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Abstract—The emerging non-volatile memory (NVM) has
attractive characteristics such as DRAM-like, low-latency to-
gether with the non-volatility of storage devices. Recently, byte-
addressable, memory bus-attached NVM has become available.
This paper addresses the problem of combining a smaller, faster
byte-addressable NVM with a larger, slower storage device, like
SSD, to create the impression of a larger and faster byte-
addressable NVM which can be shared across many applications.

In this paper, we propose vNVML, a user space library for
virtualizing and sharing NVM. vNVML provides for applications
transaction like memory semantics that ensures write order-
ing and persistency guarantees across system failures. vNVML
exploits DRAM for read caching, to enable improvements in
performance and potentially to reduce the number of writes
to NVM, extending the NVM lifetime. vNVML is implemented
and evaluated with realistic workloads to show that our library
allows applications to share NVM, both in a single O/S and
when docker like containers are employed. The results from the
evaluation show that vNVML incurs less than 10% overhead
while providing the benefits of an expanded virtualized NVM
space to the applications, allowing applications to safely share
the virtual NVM.

I. INTRODUCTION

Emerging non-volatile memory (NVM) technologies, such
as phase-change memory (PCM) [1], NVDIMM [2], and 3D
XPoint [3], will dramatically shake up future system designs
[4]–[8]. In particular, these NVM technologies promise not
only much faster access times than existing SSDs, to within
an order of magnitude of DRAM, but they also are “byte”
addressable and will be placed directly on the memory buses.
As a result, these NVM technologies could be used to replace
existing permanent storage devices or even volatile memory
(single level system).

To date there have been significant works in this domain.
Some [6], [7], [9]–[12] engineer novel file systems suitable
for exploiting NVM. Some [8], [13] carefully design their
data store manipulation mechanism to directly access data
structures from NVM, to maximize performance. These prior
works, however, currently present no way to virtualize and
share persistent NVM among multiple applications and users.

Traditionally, there are two common ways for applications
to access data content in storage devices. One is through

the file system read/write interface, the other is via the
memory mapped file (mmap) interface. The expensive system
calls incurred by accessing through the file system, however,
squander the low-latency provided by NVM. Considering
boosting maximum gain from NVM, in this paper, we focus on
memory mapped file access form. Currently, when mmapping
files on storage devices to volatile memory (DRAM), the
POSIX interface can support sharing the same memory region
of files between processes (i.e. shared mmap). Also, thanks
to the swapping mechanism of virtual memory, which writes
dirty pages back to the backing storage devices and produces
clean pages for the future use, the physical available DRAM
is extended. These two attractive properties of existing virtual
memory, however, are not supported by the prior works of
NVM.

This paper considers this problem of virtualizing and shar-
ing byte-addressable NVM across many applications. Here
we introduce “vNVML”, an efficient user space library for
virtualizing and sharing NVM. What we mean by “sharing
NVM” here is that not only can the same NVM pages be
reallocated and reused across users, but the data content on
NVM can also be seen/accessed by applications concurrently.

One of the aims of vNVML is to provide the impression
of large NVM availability to applications, much like virtual
memory allowing the use of more main memory than the
actual physical memory in the machine. In order to virtualize
NVM in this manner, this paper examines extending a smaller
amount of byte addressable NVM with larger, traditional
storage devices1. Further, we examine mechanisms to safely
leverage DRAM as read cache to improve the performance of
persistent memory access. There are certain advantages in em-
ploying the DRAM even when the applications access virtual
NVM. First, DRAM may have better performance than most
types of NVM, except for NVDIMM. Second, DRAM may
alleviate lifetime issues of NVM in read-intensive workloads,
since many NVM technologies have write endurance limits. In
our design, some reads can be served by reading pages from

1Note: while our approach can be applied with magnetic disks as a backing
store, here we limit ourselves to SSDs.



storage devices to DRAM, bypassing the NVM entirely. This
might be a better design choice compared to employing NVM
as both read and write cache in terms of reducing number of
write access.

We design and implement vNVML with the hope that
programmers could access NVM with a similar interface as
for existing memory mapped files. That is, after mmapping
a file on the storage device as virtual NVM, a pointer is
returned. This pointer can be directly accessed in the program
as a typical mmapped pointer to virtual memory. However,
when NVM is exploited as permanent storage by applications,
the durability and ordering of writes must be assured. Write
ordering as required by byte-addressable NVM has been
discussed almost in every prior work [8], [11], [13]–[15].
Many solutions have been proposed to address the write order-
ing problem within persistent memories, including hardware
capacitors to ensure eviction of all data from volatile memories
to NVM [11], epoch-based writes [11], [14], transaction like
semantics [14]–[17], versioning [13], and special data stores
and algorithms designed for NVM [8], [13]. Here vNVML
proposes to use transaction like semantics to guarantee the
atomicity and durability of NVM accessing.

vNVML employs DRAM as read cache, NVM as log
buffer and write cache, and the backing storage device as the
final destination of writes. Through our evaluations, vNVML
incurs less than 10% throughput overhead compared to directly
accessing NVM without an atomicity guarantee.

The contributions of this paper are as follows:
• Propose a transactional interface for virtualizing and

sharing persistent non-volatile memory.
• An implementation of this interface in our virtualized

NVM Library, vNVML.
• This implementation leverages read caching in DRAM,

coupled with write logging and caching in NVM with
lazy write-back to the backing store to provide a high
performance, virtualized, and shareable NVM to applica-
tions.

