
XORInc: Optimizing Data Repair and Update
for Erasure-Coded Systems with XOR-Based

In-Network Computation

Yingjie Tang
Huazhong University of Science & Technology

• Introduction
• Motivation
• Design
• Evaluation
• Conclusion

Outline

22019/5/23

• Introduction
• Motivation
• Design
• Evaluation
• Conclusion

Outline

32019/5/23

Replication vs erasure coding

2019/5/23 Yingjie Tang / Huazhong University of Science & Technology 4

 Multiple replications
 High performance

 Fast recovery

 High storage overhead

 Erasure coding
 Low storage overhead

 High network traffic

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Three replications

0 1 2 3 4

0 1

RS(7, 5) k = 5, r = 2

Data repair

Data update

• Repairing a single failed data block needs to read other k
available blocks from multiple nodes

𝒅𝒅∗ = 𝜶𝜶𝟏𝟏𝒃𝒃𝟏𝟏 + 𝜶𝜶𝟐𝟐𝒃𝒃𝟐𝟐 + ⋯+ 𝜶𝜶𝒌𝒌𝒃𝒃𝒌𝒌

• The larger the k is, the worse performance conventional repair
scheme has (k = 12 in Azure and k = 10 in Facebook)

Conventional repair

2019/5/23 5

D1 D2 D3 P1 P2

RS(5, 3) k = 3, r = 2

CCDD22 DD33 PP11

SwitchSwitch

Yingjie Tang / Huazhong University of Science & Technology

Conventional repair

• Updating a data block triggers parity updates for r parity blocks
𝒑𝒑𝒊𝒊 = 𝜷𝜷𝒊𝒊,𝟏𝟏𝒅𝒅𝟏𝟏 + 𝜷𝜷𝒊𝒊,𝟐𝟐𝒅𝒅𝟐𝟐 + ⋯+ 𝜷𝜷𝒊𝒊,𝒌𝒌𝒅𝒅𝒌𝒌, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐,⋯𝒓𝒓

• The larger the r is, the worse performance conventional update
scheme has (r = 4 in Azure and Facebook)

Conventional update

2019/5/23 6

D1 D2 D3 P1 P2

RS(6, 3) k = 3, r = 3

P3

Yingjie Tang / Huazhong University of Science & Technology

CC PP22DD11 PP11

SwitchSwitch

PP33

Conventional update

• Introduction
• Motivation
• Design
• Evaluation
• Conclusion

Outline

72019/5/23

• Conventional repair: A star-structured repair scheme
– Shortage: A single bottleneck link = O(k) repair performance

• Repair pipelining (ATC’17): A chain-structured repair scheme
– Optimization: No bottleneck = O(1) repair performance
– Shortage: Transferring traffic instead of reducing it

Existing repair schemes

2019/5/23 8Yingjie Tang / Huazhong University of Science & Technology

Conventional repair Repair pipelining

CCDD22 DD33 PP11

SwitchSwitch

CCDD22 DD33 PP11

SwitchSwitch

𝒅𝒅∗ = 𝜶𝜶𝟏𝟏𝒃𝒃𝟏𝟏 + 𝜶𝜶𝟐𝟐𝒃𝒃𝟐𝟐 + ⋯+ 𝜶𝜶𝒌𝒌𝒃𝒃𝒌𝒌

• Conventional update: A star-structured update scheme
– Shortage: A single bottleneck link = O(r) update performance

• T-Update (INFOCOM’16): A tree-structured update scheme
– Optimization: O(t) update performance (t < r)
– Shortage: No reduction in traffic & Failure to achieve O(1) performance

Existing update schemes

2019/5/23 9Yingjie Tang / Huazhong University of Science & Technology

Conventional update T-Update

CC PP22DD11 PP11

SwitchSwitch

PP33 CC PP22DD11 PP11

SwitchSwitch

PP33

DD11

PP11

PP22 PP33

• Data repair: No reduction in traffic

• Data update: No reduction in traffic & Failure to achieve O(1) performance

Summary

2019/5/23 10Yingjie Tang / Huazhong University of Science & Technology

For better system reliability, blocks on the same stripe are
distributed in different racks. Therefore, the network traffic

introduced by repair and update operations is cross-rack
traffic.

