KB instead of 64KB cluster size for lower COW latency.
• Decreases the copy-on-write latency by about 200 us.

Fine-grained Copy-on-write

• Background & Motivation

• Design & Optimization

• Performance Evaluation

Agenda

Configuration | Micro-benchmark | Copy-on-write | Redis-PMDK

Prototype implemented based on QEMU 3.0.

Our physical PM device is emulated by a DRAM partition.

Comparisons between:
• Our prototype (pcow)
• Native memory virtualization (raw)
• I/O virtualization image format (qcow2)

• Fio 4KB single thread
• -dax: mmap interface
• -blk: read / write interface

Pcow-dax:
• No overhead compared with native memory virtualization (raw-dax).
• About 50x better than qcow2-blk.

Configuration | Micro-benchmark | Copy-on-write | Redis-PMDK

• Bandwidth: Fio 1MB 16threads
• IOPS: Fio 4KB 16threads
• -dax: mmap interface
• -blk: read / write interface

Pcow-dax:
• No overhead compared with native memory virtualization (raw-dax).
• Bandwidth 4x better than qcow2, IOPS hundreds of times better than qcow2.

Configuration | Micro-benchmark | Copy-on-write | Redis-PMDK

Configuration | Micro-benchmark | Copy-on-write | Redis-PMDK

• Pcow’s copy-on-write performance is about 3x better than qcow2.

Configuration | Micro-benchmark | Copy-on-write | Redis-PMDK

Redis Update Performance

• Redis-PMDK (pcow-pba) still have better performance than Redis (pcow-
aof) when using our scheme.

• Our scheme is still compatible with the real-world application’s
optimization for PM in virtual machines.

• Native memory virtualization (raw-)
• Our scheme (pcow-)
• I/O virtualization image format (qcow2-)

• Redis (-aof)
• Redis-PMDK (-pba)

Summary

• We achieve both virtual PM byte-addressability and image management.

• We implement 3 storage virtualization features for virtual PM.

• We take advantages of EPT for address translation between virtual PM
and pcow image file offset.

• Our scheme is up to 50x faster than I/O virtualization image format
qcow2. Almost no overhead compared with the native memory
virtualization.

Usage:

pcow-img create 64 128 my_pcow_file.img
(KB) (GB)

qemu-sysmte-x86_64 … \
-object memory-backend-file,id=pm,mem-path=my_pcow_file.img,format=pcow,share=on,discard-data=off,merge=off \
-device nvdimm,id=pm,memdev=pm \
…

QEMU parameters:

Source Code Released:
https://github.com/zhangjaycee/qemu-pcow

Thanks! Questions?

Pcow manage tool “pcow-img”:

Nankai-Baidu Joint Lab http://nbjl.nankai.edu.cn

http://nbjl.nankai.edu.cn/

	﻿Towards Virtual Machine Image Management �for Persistent Memory
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Thanks! Questions?