• We evaluate this proposed vNVML under synthetic as
well as realistic (YCSB+MongoDB) workloads and show
it is competitive with prior techniques which do not
support virtualization.

The remainder of this paper is organized as follows. Section
II describes background and prior work in this area. Section
III presents a design overview and discusses the design deci-
sions of vNVML. Section IV explains the implementation of
vNVML in detail. Section V presents our results of evaluation
of vNVML and section VI concludes.

II. BACKGROUND

Much of the early work to-date incorporating NVM in
systems assumes basic hardware changes. New memory con-
trollers are proposed by [18]–[20]. Kiln [21] proposes a victim
cache for buffering and Atom [22] deploys a hardware logging
approach to avoid software logging overhead. BPFS [11]
develops a new “epoch” for write ordering. While these
approaches show promise, they require significant hardware

redesign, which may take several years to be reflected in
commercial hardware.

In the more near term, we first expect that NVM DIMMs
will become available which will directly connect to the
system memory bus with little or no changes to the basic
processor caching and memory management hardware. For ex-
ample, the recent Intel and Micron’s collaborations to produce
Optane NVM DIMMs [3].

Near-term systems will incorporate this type of NVM be
directly on the memory bus, where it will be accessible via the
system’s physical address space. These system architectures
argue for a pure-system software approach to management.
Existing work to-date looking at system software approaches
to managing this form of NVM primarily focuses on construct-
ing new file systems to handle the underlying NVM [6], [7],
[9]–[12], [23], [24]. Some of those works have considered
building file systems across multiple types of NVM and
storage technologies. These include NVMFS [10] (NVM and
SSD), and Strata [6] (DRAM, NVM, SSD, and HDD). The
design concept of Strata is close to our vNVML, both of which
contain DRAM and NVM as caches. However, the DRAM of
Strata only caches the pages read from SSDs and HDDs and
all updates would go directly to NVM only. Therefore, Strata
needs to search for the up-to-date data locations. Also, Strata
does not support memory mapped files, which are used by
our target applications. Generally speaking, accessing NVM
through the file system interface is not suitable for random,
small access of NVM since the overhead of expensive system
calls will squander the low-latency that NVM offers. Another
drawback is that such software approaches require users and
applications to deploy their dedicated file systems.

Some work considers replacing DRAM and disk with NVM
to build a single level system, and manipulating data structure
operations directly on NVM, like NV-Tree [8] and CDDS-
Tree [13]. However, such approaches restrict themselves to
only some specific data structures and cannot be easily applied
to general memory access. SPAN [25] proposes some new
swapping enhancements in the O/S kernel to exploit NVM
as extended system memory. NV-Heaps [14] provides some
useful features, such as type-safe pointers and garbage col-
lection, but it requires programmers to use its specific object
framework and hardware must support epoch as BPFS does.

Some other approaches create user space libraries [15]–
[17], [26]. Intel PMDK [26] and Memaripour et al. [17]
consider employing only NVM and utilizing undo logging to
provide in-place updates. Giles et al. [16] combine NVM and
DRAM and use DRAM for write/read accesses and NVM
for redo logging. However, during the normal operations,
the data content is “retired” from DRAM to the final loca-
tions in NVM, and the logs in NVM are referenced only
after system failures. The most related work to our vNVML
is Mnemosyne [15], which also uses redo logging. While
Mnemosyne provides both persistent region and persistent
heap allocation methods, vNVML does not support heap style
allocation. However, there are some fundamental difference
between these two approaches. Mnemosyne achieves NVM



virtualization by swapping, which is controlled entirely by the
kernel. Further, it does not employ DRAM as read cache, so
it requires an extensive search to find up-to-date data. Also,
Mnemosyne cannot support true sharing of NVM between
processes.

In this work we propose a system software-based man-
agement approach which makes NVM available directly to
user applications, without the block-level semantics of tra-
ditional file systems. Furthermore, our work also provides
write ordering and endurance guarantees while offering a
larger than available physical NVM space to the applications
and allowing them to safely share the virtual NVM regions,
while maintaining performance goals by leveraging caching in
DRAM.

III. DESIGN OVERVIEW

In this section we describe our design and provide an
overview of the decisions made in the design of the virtual
NVM Library (vNVML), a user space library for virtualizing
and sharing NVM. Our design decisions are guided by the
following four observations.

First, persistent memory is typically allocated and dedicated
to an application. When a file system writes data to a location
in persistent memory, that location cannot be reused or real-
located by another application. If NVM is similarly allocated
and used, NVM cannot be easily shared across applications
if NVM is the only persistent storage devices in the systems.
In data centers, with dynamic workloads, there is a strong
desire to share available resources across many applications.
It is essential that we provide mechanisms to share precious
resources like NVM across many applications.

Second, simply replacing traditional storage devices, such
as SSDs or HDDs, with NVM is not good enough. Although
by doing so, all applications can benefit from performance im-
provements brought by NVM immediately without any modifi-
cations required; however, this ignores the byte-addressability
of NVM and can require accessing NVM in units of blocks,
resulting in a suboptimal approach.

Third, the access latency of NVM is very close to that of
DRAM and is much faster than that of storage devices. When
storage devices are slow (for example magnetic disks), the
overheads paid by accessing data through system calls, may
not be a significant part of the access latencies. However, as
devices get faster, these system call overheads become much
more significant and hence must be avoided.