DD11 DD22 PP11 PP22 … … … …

TORTOR TORTOR TORTOR TORTOR

• Introduction
• Motivation
• Design
• Evaluation
• Conclusion

Outline

112019/5/23

Design goal & related technology

2019/5/23 12

?
O(1) repair and update performance &
significant reduction in network traffic

• The emergency of in-network computation
– Development: Benefit from the rapid development

of software-defined networking and programmable
network devices

– Main idea: Move the computations originally on the
storage nodes to the network

– Advantages for distributed applications: Continue…

Yingjie Tang / Huazhong University of Science & Technology

Advantages of in-network computation

2019/5/23 13

• Remote requests for back-end storage nodes can be
responded in advance in the network, thereby reducing
latency

• Reduce end-to-end traffic and mitigate network congestion

• Servers can be put in low-power mode (e.g., Intel C6 state)
or even be turned off or removed, thus saving energy costs

Yingjie Tang / Huazhong University of Science & Technology

Related works

2019/5/23 14

• NetCache (SOSP’17)
– Goal: Achieve load balance of in-memory key-value stores
– Main idea: leverage switches to cache a little hot data in the network
– Implementation: Switch data plane is written in P4 and is compiled to

Barefoot Tofino ASIC

• IncBricks (ASPLOS’17)
– Goal: Reduce the response latency of in-memory key-value stores
– Main idea: leverage switches to cache large amounts of data for

improving the cache hit ratio
– Implementation: Cavium XPliant switch and network accelerator

(OCTEON or LiquidIO)

Yingjie Tang / Huazhong University of Science & Technology

Related works

2019/5/23 15

• NetRS (ICDCS’18)
– Goal: Improve replica selection effectiveness for key-value stores to

reduce response latency
– Main idea: Enable in-network replica selection and support diverse

algorithms of replica selection (high computation overhead)
– Implementation: Simulation (programmable switches and network

accelerators)

Related works focused on in-memory key-value store

?Whether in-network computation can be applied to other
distributed applications, such as erasure coding?

Yingjie Tang / Huazhong University of Science & Technology

C D2 D3 P1
...

NetRepair

2019/5/23 16

𝒅𝒅𝟏𝟏 = 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 𝒂𝒂𝟑𝟑
𝒅𝒅𝟐𝟐
𝒅𝒅𝟑𝟑
𝒑𝒑𝟏𝟏

= 𝒂𝒂𝟏𝟏 ∗ 𝒅𝒅𝟐𝟐 + 𝒂𝒂𝟐𝟐 ∗ 𝒅𝒅𝟑𝟑 + 𝒂𝒂𝟑𝟑 ∗ 𝒑𝒑𝟏𝟏

𝑎𝑎1 ∗ 𝑑𝑑2 𝑎𝑎2 ∗ 𝑑𝑑3 𝑎𝑎3 ∗ 𝑝𝑝1

𝑑𝑑1

1. Each node performs
multiplication before
sending data

2. The nodes send the result
of the multiplication to the
switch

3. After the switch receives
the data, it performs XOR
on the data from multiple
nodes

4. The switch sends the result
back to the client

Since the computations are done in the
network, end-to-end traffic is reduced

and there is no bottleneck link.

Yingjie Tang / Huazhong University of Science & Technology

Performance analysis

2019/5/23 17Yingjie Tang / Huazhong University of Science & Technology

CCDD22 DD33 PP11

SwitchSwitch

CCDD22 DD33 PP11

SwitchSwitch

CC

SwitchSwitch

DD22 DD33 PP11

Conventional repair

Repair performance: O(k)
Network traffic: 2*k block (k = 3)

{𝑫𝑫𝟐𝟐 → 𝑺𝑺 → 𝑪𝑪,𝑫𝑫𝟑𝟑 → 𝑺𝑺 → 𝑪𝑪,𝑷𝑷𝟏𝟏 → 𝑺𝑺 → 𝑪𝑪}

Repair pipelining

Repair performance: O(1)
Network traffic: 2*k block (k = 3)