Finally, while it is possible (and even desirable) to continue
running existing or older software on new hardware, software
may have to be rewritten to get the most of the hardware. This
can take the form of new file systems, new applications [8],
[14] or new libraries [15]–[17], [26], [27]. In this paper, we
take the approach of developing a user space library interface
to NVM to achieve our goals.

Based on above four observations, we designed the vNVML
library, integrating DRAM, NVM, and storage devices to
construct the abstraction of virtualized NVM. Like virtual
memory, adopted almost universally in the modern computer

Fig. 1: The read/write data flow of vNVML private mmapping
between DRAM, NVM, and storage device.

systems, the main idea of virtual NVM is to provide the
illusion that applications and users can treat (virtual) NVM
contained in their system as large as the capacity of the storage
devices in the system and as fast as the speed of NVM (or
even DRAM).

Usually applications have two means to access the data on
a storage device, one is through file system commands such
as open, read, and write, the other is through memory
mapped files. In order to expose the byte addressability of
NVM, we focus on memory mapped files, such that the
applications access NVM much like memory, through byte-
level load/store interfaces.

vNVML places no limits on which file system may be used
and only requires that the file system must support mmap.
Here we hope that programmers adopt vNVML as much the
same way as they employ existing POSIX mmap for volatile
memory, except that they must follow the transaction like
semantics. Meanwhile, the benefits of performance improve-
ment, atomicity, and durability are provided.

From here, we focus on vNVML’s private mmap access
mode, meaning that virtual NVM regions can only be accessed
by a single process. The mechanism for NVM sharing mode
is slightly different and, to avoid confusion, is explained in
section IV-D. vNVML utilizes NVM both as a log buffer and
as a write cache and DRAM as a read cache. The reads can
only be served by read caches. Modified data are written to
the NVM log buffer first and then copied to NVM (write
cache) and DRAM (read cache) only when the logged data are
committed. If pages containing accessed data are not already
in NVM or DRAM, they are copied from the storage devices
to NVM or DRAM. Data are evicted from the NVM write
cache back to storage devices only when NVM usage demands
exceed some threshold of the available NVM. Before programs
are terminated safely, all data are completely flushed from
NVM to files. The interactions between DRAM, NVM, and
storage devices are shown in Fig.1 for both read and write
operations.

The key ideas behind our design choices are as follows:
Use NVM as log buffer: Like other NVM libraries, we also
use transaction semantics as interface for vNVML to provide
atomicity and durability. All written data are immediately
stored at some temporary non-volatile storage locations before



transactions commit. Since this logging process must be in the
write critical path, employing NVM as temporary non-volatile
log buffer provides significant performance advantage.
Redo logging: Typically, there are two approaches to logging:
undo and redo logging. Both have pros and cons toward
different workloads [28]. Undo logging requires that we persist
old data as logs before we update new data in place. These two
actions (logging and in place update) are in the write critical
path. For redo logging, we persist all new data as logs to non-
volatile media first, then we in place update new data on the
storage device.

In vNVML, we augment redo logging by using DRAM as a
read cache. Modified data are written to the NVM log buffer,
and are also written to DRAM, during the commit command,
for reads following this write. With the help of a read cache
(DRAM), only persisting writes on the log and updating to
DRAM are in the write critical path (from the perspective of
the whole transaction). Updating data on the storage devices
can be executed in the background, without it being in the
write critical path.

Although undo and our redo logging both double the written
data in the write critical path (undo: 2 NVM versus our redo:
1 NVM and 1 DRAM), using our redo logging still has three
advantages. First, even though the access latency of NVM is
close to that of DRAM, the write latency of DRAM is still
shorter than that of NVM [29], [30]. So writing to DRAM is
still faster than writing to NVM. Second, writing to DRAM
does not need ordering constraints, which use clflush,
clflushopt, clwb, and sfence instructions and are
time-consuming. Third, for read-intensive workloads, read
cache can serve some reads without accessing NVM, which
might potentially reduce the writes to NVM and alleviate the
lifetime issues of NVM.
Update committed data to read cache: Before logs of
uncommitted transactions can be placed into real positions,
reading the data still in the logs requires parsing the logs
to find the newest data, which can be time-consuming. This
process is in the read critical path. In most workloads, the
frequency of reads is much higher than that of writes. For
example, Yahoo! Cloud Serving Benchmark (YCSB) [31]
framework refers to workload A (50/50 read/write ratio) as
update-heavy workload. In terms of the overall performance,
shortening the read critical path is more important than write
critical path. So we simply use DRAM as a read cache to serve
all read actions, and update the data into the DRAM in the
commit command (through parsing the logs belonging to this
transaction sequentially). By doing so, the following reads,
after transaction commits, could read directly from DRAM.
Our design doubles the written data on the write critical path,
but it makes the reads faster as data can be directly read from
DRAM, without having to search the entire log buffers. The
section IV-A will explain the detailed mapping of read cache,
log buffer, and write cache into virtual address space of each
process.