𝑫𝑫𝟐𝟐 → 𝑺𝑺 → 𝑫𝑫𝟑𝟑 → 𝑺𝑺 → 𝑷𝑷𝟏𝟏 → 𝑺𝑺 → 𝑪𝑪

NetRepair

Repair performance: O(1)
Network traffic: k + 1 block (k = 3)

{𝑫𝑫𝟐𝟐,𝑫𝑫𝟑𝟑,𝑷𝑷𝟏𝟏} → 𝑺𝑺 → 𝑪𝑪

C D1 P1 P2...

NetUpdate

2019/5/23 18

𝑑𝑑1𝑑𝑑1′

𝒑𝒑𝟏𝟏′ = 𝒂𝒂𝟏𝟏 ∗ 𝜹𝜹 + 𝒑𝒑𝟏𝟏

𝛿𝛿

𝛿𝛿
𝛿𝛿 𝛿𝛿

𝛿𝛿 = 𝑑𝑑1′ + 𝑑𝑑1 1. Data node D1 and client
send data to the switch

2. After the switch receives
the data, it performs XOR
to obtain the δ

3. The switch sends the δ to
the data node D1 and all
parity nodes

Yingjie Tang / Huazhong University of Science & Technology

𝒑𝒑𝟐𝟐′ = 𝒂𝒂𝟐𝟐 ∗ 𝜹𝜹 + 𝒑𝒑𝟐𝟐

Since the computations are done in the
network, end-to-end traffic is reduced

and there is no bottleneck link.

Performance analysis

2019/5/23 19Yingjie Tang / Huazhong University of Science & Technology

Conventional update T-Update

NetUpdate

CC PP22DD11 PP11

SwitchSwitch

PP33 CC PP22DD11 PP11

SwitchSwitch

PP33

CC PP22DD11 PP11

SwitchSwitch

PP33

ddnewnew
ddoldold

δδ δδ δδ δδ

δδ == ddnewnew ++ ddoldold

CC DD11

PP11

PP22SS SS

SS PP11 SS
PP22

CC

DD11

SS

DD11

ConventionalConventional

TT--UpdateUpdate

NetUpdateNetUpdate

ddnewnew ddnewnew 33δδ

PP33

δδ

δδ

δδ

δδ δδ

PP33

22δδ
δδ

δδ

PP11

PP22

PP33

ddoldold

11

22

33

11

22

33

CC DD11SS

ddnewnew ddnewnew

ddnewnew δδ
δδ

δδ

δδ

Performance analysis

2019/5/23 20Yingjie Tang / Huazhong University of Science & Technology

CC DD11

PP11

PP22SS SS

SS PP11 SS
PP22

CC

DD11

SS

DD11

ConventionalConventional

TT--UpdateUpdate

NetUpdateNetUpdate

ddnewnew ddnewnew 33δδ

PP33

δδ

δδ

δδ

δδ δδ

PP33

22δδ
δδ

δδ

PP11

PP22

PP33

ddoldold

11

22

33

11

22

33

CC DD11SS

ddnewnew ddnewnew

ddnewnew δδ
δδ

δδ

δδ

Update performance: O(r)
Network traffic: 2r + 2 (r = 3)

Update performance: O(t) (t < r)
Network traffic: 2r + 2 (r = 3)

Update performance: O(1)
Network traffic: r + 3 (r = 3)

How to select switches

2019/5/23 21Yingjie Tang / Huazhong University of Science & Technology

• This work is done by the SDN controller
There are two basis:
– Datacenter networks offer multiple paths between storage nodes
– SDN controller maintains the global network topology information