Two restrictions are related to the read cache: (1) reads
can only be served by the read cache and (2) written data

is copied to read cache only when the transaction commits
to accomplish the isolation property; that is, only committed
data is visible. This is sometimes referred as “read committed”
transaction isolation level [32]. However, our transactions are
defined differently from that of transactions in the traditional
database systems. In database systems, the focus is on the
consistency of transactions to ensure correct data is accessed
between multiple concurrent transactions. In vNVML, we em-
phasize the persistency [33] of transactions. Here we define the
committed (uncommitted, respectively) data are that the written
data must be valid (invalid, respectively) after system crashes.
We leave the consistency of transactions to the discretion of
programmers/applications.
Use NVM as write cache: All the written data are at the log
buffer when transactions commit. Data need to be gradually
moved from the log buffer to their true destinations on storage
devices to avoid overflowing the log buffer. Committed data
are written to NVM by utilizing part of NVM as a write cache.
This allows us to migrate the logs quickly to more permanent
locations and to maintain the log buffer from taking too much
space.

A background worker (thread) is responsible for copying
data from (NVM) log buffer to (NVM) write cache to avoid
extra overhead in the write critical path. This design is also
suitable for the cache-friendly applications because logs could
be directly copied to NVM cache (where data are moved from
NVM to NVM). Writing data to NVM allows us to maintain
data safety, providing a better performance if future writes hit
in the write cache.
Write to storage devices through write cache or read cache:
During the write command, data are written to the log buffer,
and then written to NVM cache. These data are also written
to DRAM during the commit command. So, the data have
two paths, from DRAM or from NVM, to reach the storage
devices. Depending on whether the regions of virtual NVM are
to be shared across applications or not, we employ different
strategies. For private virtual NVM regions, private mmap,
which adopts copy-on-write mechanism and all written data
remain only at DRAM, is used to construct the read cache.
Therefore, the data can only be written back to storage devices
from NVM cache.

On the other hand, when shared NVM regions are required,
shared mmap is adopted to construct the read cache, and
data are written from DRAM to storage devices. Here NVM
cache is not used and logs in NVM log buffer are referenced
only when recovering from system failures is needed. Further
details are provided in section IV-D.

Fig.2 illustrates the read/write flow of accessing private
virtual NVM region and the propagation of data between
DRAM, NVM, and storage device in detail. (a) A file on
the storage with page A and B initially. (b) A read from
page A lets page A is copied from the storage device to the
memory and then the application reads page A directly from
the memory. (c) A write to page A results in a log ∆A is
appended to the log buffer. (d) Another write to page B also
results in a log ∆B is appended to the log buffer. (e) The



Fig. 2: The flow of read/write data of vNVML.

transaction commits. The page A in memory is updated with
∆A to page A’, and page B is copied from storage to the
memory by Copy-on-Write mechanism and is also updated
with ∆B to page B’. Page A and B are read from storage
device to NVM cache and are applied the logs ∆A and ∆B
to be page A’ and B’ by a redo background thread. (f) Another
writeback background thread writes the page A’ and B’ from
NVM cache back to the storage device.

IV. VNVML API AND IMPLEMENTATION

In this section, we explain the implementation of vNVML in
detail. We start from the introduction of the APIs that vNVML
provides and describe their functions. Next, we describe the
data structures that vNVML manages in the user space of
applications, and then introduce two background workers (per
process) for parallel processing in vNVML. Then, we explain
the implementation of sharing regions of vNVML. Finally, we
discuss some general issues in vNVML implementation.

A. vNVML API

Algorithm 1 shows all APIs that vNVML offers and their
brief implementation.

Every application (process) first needs to call nv_init
once before it starts to utilize vNVML. The first caller creates
(a log buffer, a cache, along with associated metadata) files
in NVM and a shared memory object by calling shm_open.
The first caller is also responsible for constructing one linked
list for pages of NVM cache as a free list and the other linked
list for pages of the log buffer. Section IV-B describes the
linked list data structure in more detail. The shared memory
object contains and provides global information accessible
by all users such as number of total current vNVML users,
unique application ids assigned to each application, and unique
transaction ids for each transaction. Because pages in free list
and log buffer do not contain information and therefore do
not relate to recovery process as well as they also need to

Function nv init (void)
if caller is the first caller then

initialize vNVML;
construct linked lists for NVM cache and log
buffer;

end
mmap NVM files such as cache, log buffer, and
metadata into caller’s virtual memory space;

Function nv release (void)
wait for redo background worker to apply
committed logs to NVM write cache;

flush all dirty pages to the storage;
munmap all NVM files;
if caller is the last caller then

release all resources allocated by vNVML;
erase all NVM files;

end
Function nv allocate (path filepath, size n,

mapping mode mode)
acquire fd by open(filepath);
get fileptr from mmap(n, mode, fd);
return fileptr;

Function nv free (pointer fileptr, size n)
munmap(fileptr, n);

Function nv txbegin (void)
generate a unique transaction tid;
return tid;

Function nv write (id tid, address dst, address src,
length n)

if log buffer is needed and no log buffer is
available then

return the number of written data;
end
Allocates a page from log buffer if necessary;
Add written data from address src to src+n as log
entries of tid to one of the open log lists;

return the number of written data;
Function nv commit (id tid)

update the read cache by parsing logs of tid;
move logs of tid from one of open log lists to the

tail of a committed log list;
Function nv abort (id tid)

remove logs of tid from open log lists;
Algorithm 1: vNVML API.

be accessible by all applications, their linked list heads are
stored in this shared memory object, too. All callers shared
mmap all files created in NVM by nv_init command to their
virtual address space. These files are mapped by vNVML and
applications have no information of mapped address regions
of these files, so all accesses to NVM files from applications
can only be through vNVML.