• Selection strategy: Three steps

How to select switches

2019/5/23 22Yingjie Tang / Huazhong University of Science & Technology

• Selection strategy:
1. for the x nodes participated in the repair or update operation, the SDN

controller finds the y shortest paths from each node to the client
2. Each x shortest path forms a transmission network, and a total of y^x

transmission networks can be found
3. For each transmission network, determine if the switch at the

intersection of the paths is overloaded

CC … … … …

TORTOR TORTOR TORTOR TORTOR

 …

 …

 …

AggAgg AggAgg

 … CC … … … …

TORTOR TORTOR TORTOR TORTOR

 …

 …

 …

AggAgg AggAgg

 …

• Introduction
• Motivation
• Design
• Evaluation
• Conclusion

Outline

232019/5/23

• Environment
– Storage cluster: HDFS-RAID with 18 docker containers
– SDN network: floodlight + Open vSwitch (1Gb/s)
– In-network computation: Simulation
– Erasure coding: RS(5,3) (default)

• Performance metrics
– Repair time for 1GB data
– Update time for 10MB data
– Network Traffic

Evaluation

2019/5/23 24Yingjie Tang / Huazhong University of Science & Technology

......

SW SW XORXOR

1010GbGb//ss

11GbGb//ss

Bottleneck bandwidth

2019/5/23 25

• NetRepair can make the performance of the degraded read the same as the normal read

0

100

200

300

400

500

600

0 200 400 600 800 1000

Re
pa

ir
tim

e
(s

)

Bottleneck bandwidth (Mb/s)

Conv RP NetRepair Normal Read

Bandwidth
(Mb/s)

Repair time (s)

Conv RP NetRepair Normal Read
50 540.17 190.11 189.28 185.29

100 261.22 93.86 93.13 92.46
200 130.48 46.12 46.27 44.19
400 64.1 26.29 25.43 23.37
500 56.47 20.67 21.02 18.97

1000 28.31 10.56 11.14 9.77

Repair time:
Conv ≈ 3*NetRepair

NetRepair ≈ RP≈ Normal Read

Repair time is inversely
proportional to the

bottleneck bandwidth

≈ ≈

Coding parameter

2019/5/23 26

• Repair performance of NetRepair is independent of k
• The larger the k value is, the more traffic that NetRepair reduces

Repair time: NetRepair always guarantees optimal performance

0

10

20

30

40

50

3 4 5

Re
pa

ir
tim

e
(s

)

k

Conv RP NetRepair

0

2

4

6

8

10

12

3 4 5
N

et
w

or
k

tr
af

fic
 (G

B)
k

Conv RP NetRepair

Network traffic: As k increases from 3 to 5, the network
traffic reduction of NetRepair increases from 33% to 41%

Bottleneck bandwidth

2019/5/23 27

• NetUpdate significantly reduces update time

Update time:
Conv ≈ 2*NetUpdate

Update time is inversely
proportional to the

bottleneck bandwidth

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000

U
pd

at
e

tim
e

(s
)

Bottleneck bandwidth (Mb/s)

Conv NetUpdate

Coding parameter

2019/5/23 28

• Update performance of NetUpdate is independent of r
• The larger the r value is, the more traffic that NetUpdate reduces

Update time: NetUpdate always guarantees optimal performance

Network traffic: As r increases from 2 to 4, the network
traffic reduction of NetUpdate increases from 17% to 30%

0

100

200

300

400

500

2 3 4

U
pd

at
e

tim
e

(m
s)

r

Conv NetUpdate

0

20

40

60

80

100

120

2 3 4

N
et

w
or

k
tr

af
fic

 (M
B)

r

Conv NetUpdate

Thanks for listening
Q&A

2019/5/23 29

	Slide Number 1
	Outline
	Outline
	Replication vs erasure coding
	Conventional repair
	Conventional update
	Outline
	Existing repair schemes
	Existing update schemes
	Summary
	Outline
	Design goal & related technology
	Advantages of in-network computation
	Related works
	Related works
	NetRepair
	Performance analysis
	NetUpdate
	Performance analysis
	Performance analysis
	How to select switches
	How to select switches
	Outline
	Evaluation
	Bottleneck bandwidth
	Coding parameter
	Bottleneck bandwidth
	Coding parameter
	Slide Number 29