To allocate virtual NVM regions, applications call
nv_allocate by passing a path filepath in the storage, a
file size n, and the mapping mode (private or shared). If the



Fig. 3: The mapping of virtual address space of a process after
calling nv_init and nv_allocate.

file exists, then it is opened; if it does not, a new file is
created at filepath and posix_fallocate it with size n.
The file descriptor fd returned from open command, along
with application id and filepath are stored as a file record entry
(application id, fd, file path) of the metadata file for recovery
process if needed. Finally, A file pointer fileptr obtained by
mmapping this file is returned to the caller.

Fig. 3 illustrates the virtual address space of a process after
calling nv_init and nv_allocate for a file. Only the
mapping regions of files in the storage devices are known by
applications.

After virtual NVM regions are allocated, applications
can access virtual NVM like accessing real NVM through
fileptr (virtual address returned from nv_allocate) for
reading and the nv_txbegin, nv_write, nv_write,...,
nv_commit command series for writing. The nv_txbegin
generates and returns a unique transaction tid for the following
nv_write(s) and nv_commit commands to construct a
single transaction.

The nv_write command is used to write data into virtual
NVM. Through nv_write command, all data are written as
redo logs in the log buffer. The first nv_write must allocate
a log page from log buffer. If a log page is needed and no log
page is available, then nv_write returns the size of written
data so far. To write logs, a log object to store the log pages of
this transaction is allocated from NVM and is put into one of
32 open lists of this process according to its transaction tid%32
(modulus operator). Log pages allocated from the linked list
of log buffer by the same transaction are appended to the tail
of the corresponding linked list of the log object in the open
lists.

A single nv_write command may create several log
entries. It first depends on the destination position and then
depends on the left space of the current log page. This is
because we want the data from a single log entry to be placed
entirely within a single NVM cache page to simplify the design
and implementation of redo background worker described at
section IV-C.

During nv_commit, vNVML traces the log entries sequen-
tially from the linked list of log object for this committed
transaction tid and writes all committed data from log entries
to the read cache. Next, vNVML moves this log object
(along with all log pages linked to this log object) from the
corresponding open list to the tail of the only committed list

of this process and persists all log entries as well as log object
in NVM. The committed list head is the metadata of the
applications in NVM. All log entries in the committed list
are guaranteed preserved across power failures.

Finally, applications call nv_free (nv_release, respec-
tively) if they do not want to access a certain file (do not want
to access entire virtual NVM at all, respectively). nv_free
is used to munmap the file mapped by the nv_allocate.
After nv_release is called, the application waits for all its
committed logs, if exist, to be applied to NVM cache by a redo
background worker, actively flushes all dirty cache pages back
to the storage devices, and munmaps all NVM files mapped
at nv_init.

Algorithm 2 shows a typical example of using vNVML.

nv init();
ptr = nv allocate(filepath, filesize, mode);
tid = nv txbegin();
x = 100;
y = 200;
nv write(tid, ptr, &x, sizeof(x));
nv write(tid, ptr+sizeof(x), &y, sizeof(y));
nv commit(tid);
nv free(ptr, filesize);
nv release();

Algorithm 2: Example of vNVML.

B. vNVML data structures

The NVM log buffer and NVM cache are partitioned
into units of 4KB pages and organized as linked lists. The
implementation of linked list for pages is through metadata;
that is, for each page a corresponding page object is created
from NVM metadata file and connected to each other as a
linked list. Therefore, a page object from the linked list is
allocated is the same as the corresponding page is allocated.

However, as mentioned in [34], constructing the linked list
in NVM is not the same as constructing a typical linked list
in memory. In NVM, the virtual address cannot be used as
pointer because there is no guarantee that the NVM files can
be mounted into the same virtual space regions by multiple
applications. Thus, we replace the address with the index of
the page starting from 0 to construct the linked lists in NVM.
Similarly, we substitute the offset from the starting address to
the current position, when an access needs to be made, for the
address to be stored into NVM.

Page objects for the log buffer and cache are created by
different metadata files at nv_init. After a page object
of log buffer is allocated, the application id is stored into
page object, and the log entries can be written directly into
the corresponding log pages. The first field of the log page
is the total written bytes to this page, and log entries are
appended sequentially. The log entry contains log header,
including offset, file descriptor, and length of this entry,
followed by the redo data. The page object (application id),
the log entry header (offset, fd, and length of log), and file



record (application id, fd, file path) already contain enough
information for the recovery worker to write the committed log
entries directly back to corresponding files of storage devices.

To handle cache pages, one free list is created through
the shared memory object, and the others, dirty and clean
lists, are created within each application. Cache pages are
allocated from the free list and become dirty pages attached
to the dirty list after the redo background worker copies the
corresponding pages from files in the storage devices and
applies corresponding log entries on them. Dirty pages become
clean ones and are attached to the clean list after the writeback
background worker writes the dirty pages back to files in
the storage devices. The dirty and clean lists implement LRU
replacement.

For the individual cache page, besides the application id
of the page owner, some extra information is also stored into
the corresponding page object, such as the fd (file descriptor),
offset, and dirty flag. The fd is known from the header of log
entries by redo worker during it redoes. The offset is the file
offset of this page. The dirty flag is set only if this page is
dirty (in the dirty list). This flag is cleaned after writeback
worker writes this dirty page back to files and puts it into the
clean list. Thus, the recovery worker only needs to handle the
pages whose dirty flag are set. Also, the information contained
in the page object (application id, fd, file offset, and dirty flag)
and the file record (application id, fd, file path) are enough for
recover worker to write the dirty pages back if system crashes.

Partitioning the log buffer and page cache at a 4KB page-
size granularity and organizing them as linked lists has some
advantages. First, the allocation and deallocation of pages from
log buffer and free list are both O(1). Second, the management
of log buffer and cache space becomes easier since the space
is managed in terms of pages, rather than bytes or variable
size segments. Third, it makes it easier to share pages of the
log buffer and free list across applications through linked lists
maintained at the shared memory object.

To prevent a single application from allocating all log
pages and cache pages, vNVML adopts the equal share policy
through the shared memory object, containing the total number
of current applications. Applications can allocate log pages
from the log buffer or cache pages from the free list if and only
if the number of allocated pages does not reach their shares.
A new joining user of vNVML may result in all current users
exceeding their shares. Two background workers described in
the following section, help to return extra pages back to log
buffer and free list.

Fig. 4 illustrates the relation between open list, committed
list, log object, and page object.

C. Background workers

Two background workers (threads) are created by each
process at nv_init. The redo background worker keeps
checking the committed list. If the committed list is empty,
the worker goes to sleep for a while (10us in the current
configuration) and checks the committed list again after it
wakes up. If the committed list is not empty, the redo worker

Fig. 4: Open list contains log objects of transactions. Each
log object may link several page objects (of log pages). After
transaction commits, the log object (along with its log pages)
of the transaction is appended to the tail of the committed list.
Redo worker always redoes from the head of the committed
list; therefore, the transactions which is committed early would
be replayed early, too.

gets the first log object (for some transaction) from the head
of the committed list, and replays the log entries sequentially
from log pages of this log object to NVM cache pages. If
a cache miss happens, redo worker is also responsible for
reading this page from files in the storage device to NVM
cache page. The log pages can be returned to the log buffer
pool only after the entire logs of a transaction are completely
replayed by the redo worker.

The other writeback background worker is responsible for
writing the dirty NVM pages back to the storage devices. To
avoid accessing storage devices too frequently, we employ a
threshold on dirty NVM pages accumulated in the dirty list
(we use 30% of cache page share), then dirty pages are written
back to the storage device by the writeback worker. The dirty
pages are attached to the clean list after written back. However,
if the number of allocated cache pages exceeds the share
because of new joining applications, the writeback worker will
further release the clean pages back to the free list. Also, after
the number of the dirty pages drops below some threshold
(we set 10% of cache page share), the writeback background
worker is stopped and dirty pages are accumulated again.

Both background workers are killed upon the nv_release
command.

D. Sharing NVM between processes

The implementation of sharing NVM regions between pro-
cesses is slightly different from what we have implemented for
private regions. At nv_allocate, a file is shared mmapped
and a committed list head is maintained at metadata of NVM
for each shared mmapped file. By sharing mmapping of read
cache, processes which require to access this region can share
the same view.



One limitation needs to be complied when writing to sharing
regions; that is, all writing destinations of a single transaction
must lie within a single shared region. When writing to a
shared region, data are still written to log buffer first. At
transaction commits, the data from log buffer are replayed
to the DRAM of a single shared memory region, and logs
of this transaction are moved from one of 32 open lists of
a process to the committed list of this shared region. We
do not utilize NVM cache here to simplify the design. To
avoid parsing all logs when flushing data back to storage
devices later, a global bitmap of dirty pages belonging to this
shared region is maintained in DRAM and is updated at the
end of nv_commit command by the local bitmap of each
transaction, which is constructed by parsing and replaying logs
to DRAM at nv_commit.

After logs are accumulated to a certain threshold, at a
nv_commit command, a background thread is triggered,
which atomically copies the global bitmap to the local variable,
wipes the global bitmap out to zero, and marks the tail
transaction of committed list. Then several msyncs might be
issued to flush dirty pages back to storage device according
to the local variable of global bitmap. Only after flushing
is completed, can logs of transactions from head to the
marked tail be removed from the committed list. During the
flushing procedure, other transactions can still proceed and be
committed since their logs are appended after the marked tail
transaction.

E. Transaction aborts and long running transactions

For some extreme cases, the log buffer may run out of space
if too many long running transactions, which keep writing
data before commitment, execute concurrently. This situation
can be detected when pages cannot be allocated from the log
buffer pool for a while. vNVML could actively abort long
running transactions by recording the timestamp into the log
objects when log objects are allocated by transactions. The
redo worker can periodically check the log objects from the
head of each open lists and can abort the transactions whose
elapsed time exceed some predefined threshold. Applications
can also abort transactions for various reasons.

When a transaction is aborted, since all its logs are still
in an uncommitted state (in the open list), these logs can be
discarded directly and log pages are returned back to the log
buffer pool. Moreover, because transactions of vNVML sup-
port the isolation property, when one of the nested transactions
needs to be aborted, aborting all transactions involved in the
nested transactions may not be necessary and depends on the
discretion of applications.

F. Data recovery

Systems or applications may crash due to an unexpected
failure at any moment such as power shortage, bugs of applica-
tions, or inadequate kernel resources. The mandatory function
any NVM solution should provide is to ensure the data
persistency after systems or applications crash. In vNVML, we
handle this by a recovery program run by root. After systems

Fig. 5: The correct order of pointer updates for the objects of
linked lists in NVM. From (a) to (c) is for the object insertion;
from (c) to (a) is for object deletion.

reboot, a recovery worker (process) first mmaps the NVM
files (log, cache, and metadata) into its virtual memory space.
From section IV-B we know the recovery worker already has
enough information to recover the dirty pages and log entries
back to files in storage devices by tracing the page objects,
file records, and committed lists.

The order of objects in the committed list is important and
we should replay the objects sequentially. With the help of 8-
byte atomic update feature natively supported by processors,
the order of objects can be maintained correctly by carefully
handling the order of pointer updates between objects of linked
lists. Fig. 5 illustrates the process of insertion and deletion of
a object.

After this recovery process finishes, all NVM files are
erased, and vNVML can be restarted again. This recovery
process can always be re-executed as many times as needed
if the system ever crashes again during the recovery process
since all the required data and metadata are conserved in NVM
and are erased only after a successful recovery.

G. Security

Security is a major concern in the modern computer sys-
tems, especially in the data center, where infrastructure has
to protect against any attacks from third party applications.
In vNVML, we guarantee the security in two aspects. First,
the private regions are produced by private mmap. Due to the
Copy-on-Write mechanism brought from private mmap, all the
direct writes within this private address region will remain
within the memory (virtual address space of the user process)
and cannot impact the contents at the storage device.

Second, all the writes to private regions must be ex-
ecuted through nv_txbegin, nv_write, nv_write,...,
nv_commit command series. Those APIs are entirely con-
trolled by vNVML and accessing NVM (log buffer, cache, and
metadata) files, which are invisible to applications, is not al-
lowed outside vNVML. When applications try to write beyond
the mapped regions (or outside allocated virtual addresses),
the protections within the memory system will detect these



Fig. 6: The experiment setup of YCSB, MongoDB, and
vNVML.

violations. In addition, the vNVML bound checks will not
allow these writes to proceed.

V. EVALUATION

In this section, we conduct experiments to answer funda-
mental questions about vNVML as follows:

• What are the characteristics of the vNVML?
• How does vNVML impact the performance when used

by real applications?
• How to decide the size of the log buffer and the cache

given a fixed and limited size of NVM in the platform?
• How does the vNVML perform when multiple processes

concurrently access the NVM through vNVML?
• What is the impact of using vNVML within the container

environment?
• How does the vNVML perform compared to other li-

braries?

A. Experimental setup

Due to the absence of real NVM, we emulate NVM by
DRAM [35] for all our experiments. We mount the NVM with
the Ext4 file system [36] in order to utilize the DAX (direct
access) feature provided by Ext4 [37].

We evaluate vNVML on a platform with 16GB DRAM,
12GB emulated NVM, and Intel i7-4770 four-core 3.4 GHz
processor with hyperthreading enabled. Samsung enterprise
PM863 480GB SSD (SATA 6.0 Gbps) is adopted as our
example of the storage devices. We implement vNVML on
the Linux kernel 4.13 version. All experiments are conducted
three times and take the average.

B. Macrobenchmark

In this subsection, we analyze the impact of accessing NVM
through vNVML by real applications. We adopt a popular
open-source database MongoDB version 3.6.0 [38] as our
target application because its MMAPv1 storage engine utilizes
memory mapped files to access the files in the storage devices,
which is perfect for our vNVML to employ. We modify part
of the source code of MongoDB for our transactional interface
to deploy vNVML.

TABLE I: Throughputs of single MongoDB instance with
different number and distribution of inserted records when
NVM is the only storage device

# of records uniform zipfian
30K 1500 (op/s) 1505 (op/s)
10K 1509 (op/s) 1498 (op/s)

We choose YCSB [31] to generate the read/write traffic of
MongoDB. The setup of experiment is delineated in Fig. 6.
To simplify our analyses, we configure the size of all records’
fieldcount as 128 and fieldlength as 512 and readallfields and
writeallfields are both set as true in the configuration file of
YCSB workloads, meaning that each read/write request will
access exactly 64KB data, which is also the data written
per transaction. 100K operations are executed for all exper-
iments. We deploy the different read/write ratio and request
distributions (zipfian or uniform) to observe the impact of
performance.

The YCSB has two phases: one is inserting the records into
the databases, the other is accessing (read or write) records in
the databases. To avoid polluting the NVM cache before the
accessing phase, in the insertion phase MongoDB only uses
its original insertion functions to access the memory mapped
region, meaning that all records are inserted to the memory
(due to the Copy-on-Write mechanism provided by private
mmap).

All experiments are conducted by four MongoDB instances
running concurrently. However, since the MMAPv1 storage
engine uses padding and a power of two sized allocation
mechanism [39], four instances generate 8.8GB files when
each instance is inserted 10K records, and 33GB files after
30K records inserted. 12GB emulated NVM in our platform
can only accommodate insertion of 13K records for each
instance. However, from table I, we find that the throughputs of
one instance are very close to each other even with different
numbers of inserted records and distributions if all files are
stored in NVM. We assume this observation still holds in the 4-
instance case. Therefore, we insert 10K records to each of four
instances, remove the periodic msync calls by MongoDB,
disable journaling with nojournal option, and use NVM as
the only storage device of MongoDBs as our baseline.

Fig. 7 shows the normalized throughputs of different request
distributions (zipfian and uniform) and read/write ratios (5/95,
70/30, and 100/0). From these results we can make some
useful observations.

First, the case of cache size is 1GB, log size is 2GB, and
30K inserted records (7.32GB) already proves that vNVML
can provide virtualization of NVM successfully.

Second, vNVML can achieve not only over 90% of the
throughput of baseline (if the log buffer and cache can
handle the input traffic), but it also provides the property
of persistency, which is our baseline, the MongoDB without
journaling, does not. This less than 10% overhead results from
writing data to log buffer and read cache.



(a) Zipfian, R/W ratio = 5/95 (b) Uniform, R/W ratio = 5/95 (c) Zipfian, R/W ratio = 70/30

(d) Uniform, R/W ratio = 70/30 (e) Zipfian, R/W ratio = 5/95 (f) Uniform, R/W ratio = 5/95

(g) Zipfian, R/W ratio = 70/30 (h) Uniform, R/W ratio = 70/30 (i) Uniform, R/W ratio = 100/0

Fig. 7: Normalized total throughput of four instances. Numbers of X-axis stand for inserted records to each database, and
numbers of Y-axis stand for normalized throughput. (a) to (d): Fix 4GB cache size and adjust log buffer size from 2GB to
128MB. (e) to (h): Fix the 2GB log buffer and change cache size from 8GB to 1GB. (i) 100% read uniform request.

Third, larger write working sets: (more inserted records,
more random (uniform) requests), and more write traffic:
(lower R/W ratio) degrade the throughput. Larger write work-
ing sets require more NVM cache to store the data at run-time;
however, if the working set is even larger than the capacity
of NVM cache owned by applications, which would result
in cache pages written back to storage devices and therefore
deteriorate the performance.

Fourth, through (a) to (d), when cache sizes are all fixed, the
adjustment of log buffer only affects less than 12% throughput
of baseline in all these cases.

Fifth, from (e) to (h), when sizes of log buffer are fixed,
their throughputs vary highly, especially in the case of (f):

read/write ratio is 5/95, uniform request, and 30K inserted
records. In (f), the throughputs differ by almost 50%, meaning
that cache size impacts throughput more significantly than that
of the log buffer.

Finally, (i) shows at 100% read, uniform distribution request
case vNVML can achieve around 92% throughput regardless
of the number of inserted records. It matches our expectation
of vNVML since the read is entirely handled by the read
cache (memory) and 16GB memory is enough to handle the
30K records working set since 30K × 64K × 4 ∼ 7.32GB.
Therefore, from above observations, we can conclude that
under the limited NVM resources, NVM should be allocated
more as cache than log buffer.



(a) Zipfian, 5/95 R/W ratio

(b) Zipfian, 70/30 R/W ratio

Fig. 8: Normalized throughput of four instances inside Docker
container.

Next, we would like to examine the impact of using
vNVML within docker containers [40]. Docker is a popular
virtualization technique in data centers and recently has drawn
significant attention from industry and academia due to its
lightweight execution environment compared to traditional
virtual machines. In this experiment, we launch four docker
containers, use bind mount [41] to mount 12GB emulated
NVM into each container so all containers can access and
share content in NVM, and run single MongoDB instance
within each container. Log buffer is configured as fixed 2GB,
the cache size as well as read/write ratio are adjusted to
various settings. Each data point is normalized with individual
counterpart, which is the same configuration without using
containers. Fig. 8 shows that all the data are close to 1; that
is, using vNVML within docker containers does not affect the
performance.

C. Microbenchmark

We use a simple microbenchmark to compare the per-
formance between Intel’s PMDK [26], SoftWrAP [16], and
our vNVML. In this experiment, we create a 2GB array in
NVM (virtual NVM, respectively) for PMDK and SoftWrAP
(vNVML, respectively), and write different amounts of data
(from 16B to 512B) per page sequentially. Each transaction
contains 32 page writes.

(a) Normalized vNVML and SoftWrap execution time with the
same NVM size.

(b) Normalized vNVML and SoftWrap execution time assuming
unlimited NVM size.

Fig. 9: Normalized vNVML and SoftWrap execution time.
Numbers of x-axis stand for the amount of written data per
page.

To use PMDK, we use pmemobj_create to cre-
ate a 4GB NVM pool because 2GB NVM pool is
not enough to accommodate 2GB array. We always set
PMEM IS PMEM FORCE=1 when executing PMDK to
avoid unnecessary msync or fsync when accessing NVM.
For fairness, we use 2GB log buffer and 2GB cache when run-
ning vNVML. We only use default setting for SoftWrAP since
it does not provide API for internal buffer size adjustment.

Fig.9(a) shows the result. We use the total execution time
of PMDK as our baseline, and show the total time of writing
the 2GB array for once. The result indicates that among
others our vNVML performs better as the total written data
keeps increasing. Fig.9(b) shows another experiment, which
we enlarge the NVM to 8GB and want to compare the upper
bound of each library. We write the 2GB NVM array 16 times.
Its result is similar as Fig.9(a).

VI. CONCLUSION

In this paper we presented vNVML, a byte-level library
interface to NVM that provides transaction like semantics for
applications, ensures write ordering and provides persistency
guarantees across failures. Our system employs NVM as a



write log and a write cache, while employing DRAM as a
read cache.

We implemented vNVML and evaluated it with realistic
workloads to show that our system allows applications to share
NVM, both in a single O/S and when docker like containers are
employed. The results from the evaluation show that vNVML
incurs less than 10% overhead while providing a larger than
available physical NVM space to the applications and allowing
them to safely share the virtual NVM.
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